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ABSTRACT

This research utilized vehicle-based measures from a naturalistic driving dataset to detect distraction 
as indicated by long off-path glances (≥ 2 s) and whether the driver was engaged in a secondary 
(non-driving) task or not, as well as to estimate motor control difficulty associated with the driving 
environment (i.e. curvature and poor surface conditions). Advanced driver assistance systems can 
exploit such driver behavior models to better support the driver and improve safety. Given the 
temporal nature of vehicle-based measures, Hidden Markov Models (HMMs) were utilized; GPS 
speed and steering wheel position were used to classify the existence of off-path glances (yes vs. no) 
and secondary task engagement (yes vs. no); lateral (x-axis) and longitudinal (y-axis) acceleration 
were used to classify motor control difficulty (lower vs. higher). Best classification accuracies 
were achieved for identifying cases of long off-path glances and secondary task engagement with 
both accuracies of 77%.
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INTRODUCTION

Driving is a complex task that mainly requires visual perception and manual control. The performance 
of this task is influenced by the driver’s ability to perceive and adapt to different environmental 
demands, which in turn is influenced by driver’s state. Distraction, a driver state that is defined as 
“the diversion of attention away from activities critical for safe driving toward a competing activity” 
by Regan, Lee, and Young (2008, p. 34), has been shown to be prevalent among drivers (Dingus et 
al., 2016; Young & Lenné, 2010), to impair driving performance (Caird, Willness, Steel, & Scialfa, 
2008; Horrey & Wickens, 2006; Regan et al., 2008), and to increase crash risk (Dingus et al., 2016; 
National Highway Traffic Safety Administration, 2018).
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Technological advances are generating smarter vehicles that aim to enhance traffic safety and 
the experience of driving by detecting driver state (McCall & Trivedi, 2004; Pentland & Liu, 1999; 
Yang, Lin, & Bhattacharya, 2010), the state of the driving environment (Fridman et al., 2016), and 
driver intent (Jain, Koppula, Raghavan, Soh, & Saxena, 2015; Martin, Vora, Yuen, & Trivedi, 2018). 
These technologies that are mainly still in development are promising for distraction mitigation. For 
example, upon predicting driving impairment due to distraction, the vehicle may provide feedback 
to the driver that could help direct the driver’s attention back to the driving task (Donmez, Boyle, & 
Lee, 2007, 2008) or may take over lateral and/or longitudinal control (e.g. Stanton & Young, 2005). 
Further, when high levels of driver distraction are detected, the vehicle can adapt user interfaces that 
are built-in or brought into the vehicle, such as by filtering information content, delaying notifications, 
and blocking access to certain actions. For example, Tchankue, Wesson, and Vogts (2011) developed 
a prototype adaptive user interface for an in-car communication system that blocked incoming phone 
calls and prevented drivers from sending text messages when distraction was detected. Such a system 
can also block phone calls when environmental demands are predicted to be high. In general, better 
system awareness of the driving environment can lead to more effective and intelligent distraction 
mitigation strategies.

Driver Distraction and Environmental Demand Detection
Several sources of information can be used for driver state detection. Aghaei et al. (2016) classified 
driver state detection measures into three categories: vehicle-based, physiological, and facial or 
body expression. Vehicle-based measures can be directly related to driver input (e.g. steering and 
braking), the vehicle’s response to driver input (e.g. velocity and acceleration), and the vehicle’s state 
relative to the environment (e.g. headway distance and lane deviations). Physiological measures are 
indicators of physical arousal, and include measures such as heart rate, skin conductance, and brain 
activity. Facial or body expression measures involve techniques like face detection, eye tracking, and 
motion detection, and provide measures such as secondary (i.e. non-driving related) task engagement 
and off-path glance durations. Extensive research has documented the reactivity of these different 
measures to driver distraction (see Aghaei et al. (2016) for a review), although some measures assess 
distraction more directly than others. For example, increased heart rate may be due to distraction, but 
it could also be due to stress (Taelman, Vandeput, Spaepen, & Van Huffel, 2009) or an increase in 
the ambient temperature (Achten & Jeukendrup, 2003). On the other hand, off-road glances would 
unambiguously indicate that the driver’s visual attention is not allocated to the roadway. In fact, there 
is a strong established relation between long off-road glances, in particular, glances longer than 2 
seconds, and increased crash risk (Klauer, Dingus, Neale, Sudweeks, & Ramsey, 2006). Secondary 
task engagement, which can be inferred from observations of body movement, can be regarded as 
another proxy for driver distraction, as it is a strong indicator that the driver’s attention is directed 
toward another activity that may compete with driving and introduce safety risks.

