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ABSTRACT

LBS-RT (location-based service in a real-time manner) has become popular because it can provide 
quick and timely services. Range query is often used in LBS-RT, which finds objects in a specified 
area, and spatial indices are often used to speed up range query. However, in LBS-RT, there are some 
difficulties. Spatial index was originally designed to index static dataset, but the dataset is dynamic 
in LBS-RT, which needs lots of insert and delete operations. To meet the gap, this paper proposes a 
new distributed spatial index called GQ-QBS. It’s a two-layer master-slave mode that consists of a 
global index and multiple local indices. The global index (GQ-tree) is responsible for the dynamic 
load balancing and auto-scaling, while the local index (QBS-tree) is for quickly updating and querying. 
Experiments show the index has a significant advantage in LBS-RT.
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INTRoDUCTIoN

With the rapid development of wireless technology and the ubiquity of portable devices, Location-
Based Service (LBS) (Lu et al., 2011; Usman et al., 2018; Zhu et al., 2017) is playing an increasingly 
important role in our daily life, such as navigation system (Win et al., 2011; Kawamata & Oku, 2019), 
location-based recommendation (Park et al., 2007; Ye et al., 2010) and traffic congestion prediction 
(Xu et al., 2020). As the primary data source for LBS, spatial-temporal data is known for its vital 
timeliness, which means its value decays quickly over time. Therefore, providing LBS-RT (Location 
Based Service in a real-time manner) by processing spatial-temporal data in real-time has become 
a hot topic.
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Range query is a basic operation in LBS, and its function is to find all objects in a specified area. 
Spatial indexes are often used to speed up range query. Similarly, spatial indexes are often used in LBS-
RT, and the following example of LBS-RT requires a spatial index. During a parade, the government 
monitors the size of the crowd in real-time to match the level of security measures. The crowd size can be 
accurately calculated by clustering the trajectory data generated in the last N minutes. The system needs 
to update the crowd size regularly to ensure timeliness. Trajectory clustering requires a large number 
of trajectory similarity searches. Many frameworks (Xie et al., 2017; Shang et al., 2018) that perform 
similarity search in a large trajectory set require a spatial index to speed up similarity search. LBS-RT 
only analyzes the data generated in the last N minutes. In Figure 1, those applications often use a sliding 
time window (Chen et al., 2019) to maintain data. Every time the window slides, outdated items slide 
out the time window, such as the two items at 9:02 and 9:03, new items slide into it, such as the two 
items at 9:31 and 9:34. Therefore, the index in LBS-RT needs to perform a lot of update operations.

R-tree (Guttman et al., 1984) and its variants (Leutenegger et al., 1997; A. Fu et al., 2000; 
Zhou et al., 2008; Kamel et al., 1994; Ciaccia et al., 1997; Y. Fu et al., 2003; Beckmann et al., 1990; 
Zaschke et al., 2014; Jung et al., 2014; Phan et al., 2017; Amaral et al., 2016; Xiong & Aref, 2006) 
are commonly used spatial indexes. Most variants are designed to improve the retrieval performance 
of R-tree, such as STR-tree (Leutenegger et al., 1997), VP-tree (A. Fu et al., 2000), KD-tree (Zhou 
et al., 2008), Hilbert-tree (Kamel et al., 1994), M-tree (Ciaccia et al., 1997), QR-tree (Y. Fu et al., 
2003), R-star-tree (Beckmann et al., 1990) and PH-tree (Zaschke et al., 2014). These indexes don’t 
pay attention to improving update performance. Although some works (Zhang. F et al., 2014; Jo & 
Jung, 2018) use distributed methods to maintain index for improving update performance, they don’t 
reduce the resource consumption.

To improve the updated performance, the author designed a single-node spatial index called 
QBS-tree. QBS-tree has good update and query performance. To index large a dynamic spatial data 
set, the author expands QBS-tree into a distributed spatial index called GQ-QBS. GQ-QBS is a two-
layer master-slave distributed spatial index, consisting of a global index (GQ-tree) and multiple local 
indexes (QBS-tree). QBS-tree is responsible for efficient update and query, while GQ-tree is for the 
dynamic load balancing and auto-scaling. Experiments compare different spatial indexes on a single 
node and a distributed cluster, and the results prove that both QBS-tree and GQ-QBS have obvious 
performance advantages. The following are the main contributions of this paper.

1.  The anther proposes a new single-node spatial index, called QBS-tree, with high update efficiency;

Figure 1. 
Sliding time window
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2.  The anther designs a lightweight distributed index to support rapid update and query, and this 
index has dynamic load balancing and auto-scaling functions;

3.  The anther uses massive actual data to test the performance of different spatial indexes.

PRELIMINARIES

Problem Formulation
In LBS-RT, there are two types of input items: the query item and the index item for an index. LBS-
RT process input items in the form of a data stream (Akidau et al., 2015), and items in the data stream 
are time-ordered.In Figure 1, LBS-RT uses a sliding window to maintain a dynamic spatial data set. 
The problem to be solved in this paper is to find all the index items of the dynamic spatial data set in 
each query rectangle. This kind of query is called Real-time Range Query. Some notations are used 
in the rest of this paper, in Table 1.

Solution overview
The author solves Real-time Range Query in two steps. Firstly, the author designed a single-node spatial 
index QBS-tree with high update performance; secondly, the author intended a distributed spatial 
index GQ-QBS to overcome the single-node performance bottleneck when indexing a large dataset.

Most single-node spatial indexes’ update manner are bottom-up to ensure all leaf nodes are on 
the same layer. It benefits improving query performance. But when there are many update operations 
in LBS-RT, it makes index frequently adjust its tree structure, which is an expensive operation. On 
the contrary, QBS-tree’s update manner is top-down, which makes the balance factor configurable. 
The bigger the balance factor, the more QBS-tree can tolerate changes in the spatial distribution of 
index items, and the lower the frequency of QBS-tree adjusting their tree structure. However, if the 
balance factor is too big, the query capability will be reduced because the query path (Milo & Suciu, 
1999) will become longer. Therefore, the balance factor is designed as a user-configurable parameter 
to adapt to different application scenarios.

