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ABSTRACT

Through innovative application of the multi-regional input-output model (MRIO) and spatial 
econometric methods, this paper investigates the trends, scale, and environmental impacts of China’s 
industrial relocation, providing new information from an input-output perspective. The findings 
indicate that the relocation of China’s industrial sector has exhibited a distinctive trend of moving 
“westward” and “northward,” while the service sector has demonstrated a tendency to cluster in several 
developed regions. Moreover, the authors have identified that the energy efficiency in net inflow 
regions and other regions is affected differently by industrial relocation. Specifically, the net inflow of 
the industrial sector positively impacts the energy intensity of local provinces, but negatively affects 
neighboring provinces. Conversely, the net inflow of the service sector has the opposite effect. The 
research enriches the understanding of China’s industrial relocation and provides targeted implications 
to further prove the high-quality of China’s industrial relocation.
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INTROdUCTION

In recent decades, fossil energy as a primary driver of economic growth has contributed to numerous 
environmental issues (Xuehui Li & Lin, 2013; Thuiller, 2007). As a result, governments worldwide 
have implemented various measures to reduce energy consumption, focusing on reducing energy 
intensity (Xu & Lin, 2019; Zhu & Lin, 2020). Many countries have set reducing energy intensity as 
a central goal of their energy conservation and emission reduction plan.

China is the world’s largest carbon emitter and is crucial in mitigating climate change. In 2020, 
China pledged to attain near-zero carbon emissions by 2060, which means that China needs to achieve 
huge energy efficiency improvements in the next decades. However, uneven regional development has 
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resulted in significant gaps in energy intensity among different regions in China. While the eastern 
region has achieved a significant reduction in energy intensity through leveraging green technologies 
and industrial upgrading (Chen et al., 2019; Chen & Lin, 2021), energy intensity in central and 
western regions is still relatively high due to backward modes of economic development (Figure 1). 
This regional disparity poses a significant challenge to achieving China’s carbon neutrality target 
(Zheng et al., 2020a).

Industrial relocation is widely recognized as the main reason for regional disparities in energy 
intensity within China (Li, Pan, & Yuan, 2022; Wu & Lin, 2021). The impact of industrial relocation 
on energy intensity is complex. On the one hand, industrial relocation may lead to the agglomeration 
of energy-intensive industries in some specific regions, which can increase local energy intensity. 
On the other hand, industrial relocation can promote industrial synergy, technology diffusion, 
and economies of scale, thereby decreasing regional energy intensity (Tanaka & Managi, 2021). 
Additionally, industrial relocation is a bidirectional phenomenon that involves the relocation-out and 
relocation-in of corresponding industries in different areas simultaneously, resulting in a dual impact 
on energy intensity at the national level (Lin & Wang, 2023). However, the existing literature has 
mainly focused on the emissions transfer driven by industrial relocation, with limited attention paid 
to the industrial relocation itself. Therefore, the actual situation of China’s industrial relocation and 
its relationship with energy intensity remains uncertain.

Since 2000, the Chinese government has implemented a range of regional economic policies, such 
as the “Rise of Central China,” “Western Development,” and “Revitalization of the Northeast,” aimed 
at addressing imbalanced regional economic development and optimizing the national industrial layout. 

Figure 1. Provincial energy intensity in 2019
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Industrial relocation has emerged as a key means for achieving these goals Chen & Lin, 2021; Mi et al., 
2021). For the more developed eastern regions of China, the outflow of certain industries, particularly 
the outflow of some energy-intensive industries, can redirect their surplus economic capacity to other 
regions and enhance the quality of local development (Ge, Cai, & Song, 2022; Han, Zhang, Huang, 
Peng, & Wang, 2021). For the less developed central and western regions, the inflow of capital and 
labor-intensive sectors can lead to significant investments and employment, rapidly promoting local 
economic growth (Zheng, Deng, Li, & Yang, 2022). Despite the significant impact of industrial 
relocation on China’s regional economy and environment, the trend, scale and environmental impact 
of China’s industrial relocation is still largely unknown. However, a comprehensive understanding of 
China’s industrial relocation is of practical importance for designing and adjusting future industrial 
policies in the country. The current study seeks to answer three crucial questions: (1) What is the 
scale and trend of industrial relocation in China? (2) How does industrial relocation affect regional 
energy intensity? (3) Are there any spatial spillover effects associated with industrial relocation?

Furthermore, close spatial influences and links exist between China’s different regions, which 
have a crucial impact on the feasibility and cost of inter-regional industrial relocations. Traditional 
econometric methods, such as OLS and fixed effect models, cannot capture such spatial correlations 
and thus may lead to biased estimation results (Anselin & Griffith, 1988; Tobler, 1970). Therefore, 
this paper adopts the spatial econometric model to investigate the relationship between industrial 
relocation and regional energy intensity, which can better capture the spatial spillover effects of 
industrial relocations and reveal their regional heterogeneity.