Although both physiological and facial or body expression measures can be useful in distraction 
detection, these measures generally require cameras/computer vision and sophisticated physiological 
sensors. While these technologies work well in driving simulator studies, there are concerns about 
the feasibility and reliability of employing such methods in the real world, particularly in production 
vehicles. Cameras, eye-tracking technology, and physiological sensors are known to be affected by 
environmental factors such as motion and lighting, are costly to implement, and can be intrusive to 
the driver. Moreover, the use of these technologies to record driver face and physiological activity 
may bring about concerns regarding privacy and data confidentiality. Vehicle-based measures, on 
the other hand, especially kinematic measures such as velocity and acceleration, and driver input 
measures such as steering wheel position, are readily accessible from sensors that are already built 
into vehicles. Thus, these vehicle-based measures provide a good starting point for attempting to 
detect driver state in the real world.
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There has been a variety of attempts to detect driver distraction. However, most research has 
leveraged facial or body expression measures (e.g. Lee et al., 2018), whereas few have focused solely 
on vehicle-based measures (e.g. Atiquzzaman, Qi, & Fries, 2018; Tango & Botta, 2013). Further, 
some of these studies used simulator (e.g. Atiquzzaman, Qi, & Fries, 2018; Tango & Botta, 2013) 
or instrumented vehicle data (Kircher & Ahlstrom, 2010; Li, Bao, Kolmanovsky, & Yin, 2018). As 
discussed above, the equipment reliability issues are not as prominent in the simulator as they are in 
the real world. In addition, simulator and instrumented vehicle studies employ a degree of experimental 
control and therefore may not truly represent how drivers are distracted in the real world. For the 
latter reason, naturalistic driving studies have increasingly been performed to understand drivers’ 
natural behavior on the road, including their interaction with in-vehicle systems and other sources 
of distraction. Naturalistic approaches make use of cameras and sensors installed on participating 
drivers’ vehicles that collect data for extended periods of time. For example, the Second Strategic 
Highway Research Program 2 Naturalistic Driving Study (SHRP2 NDS) – the largest naturalistic 
driving study conducted in the United States so far – contains data collected over a three-year period 
from over 3000 vehicles and around 50 million miles driven (Dingus et al., 2014). Naturalistic study 
datasets, such as SHRP2, provide a great opportunity for evaluating the feasibility of driver state 
detection in the real world from vehicle-based measures.

Li et al. (2018) utilized instrumented vehicles to collect driving data from 16 drivers and classified 
visual-manual secondary task engagement using vehicle-based measures including steering wheel 
entropy as well as the standard deviation of steering wheel position, of speed, and of headway distance. 
They were able to use headway distance as a predictor given that they collected data via instrumented 
vehicles and reached high overall levels of accuracy (~95%) but high levels of false positive rates 
(~78%). Their models were trained on the individual driver data given that they only had 16 drivers. 
Kircher and Ahlstrom (2010) used vehicle-based measures such as speed, speed variability, throttle 
hold rate, and steering wheel reversal rate to predict instances of “distraction” labeled based on 
non-driving related glances. They achieved an accuracy rate of 76% but their data was collected in 
a small-scale instrumented vehicle study with seven drivers. In general, further attempts are needed 
to investigate driver distraction detection via vehicle-based measures with larger sample sizes and 
in more naturalistic settings.