Table 1. 
The notations

Notation Definition

d The dimension of an index item.

r The root node of a tree.

l The leaf node of a tree.

n The leaf or non-leaf node of a tree.

n[i] When n is a non-leaf node, n[i] is the ith child node of n.

n.pa The parent node of n.

n.MBR The MBR of all index items in subtree n.

M, m, Mid
M and m are the upper and lower bound of the number of index items in a leaf node. Mid is 

m M+( ) 2 .

S S is a set of index items. When S have an alphabet subscript it represents the index items stored in 
some one subtree, such as Sl is the set of index items in the leaf node l.

S.size The size of S.
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Section GLOBAL INDEX introduces GQ-QBS. In Figure 2, GQ-QBS is a master-slave model 
which consists of a global index and multiple local indexes. The computation unit that maintains 
the Global Index (GQ-tree) is called Global Unit(GU), while that maintains the Local Index (QBS-
tree) is called Local Unit(LU). The global index recursively divides the global region into several 
sub-regions, and each leaf node indexes a sub-region. Each local index only indexes the index items 
in one sub-region. In this way, the update and query can be processed in parallel between LUs. The 
index items are continuously changing so that data skew may occur between local indexes over time. 
To achieve load balancing, GQ-QBS periodically adjust GQ-tree.

LoCAL INDEX

Features of QBS-tree
This subsection introduces the following three features of QBS-tree.

1.  Each non-leaf node has four children, and all index items are stored in leaf nodes.
2.  The number of index items in each leaf node has a lower bound m and an upper bound M. M is 

five times of m.
3.  QBS-tree has a configurable balance factor.

QBS-tree is A Quad-tree
QBS-tree recursively divides a global region into four sub-regions from top to bottom, in Figure 3. 
The number of index items in each sub-region is approximately the same by the splitting algorithm 
introduced in Algorithm 1. In Figure 3, a node divides its region into two sub-regions on the y-axis 
and divides each sub-region into two on the x-axis. The division method mentioned above references 
Sort-Tile-Recursive, which has proven to be an efficient packing algorithm (Leutenegger et al., 1997).

Sort-Tile-Recursive: There are r points, and each node can store n points. Firstly, sort points in 
ascending order on the y dimension. According to the order, these points are divided into r n  equal 

portions and store in r n  nodes. Secondly, like the first step, points in each node are sorted in the x 

Figure 2. 
A distributed spatial index established on the data from Figure 3-(a)
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dimension, and then points in each node are divided into r n  equal portions according to the new 

order and then stored in r n  new nodes. Finally, r n  nodes are got, and each node have n points.
The sort operation is used in Sort-Tile-Recursive, which is expensive. Division method avoids 

sorting operations through optimization.
Division method: Division method only splits r points into four parts by Algorithm 1. In 

BinaryDevide(S, “d”, p), S is a set of two-dimensional points. BinaryDevide splits S into two sets 
on d-dimension. The difference between the sizes of the two sets is determined by p. Within 
BinaryDevide, the quick sort algorithm will be called several times, and only one iteration of the 
algorithm is performed per call. BinaryDevide ends when the selected pivot is positioned between 
the S.size p p−( )





1 2 th  and S.size p p+( )





1 2 th  of S after an iteration. In this way, S can be split 
into two sets. BinaryDevide doesn’t divide S’s elements into two equal parts. Because the pivot is 
randomly chosen, the probability that the pivot is just midpoint is only 1 S.size  and after the pivot 
is chosen, the algorithm needs to traverse S’s elements. To reduce the times of traversal, BinaryDevide 
terminates itself when pivot is positioned between the S.size p p−( )





1 2 th and S.size p p+( )





1 2 th  
of S. Algorithm 1 eventually divides S into four parts.

Figure 3. 
A demonstration of QBS-tree

Table 2. 
Algorithm 1: Split(l)

Input: l, the leaf node need to be split.
Output: r, the root node of the new subtree generated by splitting the node l.

1 S0, S1 = BinaryDevide(Sl, “x”, p);

2 S00, S01 = BinaryDevide(S0, “y”, p);

3 S10, S11 = BinaryDevide(S1, “y”, p);

4 Initialize a nod r;

5 Sr[0] = S00, Sr[1] = S01, Sr[2] = S10, Sr[3] = S11;

6 return r;
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The division takes into account both dimensions and tries to make the divided regions closer 
to squares. The closer the sub-region is to the square, the better the query performance. The reason 
is as follows. When querying, the query algorithm needs to go through a path from the root node to 
a leaf node due to all index items being in leaf nodes. This path is the so-called query path. If the 
sub-regions are mostly long rectangles, the query rectangle will intersect with more sub-regions. 
Therefore, the closer the sub-regions are to square, the fewer possible query paths are.

QBS-tree is more suitable for indexing points because each index entry belongs to only one 
particular sub-region. As for non-point index items, the center point of an index item’s MBR can be 
used to represent the index item. Therefore, each node of QBS-tree needs to record two rectangles, 
one is the sub-region corresponding to this node, and the other is the MBR of all index items.

The Value of M/m
When the number of index items in a leaf node reaches M, the leaf node should be split into four new 
leaf nodes by Algorithm 1. M can be 4 times m as the number of items in each new leaf node must 
be bigger than m. But Algorithm 1 doesn’t split l into 4 nodes equally. So, the number of items in 
one of the new leaf nodes may be smaller than m. The author specifies that M is 5 times m. After 

specifying this, p needs to satisfy the following conditions: M p p p p m−( )( )




−( )




≥1 2 1 2 . 

Another reason the author specifies these multiple relationships is the new leaf nodes don’t immediately 
enter the easy-to-adjust state after splitting. If the number of items in a new leaf node is close to m 
or M, the number is likely to decrease to m or increase to M. This will soon cause QBS-tree to adjust 
again.

Configurable Balance Factor
Most extant tree spatial indexes are strictly balanced. It means all leaf nodes are in the bottom layer 
and can guarantee the shortest average query path. However, if there are many updates, these trees 
tend to lose balance easily, which leads to frequent rebalance. The rebalance of these trees is a very 
time-consuming process. However, the balance factor of QBS-tree is configurable. If the balance factor 
is too large, the query path may belong. Therefore, QBS-tree makes the balance factor a parameter 
to be configured by users.