In this study, we focus on the relocation of China’s three major economic sectors. Using the 
MRIO model and the latest multi-regional input-output tables, we comprehensively analyze of the 
trend and scale of industrial relocation among China’s 30 provinces between 2006 and 2018. The 
findings reveal that the relocation of China’s industrial sector has exhibited a distinctive trend of 
moving “westward” and “northward,” while the service sector has demonstrated a tendency to cluster 
in several developed regions. Next, the Spatial Durbin model (SDM) is employed to examine the 
spatial spillover effect of industrial relocation on regional energy intensity. We find that the impact of 
industrial relocation on energy intensity has significant regional heterogeneity. That is, the net inflow 
of the industrial sector will increase the energy intensity of the inflowing region but will decrease the 
energy intensity of other regions. Moreover, the services sector’s effect is just the opposite. However, 
on the whole, the total effects of these two sectors on energy intensity are both insignificant. This 
insignificance indicates that China’s current industrial relocation has yet to fully realize its potential 
to enhance resource allocation efficiency at the national level.

This paper may deliver the following marginal contributions to existing literature: Firstly, using 
an input-output analysis framework, this paper provides an in-depth examination of the trend and 
scale of industrial relocation across China’s 30 provinces during 2006-2018. Previous literature based 
on MRIO models has focused primarily on emissions transfers and lacked attention to industrial 
relocation. This paper extends the existing studies about China’s industrial relocation by providing 
new insights into understanding it. Secondly, considering the close spatial correlations between 
China’s regions, this paper employs spatial econometric models to investigate the relationship between 
industrial relocation and regional energy intensity, which can better grasp the spatial spillover effect 
of industrial relocation and obtain more accurate estimation results. This method can also draw richer 
conclusions than traditional econometrics models by decomposing the regression results. Finally, 
according to the empirical results, we proposed targeted policy recommendations to promote high-
quality industrial relocation in China.

LITeRATURe ReVIew ANd HyPOTHeSIS deVeLOPMeNT

Early studies on industrial relocation mainly focused on international industrial relocation and widely 
discussed its driving factors and relocation patterns (Akamatsu, 1962; Vernon, 1966). These studies 
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depict industrial relocation as an orderly circular economy process. However, industrial relocation 
can occur between countries and regions (Peng, Zhu, & Cui, 2023; Zheng, 2021), particularly for 
countries with significant regional differences, such as China, where the scale and impact of its 
domestic industrial relocation between its various regions exceed its industrial relocation with 
other countries (Lin & Wang, 2023; Zhou et al., 2018). China’s domestic scholars have attempted 
to quantify industrial relocation from various perspectives, such as regional industrial output value, 
changes in industrial structure, and the number of industrial parks (Li et al., 2022; Song, Zhang, 
Xu, & Elshkaki, 2023; Wang, Sun, Lv, & Wang, 2022; Wu & Lin, 2021). However, these methods 
may be prone to significant measurement errors, as changes in industry structure and output are not 
precisely equivalent to the scale of industrial relocation but are also influenced by local economic 
output and demand structure. Additionally, these measurements usually reflect only the relative degree 
of industrial relocation and fail to capture the absolute scale of such relocations, leaving the actual 
state of China’s industrial relocation largely unknown.

In contrast to traditional methods that assess industrial relocation through changes in industrial 
structure, the MRIO model utilizes matrix operations to distinguish between output used for 
intermediate inputs and external trade, enabling more accurate measurements of industrial relocation 
and providing valuable insights into its absolute scale. However, existing literature based on the MRIO 
analysis framework primarily focuses on emission transfer and lacks a comprehensive analysis of 
industrial relocation (Mi et al., 2017; Mi et al., 2021; Zheng et al., 2020a). To address this gap, this 
paper employs the MRIO model to analyze the inter-provincial relocations of China’s three major 
sectors, which can accurately capture the overall trend and absolute scale of industrial relocations 
in China.

Energy intensity refers to the amount of energy consumed per unit of output and is one of the 
important indicators for assessing energy efficiency. Generally, a higher energy intensity indicates that 
more energy is required per unit of output, typically implying a lower level of energy efficiency. In 
comparison, a lower energy intensity indicates that less energy is required per unit of output, typically 
implying higher energy efficiency. Since the beginning of the 11th Five-Year Plan, China has been 
setting energy intensity reduction targets as part of its national plan. Therefore, understanding the 
influencing factors of energy intensity is relevant to achieving China’s energy saving and emission 
reduction targets. The existing literature on energy intensity mainly focuses on its influencing factors, 
generally summarized in three aspects: the economic, structural, and technological factors. As for the 
economic factor, numerous studies have shown that China’s economic growth and energy intensity 
demonstrate an inverted U-shaped relationship, which aligns with the “Kuznets Curve” theory of the 
environment (Shokoohi, Dehbidi, & Tarazkar, 2022; Zhang, Chen, & Wang, 2022). Besides, many 
scholars have emphasized the significant impact of economic structure, particularly the industrial and 
urbanization structures, on regional energy intensity. For instance, some scholars argue that a region’s 
industrialization level is positively related to the local energy intensity (Wang, Sun, Reiner, & Wu, 
2020; Wang et al., 2022). Zhu and Lin (2020) find that China’s new urbanization can contribute to a 
decrease in energy intensity. Moreover, technological innovation is widely considered to be the key to 
reducing energy intensity and improving energy efficiency (Liu, Zhang, Adebayo, & Awosusi, 2022; 
Uddin, Pan, Saima, & Zhang, 2022; Zheng, 2021). Besides the main factors above, macro factors 
such as foreign direct investment and regional environmental regulations can also influence China’s 
regional energy intensity (Lee & Ho, 2022; Zhang & Song, 2021).

