Search the World's Largest Database of Information Science & Technology Terms & Definitions
InfInfoScipedia LogoScipedia
A Free Service of IGI Global Publishing House
Below please find a list of definitions for the term that
you selected from multiple scholarly research resources.

What is Systems Delay

Encyclopedia of Information Science and Technology, Second Edition
Is the time lapse between action and response. Delays often destabilize the system and slow a system down from reaching its goal. Systems delays often mask anticipated outcomes as well as unintended consequences of actions as the intervening time lapse is often longer than expected.
Published in Chapter:
Systems Thinking and the Internet from Independence to Interdependence
Kambiz E. Maani (The University of Queensland, Australia)
DOI: 10.4018/978-1-60566-026-4.ch582
Abstract
Despite our most impressive advances in sciences and technology, our prevailing worldview and the way we work and relate is deeply rooted in the thinking that emerged during the Renaissance of the 17th century! This thinking was influenced by the sciences of that era and in particular by Newtonian physics. Newton viewed the world as a machine that was created to serve its master–God, (Ackoff, 1993). The machine metaphor and the associated mechanistic (positivist) worldview, which was later extended to the economy, society, and the organization, has persisted until today and is evident in our thinking and vocabulary. The mechanistic view of the enterprise became less tenable in the 20th century partly due to the emergence of the corporation and the increasing prominence of human relation issues in the workplace. Today, this way of thinking has reached its useful life – The futurist, Alvin Toffler declared in 1991 “the Age of the Machine is screeching to a halt”. For well over a century, the western world has subscribed to a way of thinking known as analysis (Ackoff, 1995). In analysis, in order to understand things—a concept, a product, a law, an organization, human body—we break it into pieces and study the pieces separately. This approach tends to overlook the interdependencies and connections between the constituent parts, which are responsible for dynamic change in systems, say aging in human body. On the one hand, this “divide and conquer” approach has served us well in the past. It has enabled efficient mass production of goods and services, which has brought a new social and economic order creating unprecedented wealth and standards of living in the industrialized world. On the other hand, this thinking has resulted in over-fragmentation and has created complexity and cross-purposes within organizations. In the early part of the 20th century, a new breed of scientists, in particular quantum physicists such as Werner Heisenberg (Uncertainty Principle) and Norbert Weiner (Cybernetics) began to challenge the Newtonian precepts (Zohar & Marshal, 1994). In 1968, Austrian biologist Von Bertalanffy (1968) published “General Systems Theory”—a major departure from conventional fragmentation in science. Similarly, Jay Forrester of MIT introduced and demonstrated the applications of feedback theory in organizations (Forrester, 1958). Forrester’s seminal work marks the birth of a new discipline known as System Dynamics. System Dynamics is concerned with applications of systems theory and computer modeling in complex problems in business, economics, and the environment. System Dynamics is the forerunner and the scientific foundation of Systems Thinking. Today, biologist and physicists as well as social and cognitive scientists are working on new fields such as complexity and network theory, and Gaia theory. These emerging fields come under the broader umbrella of “systems theory” or “living systems” and “they are working in the systems sciences and are contributing to advancing the integrated, systemic understanding of life” (Capra, 2007).
Full Text Chapter Download: US $37.50 Add to Cart
eContent Pro Discount Banner
InfoSci OnDemandECP Editorial ServicesAGOSR