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ABSTRACT

Tampering with images may involve the field of crime and also bring problems such as incorrect 
values to the public. Image local deformation is one of the most common image tampering methods, 
where the original texture features and the correlation between the pixels of an image are changed. 
Multiple fusion strategies based on first-order difference images and their texture feature is proposed 
to locate the tamper in local deformation image. Firstly, texture features using overlapping blocks on 
one color channel are extracted and fed into fuzzy c-means clustering method to generate a tamper 
probability map (TPM), and then several TPMs with different block sizes are fused in the first fusion. 
Secondly, different TPMs with different color channels and different texture features are respectively 
fused in the second and third fusion. The experimental results show that the proposed method can 
accurately detect the location of the local deformation of an image.
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INTRODUCTION 

The rapid development of image processing software makes it easy for people to use the retouching 
software to tamper with the image according to their wishes. Tampering images may be used by 
criminals to publish false information, and widespread dissemination of false information may cause 
social panic. Tampering with images can also involve areas of crime such as public opinion and 
violations of portrait rights. The purpose of news work is to publicize the truth, not to mention the 
use of tampered images to attract people’s attention. For entertainment or beauty, people will modify 
photos before posting them on social networks. Many magazines and businesses also use unrealistic 
images to attract consumers. For example, many photos of the stars we saw in magazines have been 
modified with retouching software. This modified beauty will attract the public’s attention and cause 
the public’s pursuit of this beauty, but this beauty may not be in line with the health of the human 
body. Excessive pursuit of this unhealthy beauty will affect people’s physical and mental health. 
In addition, ads such as fitness and weight loss often use false information to attract consumers to 
buy their products, which is unfair to consumers. People have long-term seen this over-modified 
“beautiful” images, which makes person mistakenly believe that this modified figure is “normal”. 
This misunderstanding may affect people’s values, and at the same time, the pursuit of such excessive 
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“beauty” will affect people’s physical and mental health. Therefore, it is necessary to forensic the 
authenticity of the image.

Image local deformation is one of the common methods of image tampering, including three 
basic operations of local translation, local scaling, and local rotation (Andreas Gustafsson, 1993). 
Through the use of Liquefy Tools like Photoshop, people can freely distort any area of the image and 
change the shape of objects in the image. People also use this tool to make the people whom in the 
figure look thinner and so on, an example is shown in Figure 1. Figure 1 shows that Forward Warp 
Tool in the Liquefy Tool is used to achieve translational deformation, Figure 1(a) is the original image 
without deformation, Figure 1(b) shows the process of using the Forward Warp Tool, and Figure 1(c) 
shows the tampered image of deformation. It can be seen that the arms of the woman in the image 
are deformed. The liquefaction tool tampers the image through a circular selection, which makes the 
pixel values in the middle of the selected area a great change while the pixel values at the edge of the 
selected area almost unchanged. Multiple basic deformations will be applied in practical applications.

These characteristics of the deformation method bring great difficulties to forgery detection task. 
Firstly, this kind of deformation involves interpolation operation. Many studies on image warping focus 
on the geometric deformation of the rotation and scaling classes. These geometric transformations 
introduce periodic variations in pixels into the image when interpolating the image. Some papers 
(Popescu & Farid, 2005; Mahdian & Saic, 2008; Cao, 2012; Birajdar, 2014) use this periodic variation 
to detect the authenticity of images. Popescu and Farid (2005) analyzed the correlation between 
resampled signals and adjacent pixels, and proposed an expectation maximization (EM) method, 
which uses E-step and M-step iterative calculations to determine whether a pixel has been resampled. 
Mahdian and Saic (2008) studied the periodicity of the covariance structure of the interpolated signal 
and its derivatives. Cao (2012) used first-order derivative signals to detect images horizontally and 
vertically. Birajdar (2014) used the second difference zero-crossing auto-covariance sequence to detect 
the resample of an image. However, this periodic variation is not introduced in local deformation. 
Secondly, these methods also cannot detect the resampling area after multiple interpolation operations, 
and the local deformation in actual application is the result of multiple deformations, which brings 
difficulties to the local deformation method of detecting images. Finally, the local deformation is 
performed in a circular area. This tampering method does not uniformly affect the entire image. Bharati 
(2016) proposed a new algorithm using a supervised deep Boltzmann machine, which selected four 
partial learning features in the face image and used the proposed algorithm to determine whether the 
face images were retouched or original images. This method requires many pictures for training, and 
could unable to detect the location of the tampering. Farid and Kee (2011) proposed a metric (range 
1-5) to quantify changes in markup digital images. They used four statistic variables to calculate the 
geometric changes of the subject’s face and body. However, their method needs to be compared to 
the original image, and cannot locate where the deformation occurs.