However, there is still a debate regarding the impact of industrial transfer on energy intensity. 
Some scholars argue that industrial transfer may lead to the relocation of energy-intensive industries 
from developed to less developed regions, resulting in a “pollution haven” effect (Cheng, Li, & Liu, 
2020; Wei, Liu, & Zhang, 2019) and higher energy intensity (Xue et al., 2022). On the other hand, 
other scholars maintain that industrial relocation can improve energy efficiency through technology 
transfer, scale effect, and resource integration (Li et al., 2022; Wu, You, Ren, & Gan, 2022). In 
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addition, many studies of the relationship between industrial relocation and energy use ignored the 
spatial spillover effect of industrial relocation (Chen, Xu, & Yang, 2017; Li, Huang, Yang, Chuai, & 
Wu, 2017; Xin-gang & Fan, 2019; Zhao & Yin, 2011). But in fact, the net inflow of an industry in one 
region also means the net outflow of that industry in another region. Ignoring this spatial correlation 
will likely lead to biased estimates (Anselin & Griffith, 1988; Elhorst, 2014).

In China, the agricultural sector has a much lower total energy consumption and output than 
the industrial and service sectors. Therefore, its impact on energy intensity may be relatively small 
(Muhammad, Pan, Agha, Umar, & Chen, 2022). As the main consumer of fossil energy, the industrial 
sector has a higher energy intensity than the other two sectors (Li & Lin, 2014; Muhammad et al., 
2022; Zhang & Wang, 2021). Hence, the net inflow of the industrial sector may increase local energy 
intensity. However, despite the service sector’s high energy consumption (mainly secondary energy), 
it strongly drives the regional economy. Therefore, the net inflow of the service sector is likely to 
reduce local energy intensity. Based on the preceding discussion, the first hypothesis of this paper 
is as follows:

Hypothesis 1: The net inflow of the industrial sector may increase local energy intensity, while the 
net inflow of the service sector may reduce local energy intensity.

Industrial relocation in China is bidirectional, with the inflow of an industry in one region 
being accompanied by the outflow of the same industry in other regions (Liu, Liu, & Liu, 2011). 
This phenomenon is common between developed and less developed regions, with developed areas 
relocating their energy-intensive industries to less developed regions. While this may lead to an 
increased energy conservation burden on less developed regions, it can also reduce energy intensity in 
developed areas to a certain extent (Lin & Wang, 2023). Therefore, the environmental implications of 
industrial relocation may also be bidirectional. Thus, the second hypothesis of this paper is as follows:

Hypothesis 2: Industrial relocation has opposing effects on the energy intensity of the industrial 
inflow region and that of other regions.

MeTHOdOLOGy ANd dATA

Multi-Regional Input-Output Model
The MRIO model, proposed by Isard (1951), is a widely used method for analyzing economic links 
between regions based on inter-regional trade data. This model has been continuously developed and 
improved and is commonly used for measuring emission transfer and industrial relocation (Mi et al., 
2017; Mi et al., 2021; H. Zheng et al., 2020a).

Our study applies the MRIO model to measure industrial relocation among regions in China. In 
this model, we are supposing an economy with r regions and s sectors. For region m, its total output 
can be represented as xi

m; its intermediate input from sector i to region n‘s sector j is xij
mn,; the product 

provided by sector i in region m for final demand in region n as Yi
mn. The relationships between xi

m, 
xij
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mn are as follow:
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We express the above relationship in matrix form:
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In Equation (5), A denotes the direct consumption coefficient matrix; I denotes the identity 
matrix. In this way, we can write the region m’s total industrial inflow (IF) as follows:

IF Xm nm

r n m
=

≠∑ ,
 (6)

Similarly, we can write the region m’s total industrial outflow (OF) as follows:

OF Xm mn

r n m
=

≠∑ ,
 (7)

where, IFm refers to the sum of output produced by region m for the final demand of other regions, 
while OFm refers to the sum of the output produced by other regions for the final demand of region 
m. X is an industrial transfer matrix.

Finally, region m’s net inflow is equivalent to the inflow minus outflow, which can be expressed as:

NF OF IFm m m= −  (8)

It should be noted that the net industrial inflow (NFm) reflects more comprehensive information 
about industrial relocation than the other two indicators (IFm and NFm ). This indicator contains 
both the information from IFm and the information from NFm, thus reflecting the net transfer trend 
of the industries in a region. Therefore, we adopt the net industrial inflow as a proxy indicator of 
industrial relocation.

Ceads database has only published China’s MIRO tables for 2007,2010,2012, 2015 and 2017. 
Zheng et al. (2020b) proposed a novel method to extend the MRIO tables. This enabled us to obtain 
data for other years, which can be expressed as follows:
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In equation (9), FSt represents the final demand structure for year t, Lt is the Leontief inverse 
matrix for year t. FVt denotes the final demand for year t. Here, the final demand data are obtained 
from China Statistical Yearbook. In the same way, we can also acquire the data for the rest years (the 
structure of final demand in 2006 and 2018 refers to 2007 and 2017, respectively), hence calculating 
the scale of industrial relocation in China’s 30 provinces from 2006-2018.

Spatial econometrics Model and data
Tobler (1970) and Anselin and Griffith (1988) noted that spatial correlation widely exists between 
regions. Ignoring such spatial correlation might result in biased estimation results. With this in 
mind, we adopt spatial econometric models to investigate the influences of industrial relocation 
on energy intensity.

Spatial econometric models can be specified in various forms according to different kinds 
of spatial correlations (Elhorst, Lacombe, & Piras, 2012). In this paper, we mainly consider three 
following forms (Elhorst, 2014):
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where, Eq. (10), Eq. (11) and Eq. (12) denote Spatial Autoregressive Model (SAR), Spatial Error 
Model (SEM) and Spatial Durbin Model (SDM), respectively. In these equations, subscript i, j, t denote 
province i, province j and year t, respectively. eiit is the energy intensity; firtit represents the scale of 
the net inflow of agricultural sector in the province as a percentage of local GDP; sectit represents the 
scale of the net inflow of industrial sector as a percentage of local GDP; thirtit represents the scale 
of the net inflow of service sector as a percentage of local GDP.

It should be noted that the input-output table includes 42 industries. We classified them into the 
agricultural, industrial, and service sectors based on the National Economic Classification in 2018. 
Furthermore, the specific classification standards are shown in Figure 5 in the Appendix.

Xit represents the control variables, which include industrial structure (ins), level of urbanization 
(urb), GDP per capita (pergdp), foreign direct investment (fdi), environmental regulation (regu), and 
technological innovation (tec). All control variables have been discussed in the literature review. 
The definitions and statistic descriptions are shown in Table 1, Table 2, and Table 3 respectively. 
We get these data from the China Statistical Yearbook, China Energy Statistical Yearbook, China 
Emission Accounts and Datasets, China Environmental Statistical Yearbook, and China Science and 
Technology Statistical Yearbook.

μi depicts the provincial fixed effects and δt depicts the time fixed effect; εit denotes the error 
term; wij represents an element of the spatial weight matrix.
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Table 1. Definition and sources of each variable

Indicator Definition

i Energy consumption (convert to standard coal) per 10,000 yuan of GDP

firt The percentage of net inflow of agricultural sector to GDP

sect The percentage of net inflow of industrial sector to GDP

thirt The percentage of net inflow of service sector to GDP

ins Value added of the industrial sector as a percentage of GDP

urb Urban population as a percentage of the total population

pergdp GDP per capita

fdi Foreign direct investment as a percentage of GDP

regu Investment in pollution control as a percentage of GDP

tec R&d spending as a percentage of GDP

Table 2. Panel A: Descriptive statistics of variables

Variable N Mean SD Min Max

ei 390 1.818 0.911 0.604 5.621

firt 390 2.300 8.276 -15.32 40.15

sect 390 -1.282 47.31 -165.1 115.3

thirt 390 -0.522 21.05 -97.00 97.03

ins 390 46.54 8.476 18.01 64.93

urb 390 54.44 13.85 25.07 89.60

perg 390 2.262 1.335 0.611 7.248

regu 390 1.462 1.267 -0.216 9.920

tec 390 1.472 1.067 0.207 6.110

Table 3. Panel B: The Moran’s I index of energy intensity

Year Moran’s I p-Value*

2006 0.109 0.000

2007 0.121 0.000

2008 0.130 0.000

2009 0.134 0.000

2010 0.132 0.000

2011 0.132 0.000

2012 0.134 0.000

2013 0.131 0.000

2014 0.132 0.000

2015 0.132 0.000

2016 0.126 0.000

2017 0.122 0.000

2018 0.125 0.000
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Tobler (1970) noted that the connection between regions is strongly influenced by geographical 
distance, with closer proximity resulting in stronger correlations between regions. With this in mind, 
we have constructed a symmetric geographical distance weight matrix (W1) to reflect the impact of 
geographical factors between provinces:

W d
i j

i j
ij ij1

2

1

0
,

,

,
=

≠

=










 (13)

where dij denotes the geographic distance between province i and province j.

eMPIRICAL ReSULTS

Relocations of Industrial and Service Sectors in China
Based on the method in section 3, we measure the relocation of three sectors during 2006-2018. 
Considering that the relocation scale and trend of the agricultural sector are not obvious, it will not 
be analyzed separately. We mainly focus on the relocations of industrial and service sectors, which 
are shown in Figures 2 and 3, respectively.

Figure 2. Relocation of the industrial sector in 2007, 2012, and 2017
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Figure 2 illustrates the relocation of China’s industrial sector among its 30 provinces in 2007, 
2012, and 2017. The vertical axis represents net inflow, where a positive value indicates a net inflow 
area of the industrial sector while a negative value indicates a net outflow area. The industrial sector 
has the most significant relocation scale, with some provinces exceeding one trillion yuan in certain 
years. On average, the industrial sector’s relocation scale is 2-3 times that of the service sector and 
8-10 times that of the agricultural sector. Regarding the relocation trend, the relocation of China’s 
industrial sector displays an obvious trend of “westward” and “northward.” The two main outflow 
areas are the eastern and southwestern regions, such as Guangdong, Zhejiang, Beijing, Shanghai, 
Yunnan, Chongqing, and Sichuan. The two main inflow areas are the northern coastal and central 
regions, such as Shandong Hebei, Henan, Inner Mongolia, Anhui, Shanxi, and Jiangxi.

Multiple factors drive the large-scale outflow of the industrial sector in the eastern provinces. 
First, the prices of production factors in these provinces have experienced significant increases in 
recent years due to the rapid growth of the local economy (Xi, Zhang, Zhu, Zhang, & Yuan, 2022). 
This price increase makes the production costs of the local industrial sector higher than that of other 
regions. Furthermore, as living standards continue to improve, residents and governments have become 
increasingly environmentally conscious, leading to the implementation of stricter environmental 
regulations in these areas (Xinze Li, Du, Ouyang, & Liu, 2022). This raising of regulations has 
raised the environmental cost of the local industrial sector and further squeezed their profit margins.

Figure 3. Relocation of the service sector
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Moreover, the successful industrial upgrading in eastern China is also an important driver for its 
large-scale industrial outflow. The eastern provinces, such as Guangdong, Zhejiang, and Shanghai, 
have been actively promoting the transformation of their industries towards service and technology-
intensive sectors. These efforts have made the service sector in these provinces replace the industrial 
sector as the key driving force behind their economic growth (Wang, Zhang, Springer, & Yang, 2021). 
Besides, many industrial sectors in these provinces have also completed the transformation towards 
technology-intensive industries (Lin & Shi, 2022), which further accelerates the outflow of the low-
end industrial sector from the region.

However, different from the eastern region, the large-scale outflow of the industrial sector in 
southwestern provinces is more due to objective factors. China’s southwestern region is mainly 
mountainous, significantly increasing the local transportation costs. Moreover, as a landlocked area, 
the southwestern region faces challenges in importing foreign industrial raw materials. This limitation 
restricts the production scale of industries, such as the petrochemical and steel sectors. Consequently, 
southwest China has a notable outflow of the industrial sector.

In contrast to the above two regions, the northern coastal and central regions can provide better 
conditions for developing the industrial sector. First, the land is flat in most parts of these two 
regions, which provides rich land resources and convenient transportation. Second, China’s two 
regions have the highest population density, supplying sufficient and cheap labor for local industrial 
enterprises. Besides, environmental regulation in the two regions is also looser than in developed 
eastern regions. With these comparative advantages, the northern and central regions have undertaken 
a large inflow of industrial sectors in recent years. On the one hand, this has greatly spurred local 
economic development; however, it has also placed pressure on local environmental protection and 
emission reduction efforts.

Figure 3 illustrates China’s service sector’s relocation scale and trend in 2007, 2012, and 2017. 
Compared to the industrial sector, the service sector’s relocation scale is smaller, with an average 
annual relocation of less than 500 billion yuan in most provinces. Regarding relocation trends, the 
eastern coastal areas, such as Beijing, Shanghai, Tianjin, and Jiangsu, have attracted a large inflow 
of the service sector due to their highly concentrated financial industries and booming real estate 
sectors. The southern coastal, central, and western provinces, such as Guangdong, Zhejiang, Anhui, 
Henan, Xinjiang, and Chongqing, are the main outflow areas of the service sector. These regions 
have a great demand for service products, but their local service sector is not developed enough, thus 
resulting in a significant outflow of the service sector.

In general, several eastern provinces, such as Beijing, Tianjin, and Shanghai, have successfully 
attracted a substantial influx of the service sector, benefiting from their favorable policies and strategic 
locations. The significant inflow of these high-value-added industries has played an important role 
in energy intensity reduction within these provinces.

Spatial Autocorrelation Test
To identify whether global spatial autocorrelation exists between variables, we measure the annual 
global Moran’s energy intensity index. As shown in Table 3, Moran’s I indices are all significant at a 
1% level, implying that energy intensities display significant characteristics of spatial autocorrelation 
and spatial clustering.

Besides, the scatter plots of the local Moran’s indices in 2006, 2012, and 2018 are drawn to verify 
whether there exist local spatial correlations. These plots are shown in Figure 4. The vertical axis 
represents the spatial lag value, and the horizontal axis represents the standardized provincial energy 
intensity. The numbers 1 to 30 represent each of China’s 30 provinces, in order with Anhui, Beijing, 
Chongqing, and Zhejiang (in alphabetical order). Most provinces’ energy intensities are in the first 
and third quadrants, indicating positive spatial correlations between provinces. As a result, spatial 
econometrics models are needed to explore the impact of industrial relocation on energy intensity.
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estimation of Non-Spatial Models and Lagrange Multiplier Tests
We use LM and robust LM tests to determine whether the model should include spatial lag or error 
term (Elhorst & Fréret, 2009). The results in Table 4 show that both the LM spatial error and lag tests 
rejected the null hypothesis at the 1% significance level, indicating that spatial lag and error terms 
should be included in the model. Therefore, we adopt the SDM model with both spatial lag and error 
terms as the main analysis tool for this study.

Benchmark Regression Results
To examine the impact of industrial relocation on energy intensity, we adopt two types of SDM models, 
namely spatial fixed effect and two-way fixed effect. We present the estimation results in columns 
(3)-(4) of Table 5, respectively. To ensure the robustness of our results, we also report the regression 
outcomes of SAR and SEM in columns (1)-(2). And the results of the Hausman, Likelihood Ratio 
(LR), and Wald tests are presented in Table 6.

Our findings show that the P-values of the Wald and LR tests were all below 0.01, indicating 
that the SDM model is more suitable for this study than SAR and SEM. Additionally, the P-values 
of the Hausman test are 0.042 and 0.000, which strongly reject the null hypothesis that the random 
effect is more appropriate than the fixed effect. Furthermore, the loglikelihood results in column 4 
of Table 5 were higher than in column 3, indicating that the two-way fixed effect is better than the 
spatial fixed effect. Therefore, we regard the results of the SDM with two-way fixed effects in column 
4 as the benchmark regression results.