Insertion Algorithm of QBS-tree
For simplification, Algorithm 2 masks the related operations of root. The first line calls the function 
ChooseLeafNode(r, e) to find a r’s leaf node that is suitable for inserting e, which picks a path from 
root to a leaf node. When it runs to a non-leaf node n, the center of e’s MBR belongs to which one 
region managed by someone n’s child node, and it turns to which one child node to continue picking. 
It returns the current node when it executes to a leaf node. At line 3, Algorithm 2 needs to adjust 
QBS-tree’s structure when the condition is True. At line 4, UnbalancedNode(l) is called to find the 
first unbalanced non-leaf node among the upper nodes of l after splitting l. At line 6, Split(l) can 
be safely called to split l due to there is no unbalanced node. When n is not null, QBS-tree needs to 
be adjusted. Algorithm 2 can directly rebuild n by calling Algorithm 3. Algorithm 3 reconstructed 
n and return the root of the new sub-tree. At the second line of Algorithm 3, all elements in n are 
aggregated into one leaf node l by calling AggregateToleaf(n). Algorithm 3 redistributes the elements 
in n by Algorithm 1.

Assaying above, if Algorithm 2 directly rebuild n, the depth D of n will be in the range that is 
shown at Formula (3). The implication of symbols in Formula (1), (2) and (3) is as follows: N is the 
number of index items in n; d and M is the same as that in Table 1; p in Formula (2)(3) and p in 
Algorithm 1 are the same. If the index items are evenly divided by Algorithm 3, the number of index 
items in each new leaf is equal. D is the largest integer satisfying Formula (1), which is the smallest 
one. If the elements are divided in the most uneven way, each time BinaryDevide is called, pivot is 



Journal of Database Management
Volume 34 • Issue 1

7

at the S
n
size p p. −( )( )





1 2 th  or S
n
size p p. + th1 2( )( )





. D is the largest integer satisfying Formula 
(2), which is the biggest one. Finally, Formula (3) is deduced from Formula (1) and (2).

Some values among the range of Formula (3) may also cause QBS-tree to imbalance. So, 
Algorithm 2 need to find the smallest subtree m to rebuild, and QBS-tree must be balanced after 
rebuilding. MinUnbalancedNode(n) implements this function. It calculates the depth range of n 
with Formula (3). If someone’s depth in the range causes an imbalance in n’s higher-level nodes, 
MinUnbalancedNode is recursively called with the higher-level node as a parameter. Finally, 
MinUnbalancedNode(n) will find a subtree that doesn’t cause QBS-tree to be imbalanceed after 
rebuilding. Finally, at line 9, m can be safely rebuilt.
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Deletion Algorithm of QBS-tree
Deletion algorithm is shown in Algorithm 4. The first line calls FindLeaf(r, e) to find the leaf node 
l in where e store. At line 4, if the condition is True, Algorithm 4 need to execute the code from line 
5 to line 13 to adjust the structure of QBS-tree. If the fifth line is True, Algorithm 4 can rebuild l.pa 
so that the number of index items in all leaf nodes doesn’t cross the two boundaries. But this may 
lead to a l.pa’s upper node to out of balance. As with the 8th and 9th line in Algorithm 2, Algorithm 
4 need to find the smallest subtree to rebuild. If the fifth line is False, Algorithm 4 combine all the 
child nodes of l.pa into one leaf node at line 9. But this may also lead to an upper node to out of 
balance. As with lines 4, 8, and 9 in Algorithm 2, Algorithm 4 need to find the earliest imbalance 
node n and the smallest subtree m that can be rebuilt and then reconstruct m.

Table 3. 
Algorithm 2: Insertion(r, e)

Input: r, the root node of QBS-tree;
e, the element need to be inserted.

1 l = ChooseLeafNode(r, e);

2 add e to Sl;

3 if Sl.size > M then

4 n = UnbalancedNode(l)

5 if n is null then

6 r = Split(n);

7 else

8 m = MinUnbalancedNode(n);

9 Redistribution(m);
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GLoBAL INDEX

In Figure 2, GQ-tree is responsible for dividing the global region into several sub-regions. The features 
of GQ-tree are as follows.

1.  Each non-leaf node divides its corresponding region into four disjoint sub-regions;
2.  Any leaf node doesn’t store index items, which only represents a sub-region. But, the number of 

index items whose center point is in this sub-region will be stored;
3.  The number of index items in any leaf node has an upper limit M and a lower limit m, and M is 

twice m;

Table 4. 
Algorithm 3: Redistribution(n)

Input: n, the node need to be redistribute.
Output: r, The root node of the new subtree generated by redistributing n.

1 if n is non-leaf node then

2 l = AggregateToleaf(n);

3 return Redistribution(l);

4 else

5 r = Split(n);

6 for i = 0 to 4 do

7 if Sr[i].size > M then

8 Redistribution(r[i]);

9 return r;

Table 5. 
Algorithm 4: Deletion(r, e)

Input: r, the root node of QBS-tree.
e, the element need to be deleted.

1 l = FindLeaf(r, e);

2 f l is not null then

3 remove e from Sl;

4 if the size of Sl is less than m then

5 if the size of Sl.pa is bigger than M then

6 m = MinUnbalancedNode(l.pa);

7 Redistribution(m);

8 else

9 initialize a new leaf node nl to replace l.pa, and add all the elements in l.pa to Snl;

10 n = UnbalancedNode(nl);

11 if n is not null then

12 m = MinUnbalancedNode(n);

13 Redistribution(m);
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4.  The tree height of GQ-tree is at least two.

Density Grid
Maintaining GQ-tree needs to know the spatial distribution of all index items. However, the input 
tuples only flow through GU but don’t store in it. The author’s solution is that maintaining a density 
grid in GU to represent the spatial distribution. A density grid is a 2D array. The density grid divides 
the global region into m*n equal-sized regions. An element of the array represents the number of 
index items in the corresponding grid.

Formula (4)(5) can calculate the grid to which an index item belongs. The global region can be 
represented by a rectangle Glow Glow Ghigh Ghigh

x y x y
, , ,( ) ( )




. Glowx and Glowy are the x-axis and 

y-axis coordinate values of the global rectangle’s left-bottom point, respectively. Ghighx and Ghighy 
are the x-axis and y-axis coordinate values of the top-right point, respectively. The global rectangle 
is divided into grids of m rows and n columns. There is an index item flow through GU, and its center 
point is (x, y). The system should increment array[row][col] by one.

row x Glow Ghigh Glow m
x x x

= −( ) −( )( )




 (4)

col y Glow Ghigh Glow n
y y y

= −( ) −( )( )




 (5)

This paper solves Real-Time Range Query, so it only focuses on the data generated in the last n 
minutes. The fact is there are not only tuples flowing into the window, but also tuples flowing out, 
in Figure 1. Therefore, GU should also remove the outdated tuple from the density grid. The author 
uses a density grid queue to solve this problem, in Figure 4. The rightmost density grid represents 
the distribution of the index items generated from 8:50 to 9:00. When all index items generated 
from 8:50 to 9:00 slide out of the window, the density grid in use should be reduced by 8:50 to 9:00 
density grid. In this way, GU can know the spatial distribution of all index items in the time window.

Update GQ-tree
The sub-regions divided by GB-tree will slowly produce data skew. Therefore, GU needs to regularly 
adjust GQ-tree structure to ensure the number of index items between sub-regions is approximately 

Figure 4. 
Density grid queue
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equal. GU update GQ-tree in the following two steps. Firstly, to get all subtree that needs to be 
reconstructed, Algorithm 5 is called with all leaf nodes as a parameter. Secondly, Algorithm 6 is 
called to rebuild these subtrees.

At line 3 of Algorithm 5, if the number of index items in a leaf node isn’t between M and m, it 
means GB-tree needs to reconstruct someone subtree. But, when the four child nodes of root are all 
leaf nodes, GB-tree ignores the index item number of any leaf node is lower than m. At line 4, if the 
condition is False, it means that the leaf node can be split directly. Otherwise, GB-tree needs to find 
the smallest subtree that can be reconstructed, using line 5 to 8. If a leaf node can be split directly, 
its index item number must be greater than 4*m. There are no index items in GU, so that a leaf node 
cannot be equally divided into four child nodes only with a density grid. It’s why Algorithm 5 set the 
value to 4.5*m instead of 4*m at line 4. Line 6 means that GB-tree can’t merge l and all of l’s brother 
node into one leaf node. So, Algorithm 5 should use line 7 to 8 to find the smallest subtree to be 
reconstructed. Similar to line 4, the reconstructed subtree needs to meet the splitting conditions that 
the number of index items must be more than 4.5*m, in addition to the root. Line 11 to 12 guarantees 
that any element of nodes isn’t a descendant node of any other element.

Algorithm 6 is a recursive function and calls itself and fourSplit(size1, size2, size3) to reconstruct 
subtree n. fourSplit firstly finds a boundary on the y-axis to divide the region corresponding to n into 
upper and lower parts, ensuring that the number of index items contained in the upper sub-region 
has exceeded size1 plus size2. Then, fourSplit finds a boundary on the x-axis to divide the upper 
sub-region into two left and right sub-regions, so that the number of index items in the upper left 
sub-region just exceeds size1. Similarly, the function finds an x-axis bound in the lower sub-region 
so that the number of index items in the lower left sub-region is greater than size3. Finally, fourSplit 
use four new leaf nodes to store the index items in the four sub-regions, respectively.

Algorithm 6 describes how sub-regions are divided when Sn.size and Mid are in different 
quantitative relationships. From line 2 to 5, as long as Sn.size is bigger than 15*Mid, the index items 
of n is divided into four parts by calling fourSplit, and then the four child nodes of n recursively call 

Table 6. 
Algorithm 5: GetAdjustNodes(leafNodes)

Input: leafNodes, all leaf nodes of the global index.
Output: nodes, all sub-tree of the global index that needs to be reconstructed.

1 initialize a list nodes to store all sub-tree that needs to be reconstructed;

2 for l in leafNodes do

3 if Sl.size > M || (Sl.size<m && l isn’t any child of root when root’s children are all leaves) then

4 if Sl.size < 4.5*m then

5 node = l.pa;

6 if !(Snode.size >= m && Snode.size <= M) then

7 while Snode.size < 4.5*m && node isn’t root do

8 node = node.pa;

9 else

10 node = l;

11 if node is not a descendant node of any node in nodes then

12 Remove the descendant nodes of node in nodes;

13 add node to nodes;

14 return nodes
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Algorithm 6 for splitting. As the recursion progresses, Sn.size will eventually fall into the range below 
line 6. At line 6, if the condition is True, it means that Algorithm 6 has separated a qualified leaf node 
whose index items are between M and m. At line 8 to 9, Algorithm 6 can call fourSplit to split n into 
four qualified leaf nodes. When the value of Sn.size meets any condition of the code branch below 
line 11, the division of n can be represented by Figure 5, and M is equivalent to Mid in Figure 5. For 
example, Figure 5-(b) corresponds to line 13 to 14 of Algorithm 6. The first three child nodes of n 
are directly divided into leaf nodes, and each of them has about Mid index items. Then, Algorithm 
6 recursively calls AdjustNode with the fourth child as the parameter to split it.

IMPLEMENT GQ-QBS BASED oN APACHE FLINK

Apache Flink overview
Flink is a popular datastream processing framework and often used for real-time computing. The user 
submits Flink job to JobManager, and JobManager parses a job into a Directed Acyclic Graph (DAG). 
The vertex of DAG is a calculation task, which receives data and then completes calculation logic 
and finally outputs the calculated result. The line of DAG represents the transmission of data. After 
JobManager parses a job, the tasks are distributed to TaskManagers to executing. TaskManager is a 
JVM process. Tasks run in slots, and slot is a thread of TaskManager. TaskManagers is responsible 
for scheduling tasks and communicating with JobManager and other TaskManagers.

Figure 6 is an example, which has three calculation tasks Density Grid Task (DGT), Global 
Task (GT) and Local Task (LT). A task can have multiple degrees of parallelism; for example, 
GT’s parallelism is three, and each of them is called a subtask. Different subtasks of the same task 
are distributed in different slots. But Flink allows multiple subtasks to share a slot, as long as these 
subtasks belong to the same job.

Figure 5. 
Different split strategies
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Implement Distributed Index with Flink
Figure 6 demonstrates how to implement Real-time Range Query with Flink by GQ-QBS. The data 
flow and processing of Figure 6 is as follows. The input of DGT are index or query items. DGT is 
responsible for computing the density grid of index items, a density grid is calculated for each sliding 
interval of time window, and then broadcast the density grid to each subtask of GT. Every input item is 
randomly forwarded to one subtask of GT. The parallelism of GT is three, to ensure the consistency of 
GQ-tree in the three subtasks, it’s necessary to keep the density grids in different subtasks consistent.

After GT’s subtask receives an index item or query item, how to forward it to LT’s subtask is 
as follows. Both query items and index items can be represented as a rectangle. The strategy is to 
send an input tuple to subtasks in which the subregions are corresponding to intersect the rectangle 
representing the input tuple. Each subtask of LT is responsible for executing query and update. Finally, 
the Local Index outputs every query result.

Table 7. 
Algorithm 6: AdjustNode(n)

Input: n, the node that needs to be reconstructed.
Output: r, the root of the reconstructed subtree.

1 Mid = (m + M)/2;

2 if Sn.size >= 15*Mid then

3 r = fourSplit(Sn.size/4, Sn.size/4, Sn.size/4);

4 for i = 0 to 4 do

5 r[i] = AdjustNode(r[i]);

6 else if Sn.size >= m && Sn.size <= M then

7 return n;

8 else if Sn.size >= 3*Mid && Sn.size <= 5*Mid then

9 r = fourSplit(Sn.size/4, Sn.size/4, Sn.size/4);

10 else

11 if Sn.size >= 5*Mid && Sn.size <= 7*Mid then

12 r = fourSplit(1.1*m, 1.1*m, 1.1*m);

13 else if Sn.size >= 7*Mid && Sn.size <= 8*Mid then

14 r = fourSplit(Mid, Mid, Mid);

15 else if Sn.size >= 8*Mid && Sn.size <= 8.5*Mid then

16 r = fourSplit(1.2*m, 1.2*m, 1.2*m);

17 else if Sn.size >= 8.5*Mid && Sn.size < 11*Mid then

18 r = fourSplit(Mid, Mid, (Sn.size – 2*Mid)/2);

19 r[2] = AdjustNode(r[2]);

20 else

21 r = fourSplit(Mid, (Sn.size – Mid)/3, (Sn.size – Mid)/3);

22 r[1] = AdjustNode(r[1]);

23 r[2] = AdjustNode(r[2]);

24 r[3] = AdjustNode(r[3]);

25 return r;
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When there is a load imbalance between LT’s subtasks, GQ-tree can perceive it through the density 
grid, and then reconstruct a certain subtree. After reconstruction, GQ-tree needs to allocate subtasks 
of LT to the new leaf nodes and migrate the index items in the old subtasks to the new subtasks. To 
reduce the amount of data migration, the new leaf node can reuse the previous subtask of LT. For 
example, if the index region corresponding to a new leaf node and the index region corresponding 
to an old leaf node is roughly the same and the corresponding index items are also roughly the same, 
the subtask of LT corresponding to this old leaf node is assigned to this new leaf node. Hungarian 
algorithm can be used to minimize data migration. After determining the source and purpose of the 
data to be migrated, the system can use Flink’s queryable state mechanism or intermediate storage 
such as Redies to realize the data migration between LT’s subtasks.

Space Efficiency
The global index GQ-tree and the local index QBS-tree that make up the distributed spatial index 
GQ-QBS are both quad-tree. The number of leaf nodes l and that of intermediate nodes i of quad-tree 
satisfy l i i+ = * +4 1 . Assuming that QBS-tree has n index items, there are probably n m2 5. *  leaf 
nodes. The maximum number of GQ-tree’s leaf nodes is determined by the parallelism of LT, which 
is assumed to be denoted as p. The extra space consumed by QBS-tree and GQ-tree is the number of 
nodes multiplied by the space occupied by one node. From the above information, it can be concluded 
that the total number of QBS-tree’s nodes and GQ-tree’s nodes are 8 5 15*n m m−( ) ( )* *  and 

4 1 3*p−( )  respectively.

RELATED WoRK

Single-node Spatial Index
R-tree and its variants are the most commonly used single-node spatial indexes. When indexing a 
static data set, the query performance of an index should be paid more attention to. There are many 
factors that affect the query performance of an R-tree, and these factors also affect each other. The 
paper (Milo & Suciu, 1999) analyzes these factorfs. The two main factors are listed below: 1) the 
overlap area between the MBRs of the same layer nodes should be as small as possible, which helps 
to reduce the number of query paths when querying; 2) the smaller the perimeter of node’s MBR, the 
higher the aggregation degree of a tree, the closer the distance between the index items in the same 
node, the smaller the number of query paths when query.

Hilbert-tree (Kamel et al., 1994) uses a Hilbert curve to sort the index items, and the distance 
between adjacent index items is very close after sorting. Hilbert-tree built based on this sorted sequence 
has a relatively small perimeter of node’s MBR, and the index items in the same node have a good 
degree of aggregation. R*-tree (Beckmann et al., 1990) also takes into account the perimeter of node’s 
MBR and the overlap area of MBR between the same layer nodes when building or updating a tree.

STR-tree (Leutenegger et al., 1997) uses its packing algorithm Sort-Tile-Recursive to reduce 
the overlap area between the MBRs of the same layer nodes. When indexing points, there is no 
overlapping area between the MBRs of the same layer nodes; when indexing non-point index items, 
the overlapping area is also tiny. The experiment in the paper (Leutenegger et al., 1997) also verified 
that the aggregation degree of nodes generated by packing algorithm Sort-Tile-Recursive is better 
than that of Nearest-X (Roussopoulos et al., 1985) and Hilbert Sort (Kamel et al., 1994).

VP-tree (A. Fu et al., 2000) and KD-tree (Zhou et al., 2008) are both binary trees, and each node of 
them store an index item. The index item in a node n divides all index items in the subtree represented 
by n into the same two parts in a certain dimension. There is only one query path when performing 
point query in KD-tree and VP-tree, while there are multiple query paths when performing range 
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query. The overlap area isn’t big between the MBRs of the same layer nodes of KD-tree or VP-tree, 
so there won’t be too many query paths when range query.

QR-tree (Y. Fu et al., 2003) combines R-tree and quadtree to make up for the shortcomings of R-tree, 
which is too much overlap area between MBRs of the same layer nodes. Each node of QR-tree has an 
index region, and its four child nodes divide the region into four equal parts; that is, each dimension 
is equally divided once. Each node has an R-tree, which indexes the index items only belonging to the 
index region of this node. This significantly reduces the overlap of MBRs of the same layer nodes.

PH-tree (Zaschke et al., 2014) is a very efficient multi-dimensional index. It uses the method 
of sharing binary number prefixes to build PH-tree, which makes its query and update performance 
very efficient. But PH-tree is more suitable for point query. When performing range queries, as the 
query area increases, its query performance drops sharply.

When updates are frequent, the above index is difficult to adapt. They either need to adjust the 
tree’s structure frequently or rebuild the entire tree or a subtree. For example, STR-tree, KD-tree, and 
VP-tree are static indexes. When they need to be updated, they need to rebuild the entire tree. Both 
R-tree and Hilbert-tree adopt a bottom-up update method. When the amount of updates is large, they 
need to adjust the tree structure frequently. Although PH-tree has better update and query performance, 
when the query rectangle of range query is large, the query performance of PH-tree is poor. The 
spatial index QBS-tree introduced in this paper makes the tree’s balance factor configurable through 

Figure 6. 
Implement index on Apache Flink
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a top-down update algorithm, reducing the number of times the tree adjusts its structure. Moreover, 
when executing wide-range queries on QBS-tree, its query performance won’t drop much.

For indexing a large number of moving objects, there is some work (Deng et al., 2015; Sidlauskas 
et al. 2011; Xiong & Marble, 1996) to improve the query and update performance of spatial index 
through multi-threaded processing, GPU processing, and other parallel processing methods. The above 
spatial index for indexing moving objects mainly uses better hardware to speed up query and update 
performance. In contrast, the single-node spatial index QBS-tree introduced in this paper improves 
query and update performance by its algorithm.

DISTRIBUTED SPATIAL INDEX

Spatial Index Base on Hadoop
Although QBS-tree can significantly improve the update and query performance, single-node indexes 
will still produce performance bottlenecks when indexing a sizeable spatial data set. Distributed spatial 
indexes are often used to avoid single-node performance bottlenecks. A lot of work implements spatial 
query on the distributed computing framework Hadoop.

Hadoop-GIS (Aji et al., 2013) is a spatial data warehouse system that processes large static 
spatial data sets. Hadoop-GIS uses a global partition index to realize a spatial-partition distributed 
spatial query framework. Hadoop-GIS is also integrated into Hive to implement a declarative spatial 
query function. The performance of Hadoop-GIS is better than traditional spatial relational databases.

SpatialHadoop (Eldawy & Mokbel, 2013) optimizes Hadoop to improve the performance of 
processing spatial data significantly. SpatialHadoop optimizes Hadoop in the language layer, storage 
layer, MapReduce layer, and operation layer, and its leading optimization is in the storage layer. It 
uses a master-slave distribution spatial index to index spatial data set, which includes a global index 
and several local indexes. The global index partitions data set, and each partition uses a local index to 
index its data set. When performing a range query, the global index is used to filter out the partitions 
that won’t contribute to the query result. Then the local index is used to execute the query on the 
remaining partitions.

In addition to the above two indexes, Lu (Lu at al., 2012) and Zhang (Zhang et al., 2009) also 
use MapReduce to implement range query and spatial join operations. Although the performance of 
these indexes for processing static spatial data set is better than that of traditional relational databases, 
these indexes cannot handle dynamic data sets which change frequently.

Spatial Index Base on Hbase
Apache Hbase is a distributed, column-oriented database, and it’s also a KeyValue structure database. 
Using Hbase to build distributed spatial index is also a research direction. Huang (Huang et al., 2014) 
uses grids to group a spatial data set. Data in the same grid is grouped into a group, and then the 
grid is indexed by R-tree. When querying, first use R-tree to find the grids in the query area, then 
use the grids to find all the spatial data in the corresponding group from Hbase, and finally filter 
those spatial data. Its disadvantage is that the size of the grid is fixed, and the number of index items 
in different grids may be unbalanced, which will cause too many index items to be selected from 
Hbase when querying.

Nishimura (Nishimura et al., 2013) use linearization technology to map multi-dimensional data 
into Hbase row key. However, the spatial data sorted by linearization technology cannot guarantee 
that all adjacent data are spatially close neighbours. False-positive will occur when using that index 
to execute a query. To reduce the number of false-positives, Jo (Jo & Jung, 2018) build a multi-
dimensional index above Hbase client, called quadrant-based minimum bounding rectangle tree 
(QbMBR-tree). QbMBR-tree partitions the index items more accurately and uses QbMBR-tree to 
index the index items.
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Although distributed spatial indexes based on Hadoop and Hbase have better performance, 
they only have advantages when indexing a relatively static spatial data set. In addition, the data and 
intermediate calculation results of Hadoop and Hbase are stored in hard disk, so these indexes cannot 
meet the needs of applications with high real-time requirements.

Spatial Index Base on Spark or Storm
Compared to Hadoop, memory-based computing frameworks, such as Spark, Flink, and Storm, 
can process data faster. Some works implement distributed spatial index on these frameworks. Xie 
(Xie et al., 2017) implements a distributed spatial index on Apache Spark, and Zhang (Zhang et al., 
2016) implements another on Apacha Storm. These two indexes are distributed spatial indexes of 
master-slave structure.

Zhang (Zhang et al., 2016) sends the index items received in Spout of Storm to the slave node 
in a polling manner. Each slave node establishes a spatial index base the set of received index items. 
Zhang (Zhang et al., 2016) broadcasts the query items received from Spout of Storm to all slave 
nodes, and all queries need to be executed in every slave node. The union of the query results of a 
query item in all slave nodes is the final result. The advantage of this distributed spatial index is that 
there will be no load imbalance as the dynamic spatial-temporal data set changes. The disadvantage 
is that each query item has to execute a query in all slave nodes, which consumes many resources.

Xie (Xie et al., 2017) uses Sort-Tile-Recursive packaging algorithm to build an STR-tree on 
the master node. This tree does not store index items, and it only divides space. Each of its leaf 
nodes corresponds to an index area, the index areas don’t intersect, and each slave node corresponds 
to an index area. The master node receives the query items and index items and sends them to the 
corresponding slave nodes. The slave node establishes a single-node spatial index on the set of index 
items and processes the query items. This paper refers to the partitioning method of this distributed 
spatial index as the fixed area partitioning method. The advantage of this distributed spatial index 
is that query items only need to be sent to some slave nodes to execute the query, which consumes 
fewer resources. The disadvantage is that as the index is updated, there may be load imbalance among 
slave nodes.

EXPERIMENT

Experimental Setup
Environment: All experiments are performed on a high-performance server, and its hardware 
parameters are as follows: CPU: 128*Intel(R) Xeon(R) CPU E7-8860 v3 @ 2.20GHz, Memory: 2TB 
@1600 MHz. A Flink cluster is deployed on this server, and its configuration is as follows: 128*slot, 
the memory of JVM is 985MB, and the memory of outside JVM is 3289 MB. All algorithms are 
implemented in Java.

Data Sets: The experiment used two real-world data sets.
DIDI-CD: This data set is the trajectory data from Didi Chuxing (https://gaia.didichuxing.com). 

The coordinate range of this trajectory set is a certain area of Chengdu, China. Its size is 900GB. 
Each piece of data includes a taxi ID, a sampling timestamp and a position (latitude and longitude).

TAXI-BJ: This data set is the trajectory data of some taxis in Beijing, China in 2008. It contains 
about one million entries, and the structure of the entry is similar to DIDI-CD. The distribution of 
TAXI-BJ is even more uneven than DIDI-CD.

Performance Metrics: This paper uses the following metrics to evaluate the performance of an 
index. a) time is the time required to perform several updates or queries operations. b) delay is the 
time interval from input to output when processing data with Flink. c) throughput is the reciprocal 
of the time required to process a static dataset with Flink.
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Performance Parameters: In this paper, the comparative experiment is performed by adjusting 
the following parameters. a) size is the approximate number of index items indexed in a spatial index. 
b) radius represents the size of the square to perform a range query, and 2*radius is the side length 
of a range query square. c) ratio is the ratio of the number of queries to that of updates. In Section 
EXPERIMENT, one update includes one insert and one delete.

Comparison of Single Node Indexes
This part compares the performance of different spatial indexes when indexing points and rectangles 
separately. The author uses the minimum bounding rectangle of a segment composed of adjacent 
sampling points of a track as the index rectangle. During execution, the index items will be inserted 
into the index until the number of index items in the index reaches size. After that, each insertion will 
be accompanied by deletion to keep the number of index items in the index unchanged. And at the 
same time, the program started to count the time consumed, which is used as the performance metric, 
for 20,000 updates and 20,000*ratio queries when indexing points, or 3000 updates and 3000*ratio 
queries when indexing rectangles.

In the experiments corresponding to Figure 7 and Figure 8, ratio is 2 and size is 40,000. Among 
these experiments, QBS-tree takes the least time to complete the specified operations, and as radius 
increases, the growth rate of its curve is the slowest. Especially QBS-tree performs better when 
indexing the more unevenly distributed data set TAXI-BJ. This is because QBS-tree is a quadtree, 
and there is little overlap between MBRs of nodes at the same level, and there are fewer query paths 
when QBS-tree executes a query. Another important reason is that QBS-tree is updated quickly, which 
also makes it less time-consuming to perform all operations. PH-tree is better at point query and small 
range query. However, when radius becomes larger, the performance of PH-tree will deteriorate. So, 
the curve corresponding PH-tree grows fast. As radius becomes larger, the more partitions the query 
rectangle spans when performing a query on QR-tree, the more R-trees perform the query in QR-tree. 
Therefore, the QR-tree curve grows fast. When indexing the unevenly distributed data set TAXI-BJ, 
the range of QR-tree’s partitions is bigger. Therefore, when radius increases, the curve corresponding 
to QR-tree doesn’t grow very quickly. Another finding is, when indexing the unevenly distributed 
data set, the index items in QR-tree are more concentrated in some R-trees, and the performance of 
QR-tree will gradually degrade to the original R-tree.

In the experiments corresponding to Figure 9 and Figure 10, radius is 60 and size is 40,000. When 
indexing the unevenly distributed data set TAXI-BJ, as ratio increases, the performance of QBS-tree 
is the most stable and fastest index. This shows QBS-tree’s query performance is also better. When 
ratio goes from three to four and indexing DIDI-CD’s rectangle index items, the curves corresponding 
to all indexes have large fluctuations, which just reflects the uncertainty of the real-world data. But 
in this uncertain environment, QBS-tree is still the best performer. The rapid growth of the curve 
corresponding to PH-tree indicates that the query performance of PH-tree is poor. The design concept 
of QR-tree is the same as that of QBS-tree. They both use a quad node to divide the space in each 
dimension, so the growth rate of the curve corresponding to QR-tree is similar to that of QBS-tree. 
But, when indexing the unevenly distributed data set TAXI-BJ, QR-tree gradually degrade to the 
original R-tree. So, its curve is closer to that of R-tree.

