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ABSTRACT

Social network analysis (SNA) is an active research domain that mainly deals with large social graphs 
and their properties. Community detection (CD) is one of the active research topics belonging to this 
domain. Social graphs in real-time are huge, complex, and require more computational resources 
to process. In this paper, the authors present a CPU-based hybrid parallelization architecture that 
combines both master-slave and island models. They use particle swarm optimization (PSO)-based 
clustering approach, which models community detection as an optimization problem and finds 
communities based on concepts of PSO. The proposed model is scalable, suitable for large datasets, 
and is tested on real-time social networking datasets with node attributes belonging to all three sizes 
(small, medium, and large). The model is tested on standard benchmark functions and evaluated on 
well-known evaluation strategies related to both community clusters and parallel systems to show 
its efficiency.
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1. INTRODUCTION

Real-world optimization problems are usually complex in nature and are NP-hard. It can be due to 
large dimensions and multiple objectives. One of such real-world problems belongs to the domain 
of complex networks. The social networks domain belongs to complex networks in which several 
fundamental problems can be considered as optimization problems. Resolving complex optimization 
problems requires heavy CPU computation time and is challenging for a computer with standard 
hardware. Some of the reasons for the complexity in real-world social networks are large network 
topologies with numerous edges and nodes and the frequency of network growth.

The derivation of important structures from large social networks is always an interesting 
and noteworthy problem. In social network terminology, these structures are called communities. 
From the social network’s perspective, a community is a dense substructure in which the 
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nodes communicate more frequently with each other when compared to node communications 
outside of the group (Newman,2011). Analyzing social network groups allows us to expose 
the social features and predict important information such as discussion, entities involved in 
the discussion, etc. (Stanley,1994) In literature, two types of algorithms have been proposed 
by researchers. The first type considers community detection is considered as a clustering 
problem. In contrast, the second type considers community detection as an optimization problem 
and is solved by techniques such as optimizing modularity (Newman,2004)(Hespanha,2004)
(Guimera,2011)(Blondel,2008). These works focus on graph structures that do not analyze 
the content of nodes in a graph. Analyzing node contents is important because most real-time 
social networks store helpful information in their nodes, not limited to user information and 
connectivity information.

In this work, we consider community detection is considered to be an optimization problem 
and solve it using a popular evolutionary, iterative algorithm called Particles Swarm Optimization 
(PSO). Most of the evolutionary algorithms are parallel by nature, and they contain individuals 
which improve during iterations. PSO has already proved to solve many real-world problems 
(Goldberg. 1989)On the other hand, applying optimization on large real-world networks can 
be computationally expensive due to the presence of large number of decision variables. Due 
to the iterative nature of evolutionary algorithms, applying optimization on large real-world 
networks can be time, resource-consuming and can increase the objective function evaluation 
time. Applying PSO to large-scale real-world optimization problems can degrade the algorithm’s 
performance, making it unsuitable for large-scale optimizations R. Cheng and Y. Jin,(2015).To 
address the above problems, we present a hybrid parallel architecture and implement it on one 
of the previously introduced community detection algorithms based on PSO called PSO-based 
clustering (PSOC) (K. Chaitanya et al., 2018).

Parallelization is one option that can increase algorithm performance and be applied to 
complex problems to increase efficiency. The architectures on parallel constructs can quickly 
scale with the problem size, making them suitable for applying large complex problems. The 
other advantage is the concurrency, in which simultaneous executions can be done at the same 
time. With the availability of multi-core CPU and GPU in modern computers, parallel models can 
be developed on both. CPU-based parallelization strategies execute on multiple cores in one or 
more CPUs. GPU-based parallelization models accelerate CPUs for high compute performance. 
The processors in any parallel model cannot interact with one another and exchange information 
by themselves. They need a proper communication strategy that is usually based on network 
topologies such as star, ring, bus, and so on. In the paper, we design an architecture based on 
two popular parallelization strategies: master-slave and island models (refer to section 2.2). The 
proposed architecture is hybrid and has the following features:

1. 	 The architecture is CPU-based and utilizes the capability of multi-cores in modern computers 
to speed up the processing.

2. 	 The architecture can quickly scale to a required number of processes.
3. 	 The architecture can be applied to heterogeneous systems.
4. 	 The architecture supports message passing/ information exchange within the processors and 

between the processors.