As presented in Table 5, the spatial autoregressive coefficients (ρ) and the spatial error correlation 
coefficient lambda (λ) are significantly positive at a 1% level, confirming that the energy intensities 
have significant spatial spillover effects. As for the relocation variables, the sect’s estimated coefficient 
(0.013) is significantly positive at a 5% level, implying that a 1% rise in the percentage of the industrial 

Figure 4. Moran’s I scatter plot of energy intensity
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sector’s net inflow of local GDP will increase the energy consumption per unit (10000 yuan) of GDP 
by 0.013 tons of standard coal. The thirt’s estimated coefficient (-0.010) is significantly negative at 
the 1% level, suggesting that a 1% rise in the percentage of the service sector’s net inflow of local 
GDP will decrease the energy consumption per unit (10000 yuan) GDP by 0.010 tons of standard 
coal. Furthermore, it should be noted that the W*sect’s is significantly negative at the 10% level while 
the W*thirt’s is significantly positive at a 5% level, which preliminarily confirms that a larger net 

Table 4. The results of non-spatial panel models and LM (robust) test

Pooled OLS Spatial Fixed Effects Time-Period Fixed Effects Two-Way Fixed 
Effects

firt -0.001 0.003 -0.001 0.003

(0.005) (0.005) (0.005) (0.005)

sect 0.041*** 0.052*** 0.040*** 0.052***

(0.011) (0.011) (0.011) (0.011)

thirt -0.016*** -0.020*** -0.016*** -0.020***

(0.004) (0.004) (0.004) (0.004)

ins 0.038*** 0.045*** 0.038*** 0.045***

(0.008) (0.008) (0.008) (0.008)

urb 0.020*** 0.016*** 0.019*** 0.017***

(0.005) (0.005) (0.006) (0.005)

pergdp -0.559*** -0.520*** -0.559*** -0.531***

(0.064) (0.062) (0.064) (0.062)

fdi -0.103*** -0.105*** -0.100*** -0.107***

(0.021) (0.020) (0.021) (0.020)

regu 0.275*** 0.245*** 0.275*** 0.245***

(0.030) (0.029) (0.030) (0.029)

tec -0.008** -0.009*** -0.007** -0.009***

(0.003) (0.003) (0.003) (0.003)

R2 0.508 0.535 0.509 0.536

Adj-R2 0.496 0.522 0.495 0.521

LM Lag 71.052*** 63.217*** 68.255*** 63.829***

(0.000) (0.000) (0.000) (0.000)

Robust LM-lag 11.155*** 7.669*** 10.145*** 7.607**

(0.001) (0.006) (0.001) (0.006)

LM error 63.787*** 62.977*** 62.300*** 63.742***

(0.000) (0.000) (0.000) (0.000)

Robust LM error 3.890** 7.430*** 4.190** 7.520**

(0.049) (0.006) (0.041) (0.006)

N 390 390 390 390

Standard errors in estimated coefficients’ parentheses, p-values in four tests’ parentheses
* p < 0.1, ** p < 0.05, *** p < 0.01
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continued on following page

Table 5. Benchmark regression results

SAR Two-Way Fixed 
Effects

SEM Two-Way Fixed 
Effects

SDM Spatial Fixed 
Effects

SDM Two-Way Fixed 
Effects

(1) (2) (3) (4)

firt 0.005 0.005* 0.005 0.006*

(0.003) (0.003) (0.003) (0.003)

sect 0.015*** 0.015*** 0.013** 0.013**

(0.006) (0.006) (0.006) (0.006)

thirt -0.009*** -0.009*** -0.010*** -0.010***

(0.002) (0.002) (0.002) (0.002)

ins 0.022*** 0.021*** 0.028*** 0.028***

(0.006) (0.006) (0.007) (0.007)

urb 0.020** 0.019** 0.030*** 0.030***

(0.010) (0.010) (0.010) (0.011)

pergdp -0.172** -0.169* -0.270*** -0.275***

(0.084) (0.088) (0.088) (0.092)

fdi -0.010 -0.012 0.002 0.003

(0.014) (0.014) (0.015) (0.015)

regu 0.030* 0.029* 0.020 0.022

(0.017) (0.017) (0.016) (0.017)

tec -0.010*** -0.010*** -0.009** -0.011***

(0.003) (0.003) (0.003) (0.004)

W*firt 0.013 0.011

(0.008) (0.010)

W*sect -0.031* -0.032*

(0.019) (0.019)

W*thirt 0.018*** 0.017**

(0.006) (0.007)

W*ins -0.014* -0.019

(0.009) (0.016)

W*urb 0.004 -0.004

(0.016) (0.033)

W*pergdp 0.632*** 0.743***

(0.194) (0.275)

W*fdi 0.093 0.096

(0.062) (0.064)

W*regu -0.023 0.003

(0.028) (0.047)
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inflow of industrial sector in neighboring provinces related to a lower local energy intensity, while a 
larger net inflow of service sector in neighboring provinces related to a higher local energy intensity.

As for the control variables, the industrial structure positively affects energy intensity, which 
is consistent with (Luan, Zou, Chen, & Huang, 2021). An increase in the urbanization rate can 
enhance regional energy intensity, indicating that the energy-saving effect of China’s urbanization 
has not been realized. The per capita GDP negatively correlates with energy intensity, suggesting that 
economic growth can reduce energy intensity. This correlation indicates that China has crossed the 
inflection point of the environmental Kuznets curve (Lin & Zhu, 2021). The estimated coefficient 
of technological innovation is significant at a 1% level, indicating that a higher technology level can 
improve local energy efficiency.

We then decompose the spatial effects of the industrial relocation into direct, indirect and total 
effects. Here, the direct effect is composed of two parts. One part is the effect of explanatory variables 
on the local explained variable. Another part is the feedback effect, which affects the explanatory 
variables in neighboring regions, and then affects the local explanatory variables in turn.

Table 6. Hausman, Wald, and LR tests

SDM Spatial Fixed Effects SDM Two-Way Fixed Effects

Hausman 17.44 32.96

(0.042) (0.000)

Wald SAR 29.13 55.88

(0.000) (0.000)

Wald SEM 33.32 58.65

(0.000) (0.000)

LR-SAR 22.43 39.68

(0.0076) (0.0000)

LR-SEM 24.03 42.78

(0.004) (0.000)

p-values in four tests’ parentheses.

SAR Two-Way Fixed 
Effects

SEM Two-Way Fixed 
Effects

SDM Spatial Fixed 
Effects

SDM Two-Way Fixed 
Effects

(1) (2) (3) (4)

W*tec -0.008 -0.016**

(0.007) (0.008)

λ 0.270***

(0.140)

ρ 0.105** 0.118** 0.107***

(0.128) (0.121) (0.123)

Log-Lag 37.487 35.940 40.739 44.487

N 390 390 390 390

Standard errors in parentheses, * p < 0.1, ** p < 0.05, *** p < 0.01

Table 5. Continued
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Table 7 displays the decomposition results. The three effects of the agricultural sector’s net inflow 
(firt) are all insignificant, indicating that the interregional relocation of the agricultural sector has 
no significant effects on energy intensity. This finding proves hypothesis 1. The agricultural sector’s 
energy consumption and relocation scale are relatively small, so its impact on energy intensity is 
also limited.

The direct effect of the industrial sector’s net inflow (sect) is significantly positive (0.013), 
which means that a 1% increment in the proportion of the net inflow of the industrial sector of local 
GDP is accompanied by an increase in energy consumption per unit (10000 yuan) of GDP of 0.013 
tons standard coal. Since it differs very little from the sect’s estimated coefficient in SDM, the main 
component of the direct effect is the influence of the local net inflow of the industrial sector on local 
energy intensity, but not the spatial feedback effect. Besides, it should be noted that the indirect effect 
is significantly negative (-0.032), contrary to the direct effect’s sign. This indicates that a higher net 
inflow of the industrial sector in a region can decrease the energy intensity in other regions. A larger 
inflow of the industrial sector in a region usually indicates that this region takes on more of the 
industrial production process than other regions, leading to higher local energy intensity.

On the contrary, the other regions’ economies will be correspondingly cleaner due to the 
“outsourcing” of industrial production. This phenomenon widely exists between developed and less 
developed areas of China, where the developed areas relocate their high energy-consuming industries 
to less developed areas. While it may promote the latters’ economic growth and alleviate the imbalance 
issue of the regional economy, it may also create a greater burden on their energy conservation and 
emission reduction. We also noticed that the total effect of sect is insignificant, suggesting that the 

Table 7. Direct, indirect, and total effects of variables

Variables Direct Effects Indirect Effects Total Effects

firt 0.006 0.010 0.016

(0.004) (0.010) (0.010)

sect 0.013** -0.032* -0.019

(0.006) (0.018) (0.020)

thirt -0.010*** 0.017*** 0.007

(0.002) (0.007) (0.007)

ins 0.028*** -0.021 0.008

(0.006) (0.015) (0.015)

urb 0.030*** -0.004 0.026

(0.011) (0.031) (0.031)

pergdp -0.278*** 0.715*** 0.437

(0.092) (0.266) (0.277)

fdi 0.002 0.092 0.094

(0.015) (0.064) (0.066)

regu 0.022 0.005 0.027

(0.016) (0.046) (0.050)

tec -0.011*** -0.014* -0.025***

(0.004) (0.008) (0.009)
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potential energy-saving effect of China’s industrial relocation has not yet been fully realized at the 
national level.

Another significant result is the net inflow of the service sector (thirt). The direct effect of thirt 
is significant at the 1% level (-0.010), which differs very little from the estimated coefficient in SDM 
(-0.009). Therefore, the main direct effect is the local thirt’s effect on local energy intensity. The 
estimated indirect effect is significantly positive(0.017), which indicates that the net inflow of the 
service sector in a region can increase the energy intensity in other regions. The service sector includes 
many low-energy-intensive industries, such as technology innovation, finance, and information 
services. Compared with the industrial sector, these industries consume less energy but add more 
economic output. Therefore, an increase in the net inflow of the service sector can effectively reduce 
the local energy intensity. For neighboring regions, on the contrary, the outsourcing of their service 
sector tends to increase their energy intensity. Besides, the direct effect is smaller than the indirect 
effect. One possible reason is that the indirect effect is equal to the sum of spillovers from all other 
provinces, and the spillover effect from a particular province may be smaller than the value we 
reported (Lv, Liu, & Xu, 2022). Finally, the total effect of thirt is insignificant, indicating that thirt 
in a province couldn’t affect energy intensity at the national level.

