Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Particles Swarm Optimization (PSO)

Handbook of Research on Artificial Intelligence Techniques and Algorithms
The Particles Swarm optimization is a meta-heuristic as it makes few or no assumptions about the problem being optimized and can search very large spaces of candidate solutions. However, meta-heuristics such as PSO do not guarantee an optimal solution is ever found. More specifically, PSO does not use the gradient of the problem being optimized, which means PSO does not require that the optimization problem be differentiable as is required by classic optimization methods such as gradient descent and quasi-Newton methods. PSO can therefore also be used on optimization problems that are partially irregular, noisy, change over time.
Published in Chapter:
A Comparison for Optimal Allocation of a Reliability Algorithms Production System
Abdelkader Zeblah (University of Sidi Bel Abbes, Algeria), Abdelkader Rami (University of Sidi Bel Abbes, Algeria), and Eric Châtelet (University of Technology of Troyes, France)
DOI: 10.4018/978-1-4666-7258-1.ch018
Abstract
The most important phase in many industrial power applications is the design problem. Usually the demand increases randomly with time in the form of a cumulative demand curve. To adapt the power system capacity to the demand, new power architecture is predicted. To build this latter, the reliability optimization plays an important role to find the realizable power system architecture. This chapter describes and uses different meta-heuristics optimization methods to solve the redundancy optimization problem for multi-state series-parallel power systems. The authors consider the case where redundant power components are chosen to achieve a desirable level of reliability. The power components of the system are characterized by their cost, capacity, and reliability. The proposed meta-heuristics seek the optimal architectures of series-parallel power systems in which a multiple choice of components are allowed from a list of products available in the market. The approach has the advantage of allowing power components with different parameters to be allocated in power systems. To allow fast reliability estimation, a Moment Generating Function (MGF) method is applied. An illustrative example is presented.
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR