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ABSTRACT

Emotion is an important research topic in the field of sports. The physiological changes caused by 
emotion have a great influence on the completion of sports. It cannot only fully mobilize the organism 
and maximize the exercise potential, but also lead to muscle stiffness, movement deformation, or 
muscle contraction weakness. Furthermore, it can affect the completion of exercise. In order to ensure 
the athlete can keep the best competitive level, it is necessary to estimate the athlete’s emotion before 
competition. This paper adopts the pulse wave signal to implement the emotion estimation for the 
athletes. First, the pulse wave signals are collected by using a portable sensor via mobile computing. 
Then, the collected pulse wave signals have noises removed by wavelet transform. Last, the denoised 
pulse wave signals are represented as the features in time domain and frequency domain to input into 
a trained classifier for determining the current emotion status. The experimental results show that 
the proposed method can recognize more than 90% of the abnormal emotions.
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1. INTRODUCTION

Movement, emotion and cognition are three concepts in the field of sports psychology (Nesti et 
al. 2013) and play important role in the sports competition and training, such as tennis sports. 
The movement refers to the action or activity that an organism completes by means of the nervous 
system,bones, muscles, joints and other motor organs (Cust et al. 2019). Emotion is a kind of attitude 
experience of whether the objective things meet their own needs (Delbrouck et al. 2020). Cognition 
refers to people’s understanding of objective things. Exercise connects emotion and cognition closely 
(Raab et al. 2019). Emotion is produced in the process of sports, whose source is sports. In turn, 
it can affect the quality and effect of sports. Cognition comes from movement and is the basis of 
emotion. Therefore, we must make a serious study of sports, emotion and cognition for both sport 
technology and sport competition.
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The research has found that emotion is controlled by the autonomic nervous system (Morris et 
al. 2020). Autonomic nervous system is a part of the whole nervous system. Its main function is to 
control the digestion, respiration, circulation, reproduction and other visceral activities of organism, 
and regulate the functions of viscera, smooth muscle and gland. The autonomic nervous system is 
controlled by the cerebral cortex. It reaches the internal organs through the spinal cord. People show 
many physiological reactions in emotional state. Respiration, circulation, bone, muscle, internal 
and external glands, as well as metabolic process, will have obvious changes. For example, in the 
emotional state of excitement and tension, breathing speeds up and deepens, heart beats strengthen, 
blood vessels dilate, blood pressure rises and blood sugar increases. Anxiety can lead to the decrease 
of blood sugar, muscle relaxation and digestive gland activity. In short, the physiological changes 
caused by emotion have a significant impact on the completion of sports. It cannot only make the 
organism fully mobilize, maximize the exercise potential, but also lead to muscle stiffness, movement 
deformation or muscle contraction weakness, thus affecting the completion of sports. The competition 
emotions can be classified as three categories: the movement emotion for fighting, the overheated 
status of competition, and the indifferent status of competition.

In the movement emotion for fighting (Poma et al. 2017), the physical state of the sportsman 
reaches the most suitable level for the competition, the physical function is brought into full play, and 
various psychological factors are at the best level, the technique movement coordination, the labor 
saving, the high movement effect.

In the overheated status of competition (Archer et al. 2020), the athletes are over excited, out of 
control, uncoordinated, hands and feet tremble, thirsty and frequent urination.

In the indifferent status of competition (Reitz et al. 2017), the athletes are lack of physiological 
energy, slow movement, slow thinking, depression.

The inverted U theory (Chmiel et al. 2017) points out that both very high and very low wake-up 
levels of the movement emotion are unfavorable to the operation, and the appropriate wake-up level 
of the movement emotion is considered to be the most favorable for the operation. The high arousal 
level is necessary for endurance, strength and speed movement to achieve the best performance. The 
general attention operation of high arousal will interfere with complex skills, fine muscle activity, 
coordination, and stability. For all motor tasks, slightly higher than average arousal is more appropriate.

Recently, we can use portable devices to obtain effective information by detecting the changes 
of physiological signals such as ECG (Attia et al. 2019), pulse (Ma et al. 2018) and EEG (Craik et 
al. 2019), so as to achieve the purpose of detecting people’s emotions. For the tennis players, the 
coach can remind them when their emotions are abnormal and help them to keep the best competition 
status. The emotion recognition is an interdisciplinary science between artificial intelligence and 
artificial psychology.

The pulse wave signal is one of the common and widely used signals for emotion recognition 
(Egger et al. 2019). The people’s emotions fluctuate according to their physiological states, such 
as pulse rate and blood flow. Blood volume pulse is the change of heart rate and blood vessel 
contraction when light (infrared or red light) irradiates finger skin detected by blood volume pulse 
sensor plethysmograph. After each heartbeat, the blood flows through the blood vessels, and the 
changes of capillary congestion (pulse) and vasoconstriction can be detected under the light source. 
This paper adopts the pulse wave signal to detect the movement emotion of tennis players during 
sports. First, the pulse wave signals are collected by portable device in the mobile node; second, the 
noises in the pulse wave signals are removed by wavelet transform; third, the denoised signals are 
represented as the features from time domain and frequency domain; lastly, we learn a classifier by 
using the features of the denoised signals from training set and use the learnt classifier to monitor 
the emotions of tennis player. The procedure is summarized as the following figure.

The remaining part of this paper is organized as follows: the feature extraction for pulse wave 
signals are provided in Section 2; the abnormal emotion detection by using support vector machine 
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is provided in Section 3; the experimental evaluation is provided in Section 4; and the last section is 
the conclusion and discussion.

2. FEATURE EXTRACTION FOR PULSE WAVE SIGNAL

With the periodic activity of the heart, the pressure and volume in the artery changes rhythmically, and 
the pressure wave is formed by blood flow and propagates along the pulse wall. The pulse reflects the 
heart rate. The heart pumps blood in the body and flows to the whole body through the blood vessels. 
The blood pulse at the blood vessels is the pulse. People can feel the pulse at the blood vessels near 
the skin surface, such as the wrist, neck or upper arm.

The heart relaxes and contracts regularly. When the heart contracts, blood gradually flows to 
the aorta. Due to the existence of peripheral resistance, most of the blood still temporarily exists in 
the proximal end of the aorta. When there is too much blood in the aorta, it expands and the pressure 
rises. When the heart is diastolic, the aortic valve is temporarily close. As a result, the aorta regains 
its elasticity to contract and pushes blood to flow outward. Then, the pressure on the aorta decreases. 
With the relaxation and contraction of the heart, the aorta will expand and recover, and then the 
pressure will spread from the aorta to the branches in the form of pressure wave until it spreads to 
the whole arterial system, which makes the distal artery pulsating regularly. This is the process of 
arterial pulse wave propagation.

Pulse reflects the change of human heart rate, which is an important physiological index of human 
body. Because the pulse is easy to measure, it is often used in medical detection of physical condition. 
We can know the intensity and rhythm of the heart beat by the pulse beat. The occasional pause or extra 
beat of the pulse is normal. The systolic blood pressure can be determined by pulse. Usually, when 
breathing deeply, the heart rate will increase. Through the pulse beating intensity and speed changes, it 
can reflect a person’s physical condition. Pulse rate can be checked by calculating beats over a period 
of time (at least 15 to 20 seconds) to obtain beats per minute. When individuals experience feelings 
of fear, they sweat, their limbs are cold, and their heart beats faster. The corresponding physiological 
index changes behave as follows: skin electricity increased, skin temperature decreased, finger blood 
volume decreased, heart rate increased and pulse quickened.

The pulse can be palpated by touching fingertips to feel heartbeat. The pulse rate can be measured 
by observing and touching the external part of the artery to record the pulse times per minute. Pulse 
is measured by palpating any artery that presses on the bone, such as carotid artery (neck), brachial 
artery (elbow), radial artery (wrist), etc. Heart rate is estimated by the number of arterial beats per 
minute. The pulse and heart rate of normal people are consistent. In normal people, the pulse is equal 

Figure 1. The architecture of emotion estimation by using pulse wave signal.
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in strength, and the time between pulses is conserved. When the fluctuation of emotion and pulse 
during exercise increase, the fluctuation of pulse slows down during rest and sleep. Tachycardia 
occurs when the pulse rate exceeds 100 beats per minute in normal adults. Bradycardia occurs when 
the heart rate is lower than 60 beats / min.

As a very important physiological index, pulse wave belongs to low frequency and weak 
bioelectrical signal (Chen et al. 2020). The regular activity of the heart changes the pressure and 
volume of the artery, and the pressure wave propagates outward along the artery wall to form the pulse 
wave. The pressure sensor is the most common way to detect pulse wave. The pulse wave detected 
by pressure sensor is pressure pulse wave, which is a typical pulse wave. The pressure sensor is very 
sensitive to pressure (Ruth et al. 2020). Pressure sensors can be placed in brachial artery, radial artery 
and other arteries with obvious pulse beating. Then the analog-to-digital converter, filter circuit and 
amplifier circuit are designed to process the signal to obtain the final pulse wave.

Another way to acquire pulse wave signal is the blood volume pulse (BVP) sensor (Blackford et 
al. 2018), from which the blood volume pulse signal is obtained. This paper adopts BVP sensor to 
collect pulse wave signal. Pulse wave detection by blood volume pulse sensor belongs to a non-invasive 
detection method, which detects the change of blood volume by irradiating arterial blood vessels with 
light. The detection needs a light source, a light sensor and a light receiver. BVP sensor is a kind of 
optical sensor, which can detect the change of arterial transparency and are non-invasively. The BVP 
sensor can be placed in any capillary near the surface of the skin in the human body.

Because the fingertip is very sensitive, the BVP sensor measures the pulse of the fingertip. The 
fingertip is placed in the plastic clip to minimize the interference of external light source, and the light 
emitter and detector are placed in the plastic clip to collect the original pulse wave signal. After each 
heartbeat, the blood flows through the blood vessels, and the changes of capillary congestion (pulse) 
and vasoconstriction can be detected under the light source. The signal is collected and converted 
into electrical signal, which is called blood volume pulse wave signal.

Figure 2 is the illustration of a typical pulse wave of a normal person in a complete cycle, which 
is obtained by detecting the radial artery. The curve between starting point and end point is the 
whole pulse cycle. Obviously, a whole pulse arterial wave is divided into ascending and descending 
branches. From the beginning to the end, the pulse wave is subdivided into percussion wave, tidal 
wave and dicrotic wave.

Figure 2. An illustration of a pulse wave cycle.
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When the heart contracts, the ventricle will rapidly release blood and the blood volume of the 
aorta will increase rapidly. The vascular wall will expand and the blood pressure will rise to form 
the pulse wave ascending branch. Many factors, such as the speed of cardiac ejection, the size of 
resistance, and the elasticity of arterial wall, will more or less affect the length and amplitude of 
ascending branch. In short, the steepness of the ascending branch reflects the larger amount of blood 
loss or the smaller resistance during the onset of the heartbeat. On the contrary, if the rising speed 
is slow and the amplitude is small, it means that the blood loss is small or the resistance is large. In 
a word, the ascending branch takes a short time in the whole pulse cycle.

When the heart contracts and the ventricles rapidly release blood, the ejection rate will gradually 
slow down. As a result, the blood in the artery decreases and the blood pressure decreases, the 
amplitude of pulse wave will decrease gradually until the next ventricular re-ejection. With the end 
of the heart’s systole, the aortic valve closes and blood gradually returns. The tidal wave is triggered, 
which shows that the pulse wave with a rapid downward trend delays the downward speed to form a 
notch on the downward branch waveform curve. At the same time, it also represents the beginning of 
diastole. Although the aortic valve is closed, the arterial blood can no longer return to the ventricle, 
but the return blood will still impact towards the ventricle. This makes the closed aortic valve still 
be impacted by the blood, so the blood in the artery will increase again, and then the blood pressure 
will rise, so a second notch will be formed. Then the pulse wave will stop falling, showing a small 
upward trend of the wavelet, that is, the double pulse wave, the trough in the middle is called the 
descending isthmus (double pulse wave notch).

Pulse wave contains a lot of physiological information, especially the inflection point of pulse 
wave and special waveform (percussion wave, tidal wave, dicrotic wave). We can accurately extract 
these key features to obtain some valuable and meaningful information for application in scientific 
research and medical field.

Wavelet transform is an effective way of frequency transform in time domain analysis (Zhang 
et al. 2019). Wavelet transform is developed from Fourier transform. Wavelet transform overcomes 
the limitation that the window size of short time Fourier cannot change with frequency. The wavelet 
transform consists two parts: decomposition and reconstruction. A signal is decomposed into several 
signals and then recombined after processing. In this way, we can get a higher quality signal than the 
original signal. Wavelet transform uses wavelet basis to decompose signal.

Actually, wavelet transform is a time-frequency localization analysis method, which can provide 
a time-frequency window which changes with frequency. It can focus on any detail of the signal. 
Wavelet transform is especially suitable for processing non-stationary signals. It uses a finite length 
and attenuating wavelet basis to obtain frequency and positioning time. The wavelet basis function 
can stretch and shift. For the signal f x( ) , the continuous wavelet transform is written as follows:
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In the Equation (2), Ψ t( )  is called basic wavelet of parent wavelet.
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The continuous wavelet transform has the following characteristics.

•	 Superposition. The wavelet transform is constituted the sum of each component of signal.
•	 Scale property. If the continuous wavelet transform of signal f x( )  is W a

f
( , )t , the wavelet 

transform after stretching f ct( )  is written as 1

c
W ca c
j
( , )t  where c > 0 .

•	 Time shift invariance. If the continuous wavelet transform of signal f t( )  is W a
f
( , )t , the waveform 

transform f t t( )-
0
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j
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0
.

•	 Self-similarity. The continuous wavelet changes are similar for different scale factor and different 
translation factor.

•	 Redundancy.
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In the Equation (3), l f t t
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i j i j, ,

( ),=< ( )>f  represent scale coefficient 
and waveform transform coefficient.

The signal space can be divided into subspaces with different fineness, and the set of these 
subspaces is the scaling function or the scaling function after frequency transformation. Through 
the multi-resolution analysis, the low-frequency and high-frequency information of the signal can be 
obtained effectively, which is equivalent to the low-pass and high pass filter, respectively.

The signal can be compressed and filtered by using wavelet transform. The basic flowchart of 
wavelet transform is summarized as follows:

Step 1. 	 Select wavelet function and scale to decompose the signal to get low frequency coefficient 
and high frequency coefficient.

Step 2. 	 Treat the coefficient as needed.
Step 3. 	 Reconstruct the signal with the processed wavelet coefficients.

Reconstruction is the inverse process of wavelet decomposition, in which the original signal is 
reconstructed by wavelet reconstruction algorithm after the decomposed signals are processed. The 
reconstruction of wavelet transform is used to remove baseline drift of pulse wave signal. First, a 
proper wavelet basis is selected to decompose the pulse wave signal to be processed in multi-layer. 
Then, the remaining signal is reconstructed after the hierarchical processing to implement denoising.

The energy of the signal can be expressed by the energy of the expanded part in each frequency 
domain, which is written as follows:
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After removing the noises in the pulse wave signal, we needs to extract the useful features in the 
denoised signal, which is further used in the emotion estimation and recognition. The paper adopts 
the time domain features and frequency domain features to represent the denoised signals. The time 
domain features include mean value, median value, standard deviation and minimum value of pulse 
wave and its first-order difference; the mean value, median value, standard deviation, minimum value 
and maximum value of peak value and descending gorge; the distance between wave crests and the 
mean value, median value, standard deviation, minimum value and maximum value of the first-order 
difference; the total number of peaks and the sum of the total peaks.

The frequency domain features are obtained by wavelet transform. The pulse wave signal is 
decomposed by wavelet transform to obtain the wavelet coefficients of each layer. The wavelet 
transform is a time-frequency localization analysis method, which can provide a time-frequency 
window changing with frequency. The window can focus on any detail of the signal during processing. 
The wavelet signal adopts a finite length and attenuating wavelet basis. The wavelet basis function can 
stretch and shift, analyze function or signal in multi-scale, decompose a signal into several signals in 
different frequency domain. It is especially suitable for processing non-stationary signals.

3. Abnormal emotion detection by using support vector machine

Let x
i
 represent the features of a denoised pulse wave cycle, y

i
 represent the associated label which 

denotes the corresponding emotion, X  and Y  represent the set of x
i
 and y

i
 respectively. Then, the 

aim of emotion detection needs to learn a classifier to recognize the emotions. The common used 
classifiers include: random forest, naïve Bayes, neural network, support vector machine, etc. This 
paper adopts weighted support vector machine which is an improved version of support vector machine 
(Zhu et al. 2016). Compared with classical support vector machine, weighted support vector machine 
is robust to the noises in the training set. The training sample in weighted support vector machine is 
reorganized as x

i i
,r{ }  and the aim is to find a hyperplane f bT

i
( )x w x= +  by minimizing the 

following optimal programming.
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In the Equation (5), r
i
 is the instance weight of xi , n  represents the number of training set. 

The Equation (5) is a convex optimal programming. The solution can be obtained by the dual form, 
which is written as follows:
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In the Equation (6), ±  is the vector form of the Lagrange multipliers which are associated with 
the constraints y b

i
T
i i

w x +( ) ≥ −1 x  in the Equation (5), and Q  is a n n´  matrix whose element 

Q i j
i j

( , ) ,=< >x x . 
The solution of Equation (6) can be obtained by SMO algorithm. The weight w  and bias b  are 

represents as follows:
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In the Equation (7), SVs  is the set of support vectors whose Lagrange multipliers satisfy a
i
> 0 .

When the training set is nonlinear separable, the sample is mapped into a high-dimensional 
kernel reproducing Hilbert space via an implicit function f( )x . Then, the optimal programming (5) 
is rewritten as follows:
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The dual form of Equation (9) is the same as that of optimal programming (6). The matrix Q  
is called as kernel matrix whose element is Q x x x xi j k

i j i j
, , ,( ) = ( ) ( ) = ( ) ( )( )f f f f . The 

common used kernel functions include polynomial kernel, Gaussian kernel, Matérn kernel, exponential 
kernel etc.

The weight and bias for kernel form weighted support vector machine are rewritten as follows:
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The instance-weight can be determined by prior nearest neighbor information (Zhu et al. 2014; 
Zhu et al. 2016) or estimated distance to decision hyperplane. This paper adopts the later one which 
is written as the following equation.
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In the Equation (12), E
m inarg

 is estimated margin between two boundary hyperplanes, d
i j, +1  is 

the distance between two adjacent nodes in the nearest neighbor chain of sample x
i
. The nearest 

neighbor chain is defined as follows (Zhu et al. 2017):
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The distance between two adjacent nodes is defined as d
i j i j i j, , ,+ += −
1 1

x x . Then, the estimated 
margin is defined as follows:

E
d max d
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2
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Obviously, when a sample is close to the decision hyperplane, the weight defined by Equation 
(12) will be close to 1; otherwise, the weight will be close to 0.

Both classical support vector machine and weighed version are mainly used to solved binary 
classification problem. For multi-class classification problem, the problem needs to be divided 
into several binary classification problems. The common used strategies to deal with multi-class 
classification problem include one against one and one against rest.

The one to one strategy is one of the most approaches to deal with multi-class classification 
problems. For a training set containing k  classes, any pair classes i  and j  are used to learn a binary 
class support vector machine model. The class i  is used as positive class, while class j  is used as 

negative class. Therefore, the k-class classification problem is converted as k k( )-1
2

 binary class 

support vector machines. The test sample is input into each binary class support vector machine 

model and the final label is determined by voting the results of k k( )-1
2

 binary class support vector 

machine models.
The advantage of one to one strategy is that the scale of sub-problem is relative small and easy 

to solve. However, the number of binary class classifiers is quadratic with the number of classes. 
When the number of classes is very large, it needs to learn massive binary class classifiers, which 
is very time-consuming.

The one to rest strategy adopts one class in the training set as positive class and the rest classes 
are all used as negative class. Then, for a training set containing k  classes, it needs to learn k  binary 
class classification models in total. The test sample is input into each binary class support vector 
machine model and the final label is determined by the binary class support vector machine model 
whose decision function has the maximum value.

Compared with one to one strategy, the one to rest strategy only requires to learn $k$ binary class 
classifiers and the decision stage is much easier. However, binary class sub-problem is obviously 
asymmetric, which may cause the optimal hyperplane to shift and induce the performance to be 
deteriorated. The scale of the binary class sub-problem is also larger than single sub-problem in one-
to-one strategy. The illustration of one to one strategy and one to rest strategy for weighted support 
vector machine is shown in Figure 3 and Figure 4, respectively.

4. Experiments and Simulations

In this section, first a benchmark emotion dataset is adopted to evaluate the proposed emotion 
estimation method; then, we collect the emotion data from 20 tennis players via portable devices 
to verify the proposed method. The benchmark emotion datasets contain four emotions: anger, 
excitement, sadness and calmness.

The benchmark dataset is from MIT emotion dataset and each emotion contains the same number 
of samples. The time domain and frequency domain features of the pulse wave signals from wavelet 
transform are used to learn classification model. The MIT emotion dataset is randomly split as two 
parts. One is used as training set, while the other is used as test set. Both training set and test set 
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contains 1,440 samples and 360 samples per emotion. The classical support vector machine (Soentpiet 
et al. 1999) and weighted support vector machine (Zhu et al. 2016) are adopted as classification 
algorithm. The one to one and one to rest are used as the multi-class classification strategy. The 
methods are denoted as SVM (O-vs-O), SVM (O-vs-R), WSVM (O-vs-O), and WSVM (O-vs-R). 

The Gaussian radial basis kernel function (RBF),k x x e
i j

x xi j

,( ) =
−
− 2

22s , is used as the kernel function. 
The accuracy of emotion estimation is reported in Table 1, 2, 3 and 4 in the form of confusion matrix.

From the results of Table 1, 2, 3 and 4, it can be found the whole recognition rate reaches 91.81%, 
91.46%, 95.07%, and 93.89% for support vector machine (one versus one), support vector machine 
(one versus rest), weighted support vector machine (one versus one), and weighted support vector 
machine (one versus rest), respectively. The recognition rate of weighted support vector machine 

Figure 3. The illustration of the one versus one strategy for multi-class classification

Figure 4. The illustration of the one versus rest strategy for multi-class classification
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is higher 3.26% than that of support vector machine when one versus one strategy is adopted, and 
2.43% than that of support vector machine when one versus rest strategy is adopted. Compared with 
one versus rest strategy, the recognition rate of one versus one strategy is higher 0.35% and 1.18% 
for support vector machine and weighted support vector machine, respectively.

The emotion data collected from tennis players includes emotion for fighting, overheated 
emotion, and indifferent emotion. There are 1,500 samples as the training set in total, 500 samples 

Table 1. The confusion matrix when SVM (O-vs-O) is used as classification model on benchmark dataset.

Anger Excitement Sadness Calmness Recognition rate (%)

Anger 329 13 7 12 91.14

Excitement 5 332 21 7 90.96

Sadness 19 6 324 4 91.78

Calmness 7 9 8 337 93.35

Recognition rate (%) 91.39 92.22 90.00 93.61 91.81

Table 2. The confusion matrix when SVM (O-vs-R) is used as classification model on benchmark dataset.

Anger Excitement Sadness Calmness Recognition rate (%)

Anger 327 15 6 13 90.58

Excitement 6 330 19 7 91.16

Sadness 18 5 329 9 91.14

Calmness 9 10 6 331 92.98

Recognition rate (%) 90.83 91.67 91.39 91.94 94.46

Table 3. The confusion matrix when WSVM (O-vs-O) is used as classification model on benchmark dataset.

Anger Excitement Sadness Calmness Recognition rate (%)

Anger 341 12 7 9 92.41

Excitement 3 339 4 3 97.13

Sadness 14 5 347 6 93.28

Calmness 2 4 2 242 97.71

Recognition rate (%) 94.72 94.17 96.39 95.00 95.07

Table 4. The confusion matrix when WSVM (O-vs-R) is used as classification model on benchmark dataset.

Anger Excitement Sadness Calmness Recognition rate (%)

Anger 337 14 9 11 90.84

Excitement 5 334 3 4 96.53

Sadness 15 7 343 7 92.20

Calmness 3 5 5 338 96.30

Recognition rate (%) 93.61 92.78 95.28 93.89 93.89
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per emotion; and 900 samples as the test set, 300 samples per emotion. The emotion data of tennis 
players is collected by using portable devices. The weighted support vector machine is adopted as 
classification algorithm and the one versus one is used as the multi-class classification strategy. The 
confusion matrix is reported in Table 5.

From the result of Table 5, it can be found that the weighted support vector machine with one 
versus one strategy can recognize 95.33%, 97.67%, 97.00% of fighting emotion, overheated emotion, 
and indifferent emotion, respectively. The overall recognition rate can reach 96.67%.

5. CONCLUSION

This paper proposes a framework to estimate the emotion and recognize the abnormal emotion of 
the athlete before competition. The emotion status is closely related with the competition level of 
athlete. The proposed framework first collects the pulse wave signals of the athlete by using portable 
device, second removes the noise in the collected pulse wave signals by using wavelet transform 
decomposition and reconstruction, third extracts the features of the time domain and frequency domain 
of the denoised signals, last learns a classification classifier by using the training set consisting of 
the features of the pulse wave cycles. The learnt classification model is used to estimate the emotion 
status of the athlete. The experimental results show that the emotion recognition framework can 
correctly identify most of the emotion status of the athlete.
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Table 5. The confusion matrix on real dataset by using WSVM (O-vs-O) as classification model.

Fighting Overheated Indifferent Recognition rate (%)
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Overheated 8 5 5 95.75

Indifferent 6 293 291 97.32

Recognition rate (%) 95.33 2 97.00 96.67
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