The rest of the paper is organized as follows. The relevant concepts and works in each area 
are presented in section II. Section III introduces the design of the proposed architecture along 
with the evaluation criteria. Experimental results are presented in section IV, and section V 
concludes the paper.
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2. CONCEPTS AND RELATED WORK

2.1 Particle Swarm Optimization

v v c r pBest i x c r gBest i x
ij
t

ij
t

j
t t

ij
t

j
t t+ = + −



 + −1

1 1 2 2
ω � * � * �

iij
t

ij
t

j
t t

ij
t

j
tv c r pBest i x c r gBest





 =

−



 ++ω � * � * �

1 1 2 2
ii xt

ij
t−





	
(1)

x x v
i i i
= + 	 (2)

Particle swarm optimization (PSO) (J. Kennedy and R. C. Eberhart, 1995) is a class of evolutionary 
algorithms inspired by social animals such as birds, fishes, insects, etc. It is an optimization process 
in which particles move around the solution space for finding the optimal solution. Each particle 
posses velocity and position at every iteration by using its previous velocity, its best previous position, 
and the best position searched by all the particles so far. During every iteration, the velocity of each 
particle is updated using the following equation:

Where v
ij
t+1  is the bounded velocity for a particle at time t+1. The bounded velocity is always 

between [vmin, vmax], ω  is the inertia weight, c1 and c2 are cognitive and social coefficients, r1 and r2 
are random numbers in the range of [0,1],  pBest  is the particles best position and gBest is the global 
best position. Due to its simplicity and high search efficiency, PSO has widely used in many areas 
such as function optimization (Y. Shi, R.C. Eberhart,1999), artificial neural networks (J. Kennedy, 
R.C. Eberhart,2001), image processing (Wachowiak,2004). PSO was also applied for clustering 
problems in the literature. (Cui et al.,2005)applied the PSO algorithm for the document clustering 
problem using K-means, which performs a global search in the solution space. The procedure was 
used to classify over 800 documents effectively. (Van der Merwe and Engelbrecht,2003) also used 
K-means-based clustering to start the initial swarm and further refine clusters formed by K-means. 

2.2 Parallelization Strategies
Parallel computing refers to the simultaneous computational resources used to solve a complex 
problem by breaking them into multiple chunks. These chunks can be executed on a single machine 
or group of machines. Single machine parallelization is called CPU based which refers to utilizing 
multi-cores and multiprocessors. Executing chunks on a group of computers which includes executing 
tasks on clusters, grids are referred to GPU-based parallel processing. CPU-based approaches can be 
developed using software packages such as Hadoop MapReduce, Matlab, R, etc. Some of the GPU-
based strategies include CUDA, Open ACC (Lihua,2009)

From the development perspective, two strategies can be used to build parallel algorithms. 1)
Data parallelism 2) Task parallelism. In data parallelism, the same task is executed simultaneously 
on multiple processors with a definitive data set. In task parallelism, different tasks are executed 
simultaneously across multiple processors belonging to the same data set. Any strategy out of these 
two can be selected based on the data set’s size and the data set’s complexity. Parallelization in 
PSO can be synchronous and asynchronous. In synchronous PSO, each particle performs function 
evaluation and waits for the other particles to complete. The velocity and position are updated at the 
end of each iteration. In asynchronous PSO, the particles move asynchronously in search space and 
do not wait for other particles to update the velocity and the position.

Communication or information exchange between the processors in the parallel computation is 
done based on network topologies. 4 popular communication strategies in the parallel computation are:
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1. 	 Master-Slave model
2. 	 Coarse-grained model
3. 	 Fine-grained model
4. 	 Hybrid model

Master-slave is the most straightforward communication strategy based on star topology. The 
master processor is responsible for generational slave processors, and the function evaluations are 
executed in parallel in slave processes, as shown in figure 1a. In the Coarse groined model, the entire 
population is divided into ‘n’ independent subpopulations referred to as islands. In this model, some 
individuals are exchanged among islands at certain times, called the migration strategy. This model 
is dependent on parameters such as total population in islands, migration strategy, the number of 
individuals that are migrated, etc. The model is shown in figure 1b. In the fine-grained model, all 
the individuals are spatially structured into subpopulations called demes. The individuals share a 
common neighborhood which helps for the information exchange. This model is well suited for 
massively parallel operations.

As PSO supports parallelism by nature, many works on improving its efficiency by combining it 
with several parallel techniques are proposed in the literature. Some of the works include the method 
introduced by (Gies and Yahya,2003). They have improved the algorithm by executing on the bewulf 
cluster. The method has increased the performance by 8 times when compared to the regular algorithm. 
(Cui and Weile,2005) proposed a model in which all the particles update the position synchronously 
by exchanging the gbest position. Its performance is further enhanced by (Venter and Sobieszczanski, 
2006) by converting it to the asynchronous version. (Chusanapiputt et al.,2005) proposed Parallel 
Relative PSO (PRPSO) method based on master-slave methodology. In this method, all the slave 
nodes exchange the best position and fitness value with the master node, and the master node selects 
the best value and is exchanged with all the slave nodes to update the position of particles. (Lihua et 
al.,2009) proposed a parallelization strategy based on client architecture.

The information is exchanged using a communication strategy. (Singhal et al.,2009) combined 
both asynchronous PSO with MPI for information exchange. Tian. et al. presented parallel co-
evaluation quantum behaved PSO, which breaks up the high dimensional problems into several low 
dimensional problems. Each low-dimensional problem is optimized individually by exchanging some 
information to improve the solution quality. (Li.et.al, 2005) proposed a PSO-based parallelization 
method for multi-objective PSO based on decomposition using both MPI and OpenMP based on the 
island model. The process proved to be 2 times faster on a normal machine. (Mostaghim et al.,2008) 
also proposed a PSO-based multi-objective optimization technique implemented on the master-slave 
model. The method is heterogeneous and combines the binary search method’s search capability for 
better exploration with multi-objective optimization. A GPU-based Fine-grained parallel PSO(FGPSO) 
was proposed by (li. et al., 2007) for eliminating premature convergence. (Shenghui and Shuli, 2014) 
proposed a GPU thread-based optimization model called Cellular particle swarm optimization 
(CPSO), which reduces the search time. The method accelerates the convergence rate of the article by 
triggering many CPU threads to process each particle. The number of CPU threads created is equal 
to the number of particles in the search space. (Hussain et al.,2016) proposed standard PSO (SPSO) 
on a GPU, based on the CUDA architecture using video RAM, which uses threads in a wrap. The 
method proved 46 times faster than CPU serial implementation. (Wachowiak et al.,2017) proposed 
adaptive PSO (APSO) for high-dimensional problems based on parallelization using heterogeneous 
parallel computational hardware containing multi-core technologies containing GPU Intel Xeon Phi 
co-processors.

2.3 Diversity in PSO
Although PSO has been successful in many issues, premature convergence remains an open problem 
due to its fast convergence. The search process is stopped in premature convergence as the particles 
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cannot come out of local optima. In the case of multimodal functions, the chances of a premature 
problem are high. There are several works in the literature for addressing the problem. (Zang and 
Ding,2011) used the subswarms concept and used four sub-swarms to exchange information to increase 
diversity. A center learning strategy was used by (Niu et al., 2013)in which the particle direction 
is updated using historical particle experience in all sub-swarms. A dynamic multi-swarm particle 
swarm optimizer (DMS-PSO) is implemented (Liang et al.,2005). The swarm population is divided 
into many sub-swarms and grouped using a regrouping schedule and information sharing between 
sub-swarms. DMS-PSO also achieves great diversity in the population. A cooperative particle swarm 
optimizer was introduced by (Van den Bergh,2003) in which the cooperative learning behavior was 
used in multiple swarms by optimizing multiple solution vector components:

Np t x t x t
p q i

( ) | ( ) ( ) |= − ≤ α 	 (3)

In computational methods, the exchange of information among the subpopulation plays an 
important role. Groso proposed distributed genetic algorithm (Groso, 1985) that uses the GA 
framework to advance many subpopulations in parallel. The migration of populations from one 
population to another occurs regularly to increase the algorithm’s search capability. In the approach 
presented by (Ray and Liew,2002), the particles interact with other particles having better fitness 
values. In this study, we presume that a particle’s neighborhood changes dynamically during iterations. 
Each particle can communicate only with a subgroup of particles(called the neighborhood of particles) 

Figure 1. Network topologies
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in each iteration. In this method, we find the neighborhood of particles as follows. Every particle i in 
the swarm posses an area of influence represented by αi where αi > 0 and can exchange information 
with other particles present in that area.

Here, Np(t) is particle neighborhood of particle p at time t, xp(t) is the current particle position, 
xq(t) is the position of particle q, which is the neighboring particle of p, and αi is the area of influence. 
Below are our assumptions on particle neighborhood:

1. 	 Particle neighborhood Np(t) changes in iterations.
2. 	 Also, the area of influence αi is the same for all the particles. i.e., if particle p is a neighbor of 

particle q at time t, then particle q is also a neighbor of particle p at time t.
3. 	 Particles exchange information only in one direction, which is more suitable for decentralized, 

distributed, and asynchronous environments (Zhang. et al., 2011).

3. PARALLEL PSO BASED CLUSTERING

This section introduces a clustering method based on particle swarm optimization called particle 
swarm optimization-based clustering called PSOC proposed by us (K.Chaitanya, 2018). Then we 
extend the algorithm using a parallel architecture.

3.1 PSO Based Clustering (PSOC)
The basic idea of this method is to divide the swarm into n subswarms, and each subswarm executes 
the PSO algorithm in parallel by executing a fitness function. During the execution, the particles also 
exchange information among subswarms to maintain the population’s diversity, eliminating premature 
convergence. This information exchanged is typically the clustering information, and the primary 
advantage is that the information can be reused with other particles in the sub swarm. The process 
is seized until it reaches the stopping criteria (usually the number of iterations or if all particles are 
clustered). This procedure is applied to large social graphs belonging to the social network’s domain. 
The basic idea is to find communities out of the network based on node attributes information. Below 
are the important characteristics of the approach:

1. 	 Nodes in the same community are connected.
2. 	 A node can be present in more than one community as overlapping communities exist in real-time.
3. 	 The attribute information of nodes belonging to the same community is likely to be similar.

During the implementation of the process, the particles exchange information through 
shared memory. The shared memory stores information related to the particle, such as it’s 
assigned to cluster ID, attribute information of the nodes information between particles is 
exchanged when the distance between two particles is less than the influential area, which 
is calculated using equation (3). Asynchronous procedures update the cluster information 
and attribute information in the shared memory. The complete details about the method are 
present in (K.Chaitanya, 2018).

3.2 Similarity Index and Fitness Function
The similarity index between any two particles Pi and:
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Pj is indicated as Sij where ‘k’ represents the attribute set.The value of S
ija

 is 0 if ath attributes 
of P

i
 and P

j
 are not matched, and the value is 1 if ath attributes of P

i
 and P

j
 are matched. The value 

of S
ij

 lies between 0 and 1. If the node attribute values are numeric, values are converted into 
categorical variables using the label encoder method. The label encoder converts the non-numeric 
variables into numeric labels. Each category is assigned a unique numeric label starting from 0 to 
n-1 values per feature:

S
ij
> β 	 (5)

Equation (5) shows the fitness function. In the equation, β denotes similarity constant (which 
is configurable).

3.3 Parallel PSOC
In this subsection, we introduce a hybrid CPU-based system architecture and then execute the PSOC 
algorithm on it. We call the new approach a parallel PSOC(PPSOC). The algorithm is applied to 
a large social network dataset for community detection. The architecture is based on master-slave 
and island models and combines the benefits of both. In this model, we ignore the communication 
overhead between processors in the master-slave model and assume that all the processors are busy 
throughout the execution. The master-slave model is one of the simplest parallelization paradigms. 
This paradigm’s main objective is to distribute the tasks among the processors that suit scaling the 
architecture to a large dataset. In a general scenario, these tasks are typically function evaluations on 
slave processors. The main functionality of the master processor is to gather information from all the 
slave processors and perform the optimization process. In the island model, the entire population is 
divided into n subpopulations which are called islands. Function evaluations take place independently 
on each island, and the particles are migrated from one island to another island based on the migration 
strategy as explained later. The basic architecture of PPSOC is shown in figure 2. The architecture 
consists of multiple processors in which one of the processors acts as a master processor, and the rest 
of the processes are slave processors.

In the figure, P0 is the master processor, and P1 and P2 are slave processors. In each slave processor, 
islands are created by creating a new process containing threads that execute tasks. The procedure 
is based on the principles of PSO. In PPSOC, we initiate a new thread for every record in the data 
set. In PSO terminology, the thread corresponds to the particle. The number of particles in each 
island depends on the number of processors, processes in each processor. For example, if the model 
is executed on n CPUs and m processes and the number of input records is p, then the total number 
of particles created is p/(m*n).

All the threads in the process are assumed to have local storage(as indicated as “data” in figure 2) 
and share some resources such as memory, global variables, etc. In the thread data storage component, 
we store information such as particle id, position, attribute information, and objective function value. 
All the particles are initialized by storing the required information and are assigned random positions 
in the search space. All the custom logic, such as objective function evaluations, are executed in the 
“code” section of the thread. Threads communicate with each other by passing function evaluation 
information using variables in the global address space. After completing each task, the cluster 
information is stored in the global address space so that other tasks can reuse the same information, 
saving both computational time and cost. This information exchange is only between the particles 
under the influence area (calculated using equation 3). The cluster information and particle position 
are also shared with the master process with the help of the Message Passing Interface (MPI). The 
main functionalities of the master processor are:
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1. 	 Collect information from slave processors.
2. 	 Finalizing the information that should be exchanged with other processors.
3. 	 Identifying the slave process for exchanging the information.
4. 	 Assign/create cluster-id to the particles based on objective function evaluations.
5. 	 Passing the required information to the slave process using MPI.
6. 	 Trigger and implement the migration policy.

The main functionalities of the slave processor are:

1. 	 Receive the information from the master process.
2. 	 Execute custom logic using principles of PSO.
3. 	 Objective function evaluation.
4. 	 Update PSO parameters such as particle’s velocity and position.

Figure 2. PPSOC architecture
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The Master processor also triggers a migration policy to maintain diversity in the islands. 
Doing this will not only maintain diversity but also eliminates premature convergence in the 
population. Out of the total particles in the island, only a subset of particles is selected for 
migration. The selection of particles for the migration depends on the objective function values. 
Since the main objective of PPSOC is to cluster the records, the method selects the particles 
having the least similarity values. Some of the main constraints that should be considered for 
the migration process are:

1. 	 Basic criteria which trigger the migration of particles.
2. 	 Migration rate, i.e., count of particles that are migrated.
3. 	 Exact point to trigger the migration policy, i.e., when the migration is carried out.
4. 	 The topology of migration, i.e., selecting the subpopulation for migration and the direction of 

migration.

The master process identifies the suitable particles for migration if the objective function value 
is less than Ω (constant). For the migration rate, we select all the particles which satisfy the migration 
criteria. The triggering point is the predefined iteration count. Since migration rate and triggering 
point cannot be generalized(please refer to section 4.1), we consider predefined constant values for 
both migration rate and Ω. As a migration topology, we migrate the particles only into the left and 
right islands. There is a chance of communication overhead if the particles are migrated to more 
islands. The migrated particle takes the random positions in the migrated islands. The particles 
exchange information using a point-to-point MPI communication strategy. In this strategy, the process 
i send its information to its immediate left and right processes, then the target processes receive the 
information. The procedure is executed until the termination criteria is met. The main steps in the 
process are explained in procedure 1.

The same procedure is explained by applying the proposed architecture to find communities on 
large social networks containing node attributes and the important steps below. Before the cluster 
procedure execution, parameters such as number of particles in each island, PSO parameters are 
initialized. The next step is to create corresponding objects for both master and slave processes 
on the CPUs based on the initial values. In the next step, the data set records are read sequentially 
and properties such as node id (which is a sequential number), attribute information are assigned 
to each particle in the island. As the particles have memory, they can store similarity information. 
During the execution of the procedure, the area of influence is calculated by the master processor 
using eq. (3). When the area of influence, i.e., the distance between the particles in subswarms, 
is less than the predefined constant, the similarity index eq. (4) and objective function eq. (5) are 
computed. A similarity string is calculated as a combination of SiSi+1Sn and XjXj+1Xm, where n is 
the length of similar attributes, Si and Si+1 are similar attributes, Xj and Xj+1 are node attributes 
values from the dataset. For example, the similarity string between two numerical node attributes 
[1,0,3,2,2] and [1,0,1,1,2] is “10XX2”. The Similarity string is stored in the particle’s memory. 
This same procedure is executed asynchronously in all the islands. At some predefined iteration, 
say 500, the similarity string and particle id are exchanged with the master node process. The 
master processor receives information from all the slave processors (islands) though MPI and 
assign cluster IDs to the particles based on a search string and store the cluster information. If 
the same search string is already present in the master process memory, then the particle IDs are 
added to the existing record; otherwise, a new entry is created. This process is executed until 
the stopping criteria is met.
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Procedure 1. PPSOC Procedure on Social Networks
Input:
1) Dataset containing node attribute information 
2) 2-Dimensional Search space 
3) Number of processors =3, particles in each island m
4) PSO parameters ω, c1, c2 
5) Iteration for migration, k
6) Migration threshold value, Ω
7) Similarity index α

i
=3, fitness constant β=0.5 

8) Area of influence constant, µ 
9) Inter processor iteration step, l
Output: 
Clustered Information  
Begin: 

%Step 1 Initialization phase%
1. Initialize master and slave processes based on total records  
   from dataset in processors.  
2. Create objects for master and slave process 
3. Initialize particles in islands in slave process with size ‘m’
4. Intialize PSO particles in search space with parameter values.

%Step 2 Island initilization phase%
5. For each record in dataset:   
   a. Create particle ‘p’ in island I

i
 until island size < m

   b. Populate attribute information to p
%Step 3 Execution phase%

6. For each particle ‘p’ in each Moisland: 
   a. Find particle neighborhood of ‘p’ by calculating dist (P,  
      Pi) (where Pi is another particle in island)                 
   b. If dist (P, Pi) < µ then
      i.   Calculate the similarity index using eq (4) 
      ii.  Calculate the fitness function using eq (5) 
      iii. If fitness function is satisfied:
           1. Calculate similarity string and update particle  
              memory with similarity string and particle id 
           2. Update global variables in thread for information exchange 
         End if     
      End if     
   c. If iteration count = l
      i.  Exchange similarity string with master processor. 
      ii. Identify and trigger migration process  
      End if     
7. Assign cluster id in master process based on similarity string.  
      End for each
   End for each
End
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3.4 Evaluation Criteria
Here we discuss several evaluation metrics for the proposed parallel algorithm and metrics to detect 
clusters’ quality.

3.4.1 Performance Metrics for Parallel Systems
It is essential to study the parallel algorithm’s performance for determining the efficiency and benefits 
of parallelism. Below are the metrics that are used in the paper to measure the performance of the 
proposed procedure:

S p
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T p
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1. 	 Speedup: Speedup is an evaluation metric that measures performance. It is the ratio between parallel 
execution time and sequential execution. It is given by the below formula, where T(1) is the time 
taken for the algorithm to run on one processor and T(p) is the parallel runtime on p processors:
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2. 	 Efficiency: Efficiency is based on speedup and is the ratio of speedup to the number of processors. 
It indicates the time for which the processor is fully utilized. It is given by the below formula, 
where ‘p’ is the number of processor cores:
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3. 	 Redundancy: Redundancy is the measure of the increase in computation that is required. It is the 
ratio of the number of operations performed in parallel execution by the sequential execution. It is 
given by the below formula, where N(p) is the number of operations performed by p processing 
units, and N (1) is the total number of operations on one processor.

3.4.2 Performance Metrics for Evaluating Cluster Quality
In social networks, assessing cluster efficiency is critical. Below are several evaluation criteria that 
are used in this paper for assessing the cluster quality:

•	 Omega Index: Omega Index (Steve, 2010) takes into account the number of value pairs precisely 
placed in ‘n’ clusters. Omega index ωu(C1, C2) between two clusters C1, C2 is calculated as follows:
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Here ωu(C1, C2) is the number of pairs that are present in the same community together in 
the same count of communities and tj(C) is the set of pair of values present together in precisely j 
communities in cluster C. ωe(C1, C2) is the expected value in the null model.

•	 Silhouette Coefficient: The silhouette coefficient measures the similarity for a value i by 
comparing it with all the present in its own cluster and compares it with values in other clusters:

s i
b i a i

a i b i
( )

( ) ( )

max{ ( ), ( )}
=

− 	

Here, a (i) is the average dissimilarity of value i compared with other values present in the same 
cluster; b(i) is the lowest average dissimilarity of value i in any other cluster in which it is not present:

T
c

a b cAB + −
	

• 	 Tanimoto Coefficient: Tanimoto Coefficient (Segaran,2007) between two nodes, node 1 and 
node 2, is the similarity score calculated by considering both the common attributes and total 
attributes of nodes in a network. The value is 1 if the nodes are similar and is 0 if nodes are 
dissimilar. It is expressed by the below equation where ‘a’ is the attribute count of node 1, ‘b’ is 
the attribute count in node 2 and ‘c’ is the count of shared attributes between the two nodes.

4. RESULTS AND DISCUSSIONS

This section demonstrates the applicability of the method on both CEC benchmark functions and 
social network datasets. The default parameters for PSO are, Inertia weight (ω) is chosen as 0.729, 
and c1 and c2 as 1.49445. The results are executed on a computer running on i7 processor having 
4 cores, 8 logical processors, and 16GB memory. Opensource python libraries inspyred, mpi4py, 
multiprocessing are used along with standard libraries such as numpy, math, and collections during 
the implementation of the program.

We first apply the proposed process on standard benchmark functions to analyze the efficiency 
and to estimate the time taken by the overall process. Table 1 shows the best, worst, median, average, 
and standard deviation and time taken on two segregated by each process. The values are obtained 
while executing the model on two slave processors having four processes each. The number of 20 
particles in each island and the model is executed for 200 function evaluations. All the functions are 
single objective functions. It can be observed from the table that the method found optimal solutions 
for almost all the functions except the Schwefel function, which is highly multimodal. Function best 
values in that iteration are exchanged between the processors.

Below are the real-world social networks on which we apply our procedure:

1. 	 Github Social networks (Rozemberczki, 2019).
2. 	 Deezer Social networks (Rozemberczki, 2019) belonging to 3 countries, Romania, Hungary, and Croatia.
3. 	 Wikipedia article networks (Rozemberczki, 2019).
4. 	 Twitch (Rozemberczki, 2019).
5. 	 Facebook Ego network (Leskovec and cravel, 2014).
6. 	 Google Plus Ego network (Leskovec and cravel, 2014).
7. 	 Pokec (Leskovec and cravel, 2014).
8. 	 Facebook large page-page network (Leskovec and cravel, 2014).
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Table 2 shows the properties of the dataset, such as the number of nodes, edges, density, transitivity, 
and node attributes. Density in a social network refers to the ratio of the number of connections a node 
has to the total number of possible connections. Transitivity is a degree of relationship that refers 
to the two edges in which if there is an edge between node i and node j and node j and node k, then 
there exists a node between i and k. All the experimental datasets are categorized into 3 categories, 
i.e., small, medium, and big. The datasets from (1-4),(6-7),(9) are medium-sized networks, datasets 
(5),(8) are small-sized networks, and (10-12) are large network datasets. The description of the 
datasets is as below:

•	 Github: The data set is related to large undirected social networks of GitHub Developers collected 
from the public API in June 2019. Nodes are developers of the git repository who have starred at 
least 10 repositories, and edges are relationships between them. The node attributes are location, 
repositories starred, employer, and author’s e-mail address.

•	 Deezer: The dataset refers to a friendship network that is collected from music streaming service 
Deezer 2017. The data relates to 3 European countries Romania, Croatia, and Hungary. Nodes 
represent the users, and edges are mutual relationships between them. The node attributes are 
the genre preference of the users. The total number of genres is 84.

•	 Wikipedia: The data is collected from English Wikipedia. The dataset relates to the 3 page -page 
networks related to chameleons, crocodiles, and squirrels. Nodes represent articles, and edges 
are mutual links between them. The node attributes are the features of articles containing nouns 
that appeared from Wikipedia articles’ text.

•	 Twitch: The dataset represents the networks of gamers who stream in multiple languages. 
Nodes are the users, and the edges are friendships between them. The node features are 
the names of games played, liked, location, and streaming habits. The data is collected 
in May 2018.

•	 Facebook Ego network: This data set is collected using the Facebook app by survey participants. 
The dataset describes the User profiles of their circles and ego networks. The nodes represent 
the Facebook users, and the edges represent the connection between the user and the other users 
with whom the user is directly connected.

Table 1. Results on benchmark functions

No. Function Worst Best Median Average Standard 
Deviation

Execution 
Time on P1(in 

secs)

Execution 
Time on 

P2(in secs)

1 Rastrigin 24.897 0.380 6.869 9.547 7.909 0.41 0.43

2 Ackley 5.330 0.029 1.037 1.454 1.226 0.42 0.43

3 Griwank 1.941 0.074 1.026 0.916 0.553 0.45 0.46

4 Rosenbrock 5453.517 0.150 11.521 834.965 1628.291 0.43 0.44

5 Schwefel 1130.77 218.566 580.359 617.310 230.442 0.42 0.45

6 Sphere 0.743 0.004 0.032 0.099 0.196 0.39 0.41

7 Beale 2.999 0.497 1.643 0.592 1.654 0.21 0.26

8 Booth 8.265 0.999 2.902 3.102 1.524 0.36 0.54

9 Goldstein 90.324 -0.803 45.213 15.146 26.245 0.58 0.41

10 Easom 3.141 -0.999 1.845 2.851 1.254 0.55 0.34

11 Matyas 1.000 0.004 0.999 1.255 1.705 0.54 0.82

12 Schaffer2 1.218 0.0008 0.639 0.254 1.266 0.21 0.25
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•	 Google Plus Ego network: This data set is collected from Google plus users who shared their 
circle data using the share circle feature. The data set consists of information related to user 
circles, user profile information, and ego networks.

•	 Pokec: Pokec is the most popular online social network that is widely used in Slovakia. The 
data set consists of information related to users and the connection between the users. Edges 
represent the connections. Nodes represent users having attributes such as user profile data such 
as age, gender, education, etc.