In addition to inferring driver distraction, vehicle-based measures may also be leveraged for 
detecting environmental demand, which can lead to smarter distraction mitigation strategies. For 
example, crash severity is higher on curves (Donmez & Liu, 2015) and crash risk increases with road 
slipperiness (Norrman, Eriksson, & Lindqvist, 2000), which indicate that road alignment and road 
surface conditions affect motor control demands experienced by drivers.

Objective
In this paper, naturalistic driving data, in particular, the Naturalistic Engagement in Secondary Task 
(NEST) dataset, was utilized to investigate whether vehicle-based measures can be exploited to predict 
long off-path glances and secondary task engagement (indicators of distraction), as well as motor 
control difficulty (an indicator of environmental demand). The NEST dataset is a sample of the SHRP2 
data that was created for the purpose of studying driver distraction in a naturalistic setting (Owens, 
Angell, Hankey, Foley, & Ebe, 2015). For prediction, Hidden Markov Models (HMMs) were utilized 
because they have been found to be successful at predicting time-sequential data (Yamato, Ohya, & 
Ishii, 1992) and were found to generate high accuracies in driver state prediction, e.g. Lee et al. (2018).

METHODS

Using the NEST data, HMMs were built from vehicle-based measures (in particular, GPS speed, 
steering wheel position, and lateral and longitudinal acceleration) to predict the existence of long 
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off-path glances, secondary task engagement, and higher levels of motor control difficulty. Separate 
models were built for each variable.

NEST Dataset and Feature Selection
The NEST dataset contains baseline data (i.e. data from normal conditions with no crashes or near-
crashes) from 204 drivers. Overall, the dataset consists of a total of 944 baselines, each 20 seconds long 
and broken into two 10-second long epochs for coding purposes. NEST variables used as predictors 
in our hidden Markov models are summarized in Table 1, while the NEST variables that were used 
for creating the categories of long off-path glances (yes vs. no), secondary task engagement (yes vs. 
no), and motor control difficulty (higher vs. lower) are summarized in Table 2. A detailed listing and 
description of all NEST variables can be found in Owens et al. (2015). Sequential variables listed in 
these two tables are reported at a rate of 1 (GPS speed) or 10 (steering wheel angle, acceleration, and 
gaze direction) frames per second, which result in around 20 or 200 samples for each 20-second-long 
baseline, while aggregated variables are reported in a manner that represents a high-level summary of 
the state of each variable (secondary task engagement, road surface condition, and road alignment) 
during each 10-second epoch. For example, if there is curvature detected in an epoch, the alignment 
of the road would be labeled as “curved” for the entire 10 second epoch.

GPS speed, steering wheel position, and lateral and longitudinal acceleration were chosen 
as predictors for our models because previous studies have found steering wheel and speed 
measures useful in predicting distraction (Kircher & Ahlstrom, 2010; Li et al., 2018), and lateral 
and longitudinal acceleration are expected to be affected by motor control difficulty. Thus, 

Table 1. Summary of NEST variables used as predictors in HMMs

Variable Source and Type Unit Sampling Rate Description

GPS Speed

Vehicle kinematics / 
Sequential

km/h
1 Hz 
(~20 samples per 
baseline)

Speed measured by 
GPS

Steering Wheel 
Position degrees

10 Hz 
(~200 samples per 
baseline)

Steering wheel angle

x-acceleration g Longitudinal 
acceleration

y-acceleration g Lateral acceleration

Table 2. Summary of NEST variables used for categorizing output variables of HMMs

Variable Source Type Sampling Rate Description

Gaze 
Direction Annotated 

video 
sequences

Sequential

10 Hz 
(~ 200 samples 
per baseline 
event)

Allocation of drivers’ gaze to different areas such 
as forward (on-path), center stack, right mirror, and 
left mirror, as well as the transitions between areas

Secondary 
Task

Aggregated

Once for 10 
seconds 
(2 samples per 
baseline)

Up to six out of 40 different task types: e.g. 
interaction with carried-in devices, grooming, 
interaction with passengers

Surface 
Condition Environment 

variables

Good vs. poor (good if the road surface is dry for 
both 10-second epochs; else, poor)

Road 
Alignment

Straight vs. curved (straight if the road is straight for 
both 10-second epochs; else, curved)
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GPS speed and steering wheel position were used for classifying the existence of long-off path 
glances and secondary task engagement, whereas lateral and longitudinal acceleration were used 
to classify motor control difficulty.