In the experiments corresponding to Figure 11 and Figure 12, radius is 100 and ratio is 2. And 
in the experiments corresponding to Figure 13 and Figure 14, radius is 60 and ratio is 2. When 
indexing the evenly distributed data set DIDI-CD’s points, QBS-tree is better than PH-tree in most 
cases. With the increase of size, there are more index items with repeated positions and index items 
with the same position occupy only one index position in the PH-tree. So there are fewer nodes in the 
PH-tree, and query and update are faster. This is why PH-tree’s performance in Figure 19 is better 
than QBS-tree after size exceed 80,000. However, QBS-tree’s performance is the better one when 
indexing the unevenly distributed data set TAXI-BJ. And when indexing rectangle, the possibility of 
index item positions overlapping is smaller, so the performance of QBS-tree is better.
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In summary, under frequent update scenarios, QBS-tree can show better performance. QBS-tree 
is especially good at indexing the unevenly distributed data set. The performance of QBS-tree is also 
better when performing large range queries.

Figure 7. 
Radius as variable and index DIDI-CD’s rectangle

Figure 8. 
Radius as variable and index TAXI-BJ’s rectangle
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Comparison of Distributed Indexes
QBS-tree is also suitable for a global index. It recursively divides a global region into several sub-

Figure 9. 
Ratio as variable and index DIDI-CD’s rectangle

Figure 10. 
Ratio as variable and index TAXI-BJ’s rectangle
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regions from top to bottom. However, QBS-tree has one drawback, which is that M is five times m. 
It means that the total number of index items in a local index is five times that of another local index 

Figure 11. 
Size as variable and index DIDI-CD’s point

Figure 12. 
Size as variable and index TAXI-BJ’s point
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in the most extreme case. But GQ-tree’s M is twice as large as m. So, GQ-tree can provide better load 
balancing (Cybenko et al., 1989; Fang et al., 2019) than QBS-tree. Figure 15 and Figure 16 are the 

Figure 13. 
Size as variable and index DIDI-CD’s rectangle

Figure 14. 
Size as variable and index TAXI-BJ’s rectangle
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data skew caused by GQ-tree and QBS-tree, respectively. In this contrast experiment, the author kept 
about 2 million index items in the time window. The ordinate is the ratio of the total number of Local 
Index’s index items to m. The upper bound of the box is the value at the 9 10( ) th  after sorting, and 

the lower bound is the value at the 1 10( ) th . As Mid grows from 60,000 to 300,000, the amount of 
tuples in each local index is roughly between m and 2 *m  when GB-tree is global index, while the 
amount is roughly between 1 2. *m  and 4 8. *m  when QBS-tree is global index. Therefore, GQ-tree 
can achieve better load balancing.

When GQ-tree is used as the global index, Figure 17-19 are the performance for the total number 
of index items at one million, two million, and three million, respectively. The throughput and latency 
of this distributed index do not fluctuate greatly with changes in the total number of index items. They 
are mainly determined by m of the global index. In other words, the total number of index items in 
the local index determines the performance of this distributed index.

CoNCLUSIoN

The timeliness of Spatial-temporal data is vital, so those new and outdated index items need to be 
inserted into or removed from the index in a timely manner. However, the existing spatial indexes 
are challenging to meet the requirements of real-time systems for update performance. Because 
fast-changing index items cause these indexes to adjust their structure or rebuild the tree frequently, 
it results in high maintenance costs, such as HiIndex (Liu et al., 2021), QRB-tree (Yu et al., 2021), 
SPRIG (Zhang et al., 2021), PH-tree (Zaschke et al., 2014), QSF-Trees (Orlandic, R., & Yu, B, 
2004), dynamic grid file (Hou et al., 2009). Some research speed up the performance of index 
by improving resource utilization, such as increasing parallelism (Song et al., 2004; Choy et al., 
2000), but these researches didn’t optimize the update algorithm, therefore, these researches can’t 
save computing resources.

Figure 15. 
The data skew of GQ-tree
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To solve the low update performance of spatial index, a new spatial index QBS-tree is 
proposed in this paper. It uses a new top-down update algorithm, which is shown in Section 
EXPERIMENT to significantly reduce the computational cost of inserting and deleting index 
items. To index a large spatial dataset, distributed processing is an inevitable technique. In 

Figure 16. 
The data skew of QBS-tree

Figure 17. 
Index number is 1*106
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addition, indexing a dynamic spatial dataset requires a dynamic load balancing technique to 
balance computing tasks among distributed computing nodes. In this paper, GQ-tree is used 
to dynamically allocate sub-index datasets among distributed computing nodes. Experimental 
results show that the distributed spatial index GB-QBS composed of GB-tree and QBS-tree can 
achieve better computational performance.

Figure 18. 
Index number is 2*106

Figure 19. 
Index number is 3*106
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THEoRETICAL AND PRACTICAL

Theoretical
QBS-tree proposed in this paper uses a new top-down update method. With this method, QBS-tree 
can have a configurable balance factor, making QBS-tree more tolerant of the index item’s change. 
Therefore, the update efficiency of QBS-tree is higher than that of traditional spatial indexes. 
Distributed processing is inevitable for dealing with massive data. Indexing a dynamic data set in 
a distributed manner needs to make load balancing between parallel processing units and minimize 
resource consumption. The author designs a new distributed spatial index GQ-QBS with a two-layer 
master-slave mode to solve those problems. The global index (GQ-tree) of GQ-QBS is crucial. GQ-tree 
uses a density grid and a new update algorithm to balance local indexes and minimize processing units.

Practical
Real-time processing of data can often make data more valuable. Some applications, such as real-time 
traffic speed estimation (Nie et al., 2022), real-time spatial temporal transformer (Geng et al., 2022), 
and real-time crowdsourcing service (Li et al., 2021), provide more valuable real-time services by 
processing data in real time. These applications often require the service of spatial query, that is, to 
obtain objects within a specified spatial range. These index objects are changing in real time. Requires 
a lot of update operations on the index. The high update performance of GQ-QBS just meets this 
performance requirement. Through the stress test experiment in the previous section, it can be seen 
that GB-QBS can consume less computing resources than the existing spatial index.
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