Figure 1. An example of local deformation



International Journal of Digital Crime and Forensics
Volume 13 • Issue 2 • March-April 2021

105

Hwang MG (2016) tried to detect the local image deformation in 2016. Firstly, they used 
interpolation for images, then created a detection map in the frequency domain using the re-interpolated 
image, and finally intuitively identified the tampering region. However, they do not locate the local 
deformation of the image. It is only a rough view of the location of the tampering by the human eye, 
and easy to misjudge. 

In order to detect the location of local deformation of a tampering image, multiple fusion strategies 
are proposed in this paper. The authors use the first-order difference image and its texture features 
to extract the features of the image tampering trajectory, and then send the features into the fuzzy 
c-means clustering method to obtain the TPM. Since each TPM with different block size, different 
color channel, different texture feature can roughly detect the tampering of the image and the detection 
result is not very ideal, a plurality of fusion strategy methods are proposed and the detection result 
can be improved by fusing different TPMs to detect the deformation position. Our proposed multiple 
fusion strategies can detect the location of local deformation and it is easy to judge the location of 
the tampering by the human eye. 

MULTIPLE FUSION STRATEGIES FOR LOCAL DEFORMATION DETECTION

The local deformation of the image causes the pixel value of the tampering position in the image 
to change, which causes the correlation between the pixels to change. The author believes that the 
first-order difference image and the texture image can detect the change of the correlation between 
the pixels, and propose a multiple fusion strategies method based on first-order differential image 
and texture feature, which is shown in Figure 2.

Firstly, a first-order difference image for one color channel of the testing image is obtained, and 
one texture image is generated from the first-order difference image. Secondly, some features are 
extracted by using overlapping blocks and fed into a fuzzy c-means clustering method to generate a 
tamper probability map(TPM). Thirdly, several TPMs with different overlapping block sizes in one 
color channel is fused in the first fusion. The second fusion is to fuse the TPMs obtained by different 
color channels with the mean value method to get the binary image, and use morphological operation to 
remove the incoherent areas. Lastly, Different texture features will lead to different detection binaries, 
and the third fusion uses the voting method to fuse different detection binaries to get the final result. 
The multiple fusion strategies with different block sizes, different color channels, different texture 
features can greatly improve the detection effect.

Differential Image
The local deformation of the image will change the correlation between the pixels of the image. The 
difference image of the image can provide the relationship between the image pixel and its neighbors. 
The authors extract the difference image between the horizontal and vertical directions of the image to 
extract the subtle hidden information between the pixels. Firstly, for the input color image I with the 

Figure 2. Flowchart of the proposed method
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size of M×N, horizontal and vertical difference images (Li Weihai, 2009) of different color channels 
are extracted, show as Eq.(1) and Eq.(2):

d x y S x y S x yc c c
→ = −( , ) | ( , ) ( , ) |+1 	 (1)

d x y S x y S x y
c c c
↓ = − +( , ) | ( , ) ( , ) |1 	 (2)

This paper uses the symbol {→, ↓} denote the difference in horizontal and vertical directions. 
S x yc ( , )  is the value at pixel ( , )x y  in the tampering image of the c channel, where c R G B∈ { , , } , 
d x y
c
→( , )  is the value of the pixel in the corresponding horizontal absolute first-order difference D

c
→

of the c channel, and d x y
c
↓( , ) is the value of a pixel in the absolute first-order difference D

c
↓  in the 

vertical direction. 
Then, the Eq. (3) is used to combine the difference images in the horizontal and vertical directions 

to get the final difference image:

d x y d x y d x y
c c c
( , ) ( , ) ( , )= +→ ↓ 	 (3)

where d x y
c
( , )  is value at pixel ( , )x y  in the first-order difference image Dc . 

Texture Features

In this paper, texture features are extracted from the first order difference images Dc . Two texture 
features are used in this paper as described below.

LBP Texture Feature

Local Binary Pattern (LBP) (Ojala, 1994) is the earliest proposed texture feature. Let ic  be the 
intensity of an image Dc  at the pixel ( , )x yc c  in c channel of the color image, where c R G B∈ { , , } , 
and i nn ( ,..., )= 0 7  be the intensity of a pixel in the 3×3 neighborhood of ( , )x yc c  excluding the 
center pixel ic . The LBP value for the pixel ( , )x yc c  is given by:

LBP x y F i i
c c c c n c

n

n

( , ) ( ).= −
=
∑ 2
0

7

	 (4)

where:

F x
if x
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
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1 0

0
	 (5)

The LBP image of c channel is obtained by finding the LBPc  value of the pixels of the entire 
image.
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LOOP Texture Feature
The main disadvantage of LBP and LDP (Jabid, 2010) is the arbitrary sequence of binarization 
weights that add dependence to orientation. LDP suffers from the empirical assignment of value to 
the threshold variable, which puts an ad hoc restriction on the number of bits allowed to be 1, thus 
reducing the number of possible words. Chakraborti (2017) proposed a Local Optimal Oriented 
Pattern(LOOP). LOOP is a nonlinear fusion of LBP and LDP to preserve the advantages while 
removing the disadvantages of both.

Similar to the equation for calculating the LBP value, the equation for LOOP is:

LOOP x y F i i
c c c c n c
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where:
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The eight responses of the Kirsch masks are mn  corresponding to pixels with intensity 
i nn , ,...,= 0 7 . Each of these pixels is assigned an exponential wn (a digit between 0 and 7) according 
to the rank of the magnitude of mn  among the 8 Kirsch mask outputs.

Image Tampering Probability Map
After extracting the texture image, three features of mean, standard deviation, variance (Eq. 8-10) 
and histogram features extracted by using sliders of different sizes are used in this paper:
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where wl  represents the sliding window, where l l={ ,.., }1 represent the lth  sliding window, 
T i jc ( , )  is the value at the point ( , )i j  in the texture image of c channel in color space, where 
c R G B∈ { , , } . f1  defines the average of all texture feature values in the sliding window. f2  and f3  
define the standard deviation and variance in the sliding window, respectively. 

Then, three features and histogram features are fed into the fuzzy c-means clustering method to 
obtained TPMs Pc

l , where Pc
l  represents the TPM corresponding to the lth  window of c color 

channel.
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Multiple Fusion Strategies
Fusion of Different Size Blocks
For sliding window analysis, large windows are expected to provide reliable classification accuracy, 
yet with limited localization resolution, while small windows could potentially yield much better 
localization capability, but are expected to be impractically prone to errors (P. Korus & J. Huang, 
2016). In order to make better use of the advantages of these two windows, a multi-map fusion method 
(P. Korus & J. Huang, 2017) is used in the first fusion.

The TPMs Pc
l ∈[ , ]0 1  is obtained by sliding windows wl  of different sizes. The process of 

fusion is to generate a probability map from the different Pc
l . Use the following Eq (11) to indicate:

t
l

Pc c
i

i

l

=
=
∑1
1

( ) 	 (11)

A simple average fusion method is used to fuse the TPMs obtained by different sliding windows 
in c channel, whereTPMs Pc

l( ) [ , ]∈ 0 1   identify its unreliable regions, where close to 1 represents 
the highest probability of tampering, and close to 0 is the higher probability of tampering. And tc  
is the probability map obtained by fusing different windows of c channel.

Color Channel Fusion
The existed studies(Johnson & Farid, 2006; Zhao, 2010; Muhammad, 2013) have found that color 
channels rather than gray brightness enhance the performance of the assay. The average fusion is 
also used, as shown in Eq.(12), where different color spaces are merged into a binary image in the 
second fusion:

C tc
i

c

=
=
∑13 1

	 (12)

where c R G B∈{ , , } , represents the different color space channel. C is the result of color space 
fusion. 

The choice of color space will be explained in the experimental section. After using the average 
fusion, a threshold value of 0.6 is set to transform the probabilistic map into a binary image, and 
incoherent areas are removed using first dilation and then erosion (Serra, 1983) in this paper.

Fusion of Different Texture Features
Different texture features can bring different detection results, and using multiple texture features 
can improve the accuracy of local deformation detection. In the third fusion, the detection results of 
different texture features are fused by the voting mechanism, AND operator [18] is used for voting, 
shown as Eq.(13):

R C CLBP LOOP= ∧ 	 (13)

where CLBP  and CLOOP  are the second fusion results, the difference is that LBP and LOOP texture 
features are used in the first fusion respectively.
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EXPERIMENTS

This paper randomly downloaded some images from the image library (Linda G. Shapiro) for 
experimentation. The authors use the Forward Warp Tool in the Liquefy Tool of Photoshop to perform 
local deformation operations on the downloaded image. The tampering position in the tampered 
image is arbitrary to prove that our method can be free from the influence of the object texture in the 
image. The program is built in matlab2016. Texture features are extracted using different sizes sliding 
windows with wl ∈{ , , , }16 32 64 96 , central-pixel attribution is used for different sliding windows, 
and repeated padding is used for unclassified pixels at image boundaries. 

Experiment Results With Different Size Blocks
In this section, the authors show the tamper probability map(TPM) extracted from the tamper image 
of Figure 1 using different sized windows to verify the first fusion method. The experimental results 
are shown in Figure 3.

Figure 3(a)-(c) shows an original image, tampered image, and its ground truth. Figure 3(d)-(g) 
shows the TPMs obtained by using the window of 32×32px, 48×48px, 64×64px, and 96×96px 
respectively. Figure 3(h) shows the first fusion result with different size of windows. The pixel in 
the light part means that the probability of tampering is close to 1, while the dark part means that 
the probability of unaltered pixel is close to 1. It should be noted that the use of a larger window 
can roughly detect the location where tampering occurs, while the smaller detection window can 
more accurately locate the tampering location, but small windows contain more noisy and uncertain 
displays. It could be able to achieve better performance by combining the result of different scales.

Experimental Results with Different Color Space
Three common color Spaces are compared in this section, including RGB, HSV, and YCbCr. The 
authors show the results of using the first fusion method to detect the tampering position of the 
tampering image in Figure 1 in different color channels,and use the second fusion method to fuse the 
results of different color spaces. The experimental results are shown in Figure 4- Figure 6.

Figure 4(a)-(c) show the results of the first fusion of each channel in RGB space. Figure 5(a)-(c) 
shows the result of the first fusion of each channel in HSV space. Figure 6(a)-(c) shows the result of 
the first fusion of each channel in YCbCr space. Figure 4(d), Figure 5(d) and Figure 6(d) show the 
second fusion result of the different color channel. The light part in Figure 4-6 represent the location 

Figure 3. Tampering probability map of different size detection window
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where the detection is tamper, and the dark part represents the untampered area in the image. It is 
clearly seen that the tampering area can be detected in every channel of the RGB space, while the 
misdetection area is different. In the other two color spaces, not all three channels can detect tampering 
areas. By comparing the results of the fusion of these three different color Spaces, it can be clearly 
seen that RGB space provides better detection results.

Experimental Results With Different Texture Features
In this section, the authors compared three texture features of LBP, LOOP and LDP. The experimental 
results are shown in Figure 7- Figure 9, where the tampering image is shown in Figure 1.

The images (a) in Figure 7- Figure 9 respectively represent the results of different texture images 
extracted from first-order difference images. The images (b) in Figure 7- Figure 9 show the result 
obtained by feeding three features of mean, standard deviation, and variance into fuzzy c-means 
clustering method. The images (c) in Figure 7- Figure 9 show the result which used histogram feature. 
Moreover, the images (d) in Figure 7- Figure 9 show the results which combine three features and 
histogram feature together. 

It can be found from (a) in figure 7 - figure 9 that after the image is processed by the LBP method 
and the LOOP method, a slight change at the tampering position can be seen from the untampered 

Figure 4. Fusion result of one channel in RGB space and fusion result of RGB color space

Figure 5. Fusion result of one channel in HSV space and fusion result of HSV color space

Figure 6. Fusion result of one channel in YCbCr space and fusion result of YCbCr color space
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position, and the change is difficult to locate by the human eye, so the authors extract the features 
of the tampering to locate the tampering location. From the observation of the images (c) in Figure 
7- Figure 9, the texture image using the LBP method can see changes in the tamper region that are 
significantly different from the untampered region. The LOOP method is not well observed because 
its texture image is bright. Such changes are unably seen with the LDP method. As can be seen from 
(b)(d) in Figure 7-Figure 9, for the LBP and LOOP methods, the tampering region can be roughly 
detected by using the three features and the histogram features, while the LDP method could be 
unable to detect the tampering area. Similarly, in Figure (d), the LBP and LOOP methods are capable 
of detecting tampering by combining the use of three features and histogram features, while LDP 
cannot detect. So, the authors chose LBP and LOOP to detect the tampering. Regarding features, we 
use mean value, variance, standard deviation and histogram features.

Experimental Results Compared With the Existed Method
In order to verify our method is easier to judge the location of the tampering by the human eye 
compared with the existed method(Hwang MG, 2016), the experiments are done, and the partial 
results are shown in Figure 10.

Figure 7. The experiment of LBP texture feature

Figure 8. The experiment of LOOP texture feature

Figure 9. The experiment of LDP texture feature
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The first row shows the original image, the second row shows the tampered image, the third row 
shows the ground truth image, the fourth row shows the result of Hwang’s method, and the fifth row 
shows the detection results of our method. 

It can be seen from the experimental results that the Hwang’s method could unably mark the specific 
location of local deformation and requires the human eye to observe the deformation position. Our method 
could better mark the location of local deformation and is easier to judge where is the tampering area. 
Our results are almost the same as ground truth, but Hwang’s results are different from the ground truth. 
However, our method still has certain defects, and it is easily affected by brightness. High brightness 
or low brightness will cause false detection, as shown in the red circle of example 2 and 4 in figure 10.

CONCLUSION

This paper mainly studies the blind detection method for the location of local deformation of the image. 
The authors extracted the trajectory of the local deformation by using the first-order difference image 
and the corresponding texture features, and locate the position of the local deformation by using the 
proposed multiple fusion strategies. The experimental results show that our proposed method can 
not only detect whether an image has been tampered, but also locate the specific location of the local 
deformation. However, it can be seen that our method will cause false detection where the brightness 
of the image changes drastically, which is a problem that needs to be solved in future work. The 
direction of local deformation of the image is also the focus of future research.
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