The above discussion has proved Hypothesis 1 and 2, and now we focus on the control variables. 
The direct effect of per capita GDP (pergdp) is -0.278, which is significantly negative. This result 
is consistent with (Lin & Zhu, 2021). Besides, the indirect effect of pergdp is significantly positive 
(0.715), indicating that the economic development in neighboring provinces will increase the 
local energy intensity. The three effects of technological innovation are all significantly negative, 
denoting that technological innovation has a significant spatial spillover effect. This may be because 
technological innovation in a region can decrease the overall energy intensity through technology 
diffusion (Ilkay, Yilanci, Ulucak, & Jones, 2021).

ROBUSTNeSS

different econometric Models
In this paper, we also conduct the regression through OLS, fixed effects, SAR, and SEM models to 
check the robustness of our results. The results are presented in Tables 4 and 5. We observe that the 
sign and significance level of most coefficients are similar to our main results, which verifies the 
stability of the results.

different Spatial weight Matrix
Different spatial weight matrices may lead to different regression results. Therefore, we conduct a 
new geography-economy weight matrix (W2) for our robust check:

W d GDP GDP
i j

i j
ij ij i j2

2

1

0
,

,

,

= −
≠

=











 (14)

where the dij represents the geographic distance between province i and province j, and GDPi and 
GDPj are, respectively, the gross domestic product in province i and province j. The decomposed 
results for W2 are presented in Table 8. As we can see, most coefficients’ significance and signs are 
similar to the benchmark results. Thus, we assess that our regression results are robust.
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Subsample Regression
China’s central government manages the municipalities as a particular provincial administrative unit. 
Furthermore, the municipalities are quite different from other provinces in population density and 
economic development model. This may make the effect of industrial relocation on municipalities 
different from other provinces. Therefore, we exclude the samples of municipalities and conduct the 
regression again. The decomposed results are shown in Table 9.

As shown in Table 9, the direct and indirect effects of industrial relocation show the same signs 
as the benchmark results, proving the robustness of the above conclusion again.

CONCLUSION ANd POLICy IMPLICATIONS

Over the past few decades, China’s distinct regional disparities and industrial policies have 
induced several large waves of industrial relocations, significantly influencing the country’s 
regional economy and energy usage. This study primarily analyzes the magnitude and trend of 
industrial relocation of China’s three major economic sectors from 2006 to 2018. Besides, we 
also examine the spillover impact of the relocations on regional energy intensity. We can draw 
the following conclusions:

1.  The relocation scales and trends of China’s three major sectors differ across regions. The 
industrial sector has a much greater relocation scale than the agricultural and service sectors. 

Table 8. Regression results with a new weight matrix

Variables Direct Effects Indirect Effects Total Effects

firt 0.005 0.011 0.017

(0.004) (0.010) (0.010)

sect 0.010* -0.035* -0.025

(0.006) (0.021) (0.023)

thirt -0.010*** 0.022*** 0.011

(0.002) (0.008) (0.008)

ins 0.027*** -0.017 0.010

(0.006) (0.016) (0.016)

urb 0.023** -0.004 0.019

(0.010) (0.037) (0.038)

pergdp -0.346*** 1.000*** 0.654*

(0.103) (0.324) (0.336)

fdi 0.009 0.095 0.104

(0.016) (0.075) (0.079)

regu 0.018 0.002 0.021

(0.017) (0.048) (0.053)

tec 0.009** 0.016** 0.025***

(0.004) (0.008) (0.009)
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It has demonstrated a discernible trend of relocating towards the west and north, whereas the 
service sector tends to concentrate within serval developed regions.

2.  The net inflow of the industrial sector significantly increases local energy intensity, but the net 
inflow of the service sector effectively reduces local energy intensity.

3.  The relocations of industrial and service sectors influence local energy intensity, and spillover 
impacts neighboring regions’ energy intensity.

Based on these findings, we propose the following policy recommendations:

1.  Governments must ensure that the industrial relocation is aligned with environmental targets, 
especially the goal of regional energy conservation targets. Regions with a large inflow of 
industrial sectors face significant challenges in balancing industrial expansion and local 
environmental protection. To address this challenge, the central government should provide 
additional financial and policy support and develop more flexible energy conservation plans for 
these regions.

2.  The total effect of industrial relocation on energy intensity is insignificant, suggesting that the 
potential for improving energy efficiency through industrial relocation has not yet been fully 
realized. To address this, the government should emphasize the role of industrial relocation 
in integrating resources and optimizing industrial layouts. Industries should be encouraged to 
relocate to regions with comparative advantages, and the construction of advantageous industry 
clusters in various regions should be promoted.

Table 9. Regression results without municipalities

Variables Direct Effects Indirect Effects Total Effects

firt 0.006 0.011 0.016

(0.004) (0.011) (0.011)

sect 0.010* -0.038* -0.028

(0.006) (0.021) (0.023)

thirt -0.009*** 0.022*** 0.012

(0.002) (0.008) (0.008)

ins 0.026*** -0.017 0.009

(0.006) (0.016) (0.016)

urb 0.018 -0.004 0.014

(0.011) (0.037) (0.040)

pergdp -0.304*** 0.966*** 0.662*

(0.101) (0.324) (0.340)

fdi 0.012 0.110 0.122

(0.017) (0.075) (0.078)

regu 0.020 -0.005 0.015

(0.017) (0.048) (0.052)

tec -0.009** -0.016** -0.025***

(0.004) (0.008) (0.009)
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3.  Industrial relocation presents a good channel for technology transfer. To improve productivity 
of the lagging areas, the government should encourage the transfer of advanced technologies 
and management modes through industrial relocation. This is crucial to help the undeveloped 
regions achieve high-quality and sustainable development.
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