Predicted Classes
Table 3 defines the classes (or levels) of the three predicted variables (i.e. long off-path glance, 
secondary task engagement, and motor control difficulty) and presents the NEST variables used in 
creating these classes. Further details are provided in the following sections.

Long Off-Path Glance Classes
The NEST dataset includes gaze position categorized into 18 possible areas or locations of interest 
(e.g. forward or on-path, center stack, and left window/mirror). The dataset also reports gaze transitions 
between different areas. Baselines with missing values for gaze position or with a value of “unknown” 
(n = 36) were excluded from our analysis, leaving 908 baselines that included 190,535 frames with 
gaze position information. These frames were used to identify whether there were any off-path glances 
(i.e. non-forward) that were 2 seconds or longer in a given baseline. A threshold of 2 seconds was 
used given that glances longer than 2 seconds have been found to significantly increase crash risk 
(Klauer et al., 2006). Overall, 182 baselines were labeled as having at least one long off-path glance, 
the remaining 726 baselines were labeled as not having long off-path glances. When calculating off-
path glance durations, the transition time preceding the off-path glance was included, according to 
the ISO 16673:2007(E) standard (International Organization for Standardization, 2007).

Secondary Task Engagement Classes
The NEST dataset reports on 40 different categories of secondary tasks (e.g. texting, cellphone related 
engagements, dancing, singing, interacting with passengers, and grooming). If a baseline had a record 
of any of these secondary tasks, then it was labeled as having secondary task engagement. All other 
baselines were categorized as having no secondary task engagement. Although NEST categorizes 
the presence of passengers/children with no interaction as secondary tasks, we labeled these cases 
as “no secondary task engagement”. Baselines that had “unknown” or “N/A” secondary tasks were 
excluded from the analysis, leaving 928 baselines: 701 with secondary task engagement and 227 with 

Table 3. Predicted variables and their classes

Predicted 
Variable

Nest 
Variable(s) Classes

Number 
of 

Baselines

Number 
of 

Baselines 
Used in 
HMMs

Long Off-path 
Glances (≥ 2 s)

Gaze 
Direction

Yes: Baseline contains at least one off-path glance 
that is 2 seconds or longer 182 34

No: Baseline contains no off-path glances 2 seconds 
or longer 726 143

Secondary Task 
Engagement

Secondary 
Task

Yes: Driver engaged in at least one secondary task 701 133

No: Driver not engaged in any secondary tasks 227 46

Motor Control 
Difficulty

Surface 
Condition, 
Road 
Alignment

Higher: Either poor surface condition, curved road, 
or both 315 275

Lower: Good (dry) surface condition and straight 
road 617 538
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no secondary task engagement. Overall, the 928 baselines corresponded to a total of 186,192 frames 
of vehicle-based data recorded at 10 Hz.

Motor Control Difficulty Classes
Two variables from the NEST dataset, road surface condition (good or poor conditions) and road 
alignment (straight or curved road), were combined to create the “motor control difficulty” categories: 
lower and higher. Baselines with good surface conditions and straight roads were categorized as 
having lower motor control difficulty, the rest were categorized as having higher motor control 
difficulty. Based on these categorizations and after removing baselines with unknown/missing data, 
617 baselines were labeled as having “lower motor control difficulty” and 315 baselines were labeled 
as having “higher motor control difficulty.” Overall, the total of 932 baselines corresponded to a total 
of 186,998 frames of vehicle-based data recorded at 10 Hz.

Hidden Markov Models (HMMs)
After the removal of baselines that had missing data as reported above, data had to be further 
processed for modeling purposes. Because the GPS speed was sampled at a lower rate (1 Hz) 
than the other three predictor variables (10 Hz), GPS speed data was interpolated/extrapolated 
over the 20 second baseline interval to fill in missing entries and to bring it up to the same 
frequency as the other three predictor variables. The same technique was used when the 
other three predictor variables had missing values for a baseline (120 missing frames were 
generated for steering wheel position, and 3047 both for x- and y-acceleration). If a baseline 
had no values or a single value recorded for a predictor, interpolation/extrapolation was 
not possible, and that baseline was removed from the analysis. After this data processing 
step, the number of baselines that could be used in HMMs was further reduced as reported 
in the last column of Table 3. Significant reductions occurred in the baseline data used for 
distraction classification, given that the predictors GPS speed and steering wheel position 
had high amounts of missing data.

HMMs were developed for each classification problem in Python 3.2 using the hmmlearn library. 
The classifications were conducted with generative models using first order Gaussian HMM. This 
approach creates two HMMs (m1 and m2 in Figure 1) – one for each classification level (e.g. one 
for secondary task engagement and one for no secondary task engagement) – but does not need to 
explicitly specify the HMM model parameters. The Baum-Welch algorithm (Baum, Petrie, Soules, 
& Weiss, 1970), an expectation maximization algorithm that uses Maximum Likelihood Estimation 
(MLE) (Dempster, Laird, & Rubin, 1977), was used to construct the models. The baselines were 
randomly split into 80%-20% training-test sets. All three problems had unbalanced classes, a situation 
known to hinder the performance of learning classifier systems (Sun, Wong, & Kamel, 2009). To 
balance the training sets, the classes that had more baselines were randomly undersampled using 
the RandomUnderSampler method from the imbalanced-learn library in Python. After the models 
were trained, test sequences (xt) were fed into the HMMs as shown in Figure 1. Log-likelihoods 
were computed for each model, and the test sequence was assigned to the model that gave the higher 
log-likelihood value.

Figure 1. The HMM classification process
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RESULTS

Data Properties
Figure 2 presents boxplots of the predictor variables from a randomly selected training dataset 
that was used in modeling. Overall, visual inspections of these plots along with normal quantile-
quantile plots of the data that are not presented here suggest approximately normal distributions 
for the data. In particular, the variability of the steering wheel position appears to decrease under 
distracted states; the GPS speed also tends to decrease. These trends are in line with previous 
research that reported a reduction in speed (Engström, Johansson, & Östlund, 2005) and variability 
of steering input (Kircher & Ahlstrom, 2010) under distraction. As for motor control difficulty, 
the variability of both lateral and longitudinal acceleration appears to be higher during higher 
motor control difficulty situations.

Figure 2. Boxplots of predictor variables across different classes; boxplots depict the five-number summary
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Classification
Each classification problem was repeated 10 times with randomly split training and test datasets in order 
to examine the robustness of the models in uncovering data patterns. The classification performance 
of the HMMs is presented in Table 4. The number of hidden states were determined empirically; 3 
states were chosen for long off-path glance classification, whereas 2 states were chosen for the other 
two classification problems.

The accuracy of the models to classify distraction (i.e. presence of long off-path glances or 
secondary task engagement) was relatively high at 77%. However, these models were performing 
at the chance level or worse in classifying non-distraction cases. As for motor control difficulty, the 
accuracy levels were 60% and 67% for classifying higher and lower difficulty cases, respectively.

DISCUSSION

Hidden Markov models (HMMs) were built based on a naturalistic driving dataset, to detect instances 
of driver distraction as well as high levels of environmental demand from vehicle-based data. In 
particular, the Naturalistic Engagement in Secondary Tasks (NEST) dataset, a subset of SHRP2 data, 
was utilized to classify whether drivers had long off-path glances (2 seconds or longer), whether 
they were engaged in a secondary task, and whether the motor control difficulty associated with road 
conditions and alignment was relatively high. Specifically, GPS speed and steering wheel position 
were used to classify the two distraction indicators, whereas lateral and longitudinal acceleration 
were used to classify motor control difficulty. Overall, the models performed relatively well at around 
77% accuracy for detecting existence of long off-path glances and secondary task engagement. 
However, they failed to achieve a high accuracy rate for detecting cases of no long off-path glances 
and no secondary task engagement. As for motor control difficulty, the models achieved 60 and 67% 
accuracy rates for higher and lower motor control difficulty levels, performing better than chance in 
labelling both classes.

It appears that although driving behavior becomes more specific (i.e. lower speed and significantly 
reduced variability of the steering wheel angle) when drivers have long off-path glances or when they 
are engaging in secondary tasks, these specific driving behaviors are also observed when drivers are 
not engaged in secondary tasks or are not looking away from the road for extended periods of time. 
Due to this overlap, the models may be failing to perform well for accurately classifying the “no” 
secondary task and the “no” long off-path glance situations, which may translate to false alarms in 
driver state detection systems. Therefore, although vehicle-based measures can be informative, they 
may need to be combined with other signals in order to boost their performance. Another potential 

Table 4. Classification accuracy (average and standard deviation across 10 repetitions) of HMMs for the three 
classification problems

Predicted Variable Predictors Classes
Accuracy

Average Standard 
Deviation

Long Off-path Glances (≥ 2 sec) GPS speed and steering wheel position
Yes 77.14% 13.80%

No 51.38% 9.54%

Secondary Task Engagement GPS speed and steering wheel position
Yes 77.04% 13.73%

No 42% 16.87%

Motor Control Difficulty x- and y-acceleration
Higher 59.82% 7.74%

Lower 67.22% 4.48%
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reason for low accuracies for the “no” classes might be due to the limited size of the data we could 
utilize in our models. A significant amount of the baseline cases was lost due to missing values in 
steering wheel position and GPS speed. Given that the classification accuracy depends on the richness 
of the training dataset, using a larger dataset such as the entire SHRP2 data or the inclusion of more 
variables such as headway distance and vehicle lane position that describe drivers’ behavior more 
comprehensively may also result in significant improvements in accuracy. Performance boost may 
also be achieved by using the Synthetic Minority Over-Sampling Technique (SMOTE) (Chawla, 
Bowyer, Hall, & Kegelmeyer, 2002) to generate new data samples from the minority class and create 
balanced datasets.

Classification accuracy may also be improved by utilizing other algorithmic approaches. Other 
models suitable for capturing temporal dynamics, such as hidden semi-Markov models (Johnson 
& Willsky, 2012), recurrent neural networks (Schmidhuber, 2015), and Bayesian network models, 
should be explored in future research. It should also be noted that our models were not trained on 
individual drivers’ data. Therefore, as expected, our accuracy levels are similar to or lower than other 
studies which trained classifiers on driver specific data (Kircher & Ahlstrom, 2010; Li et al., 2018). 
If driver state detection systems can be trained on the individual driver, then they should perform 
better for that specific driver.

It should also be noted that although we have tried to capture two different indicators of driver 
distraction that are known to affect crash risk and driving performance, these indicators may not 
fully capture all distracted driving states. For example, drivers may be lost in thought and their 
reaction times may be delayed and these states may also be important to capture through a driver 
state detection system. Further, it was expected that lateral and longitudinal acceleration would be 
indicative of motor control difficulty associated with the road environment. This expectation was 
confirmed given the relatively good performance of the models for classifying motor control difficulty 
based on acceleration data. In general, better system awareness of the driving environment can lead 
to more effective and intelligent distraction mitigation strategies and further research is needed to 
characterize environmental demand beyond motor control difficulty.

CONCLUSION

In conclusion, using hidden Markov models built on naturalistic driving data, vehicle-based measures 
(speed and steering wheel position) were found to predict indicators of driver distraction (secondary 
task engagement and long off-path glances) with an accuracy of 77%. A hidden Markov model utilizing 
lateral and longitudinal acceleration to predict higher motor control difficulty was found to have an 
accuracy of 60%. The performance of such models can be improved by including additional vehicle-
based measures as predictors, using different techniques for creating balanced classes in the training 
datasets, or utilizing different modeling algorithms. Overall, our results suggest that vehicle-based 
measures are promising for use in the prediction of driver distraction and environmental demand. 
Such predictions can be used in driver assistance systems that support drivers during periods of 
distraction and high environmental demand.
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