•	 Facebook large page-page network: This data set consists of page-page graph information from 
Facebook sites. The nodes in the graph are Facebook pages, and the edges are links between the 
pages. The node attributes information is extracted from the site descriptions, which owners fill 
during registration. The data is collected from the Facebook graph API. The data is related to 
four categories, namely politicians, government organizations, television shows, and companies.

Table 3 shows the average execution time for all the CPUs for all datasets. PPSOC procedure is 
executed for all the datasets for 10 iterations. The execution times are captured for all the available 
CPUs starting from 1 to 8. The highest execution time is observed for the pokec network on all the 
processors due to its large network size. The execution time is significantly reduced as the number 
of CPUs increases, which can also be due to reusing the existing cluster information from the master 
processor and the hardware capability. Figure 3 shows the speedup values for all the datasets measured 
on all the processors. The speedup values for all the datasets started increasing at a steady rate as the 
number of processors is increased. This behavior is observed until 6 processors for all the datasets. 

Table 2. Datasets used

S.No Dataset Nodes Edges Density Trans 
itivity

Node 
Attributes

1 Github 37,700 289,003 0.001 0.013 15

2 Deezer 
(RO) 41,773 125,826 0.0001 0.075 11

3 Deezer 
(HR) 54,573 498,202 0.0004 0.114 9

4 Deezer 
(HU) 47,538 222,887 0.0002 0.092 42

5 Wikipedia 
(Chameleon) 2,277 31,421 0.012 0.314 36

6 Wikipedia 
(Crocodile) 11,631 170,918 0.003 0.026 70

7 Wikipedia 
(Squirrel) 5,201 198,493 0.015 0.348 28

8 Twitch 
(England) 7,126 35,324 0.002 0.042 25

9 Facebook Ego 
network 4,039 88,234 0.0002 0.1 223

10 Google Plus Ego 
network 107,614 13,673,453 0.0011 0.12 1318

11 Pokec 1,632,803 30,622,564 1.14 0.085 93

12 Facebook large 
page-page network 22,470 171,002 0.001 0.232 30
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Table 3. Execution time for all the datasets for all CPUs

Dataset
Execution Time for PPSOC (in seconds)

(1 CPU) (2 CPU) (3 CPU) (4 CPU) (5 CPU) (6 CPU) (7 CPU) (8 CPU)

Github 244 170 101 69.7 55.4 44.3 41 43

Deezer (RO) 501 278 185.55 135.4 111.3 89.4 84.2 88.3

Deezer (HR) 685 428 297 285 183 163 140 125

Deezer (HU) 631 394.3 274.3 185.5 146.7 126.2 117.94 93.48

Wikipedia
(Chameleon) 296 211.4 128.6 92.5 72.9 62.9 57.4 56.3

Wikipedia
(Crocodile) 769 549.2 313.8 226.1 197.1 174 183 187

Wikipedia
(Squirrel) 433 427.22 327 240 207 187 197 207

Twitch
(England) 457 261.1 203.1 147.4 130.5 108.8 103.8 117.1

Facebook Ego 
network 496 268.1 206 145.8 130.5 110.2 91.8 74.02

Google Plus Ego 
network 713 283 190 155 137 118 97 80

Pokec 1882 1344 941 697 537 495 418 400

Facebook large page-
page network 345 215 150 143.7 98.5 90.7 82.1 81

Figure 3. Chart showing speedup values for all the datasets
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(except for the Facebook ego network). For the Facebook ego network, the rate decreased for 7 
processors due to more clustering operations and more edges(connections) for each node(as it is ego 
network) compared to other networks used in the evaluation. Figure 4 shows the efficiency curves for 
all the datasets calculated on all the processors. The y-axis values determine the efficiency values, 
and x-axis values represent the number of processors. It can be observed that maximum efficiency 
is observed at 6 processors for all medium and large datasets except facebook ego networks. The 
maximum efficiency value is observed for 7 processors (0.77) than the value at 6 processors (0.75). 
The reason might be due to the presence of more connections for each node than other datasets. It is 
also observed that for the networks categorized as small, the maximum efficiency is observed for 4 
processors. The efficiency started to decrease because of the completion of more than 80 percent of 
assigned tasks post which fewer tasks are assigned to the rest of the processors. For medium-sized 
networks such as Github, maximum efficiency is observed for 6 processors, after which the efficiency 
decreases. For large networks such as pokec, google plus, the maximum efficiency is observed at 
7 processors. The difference in efficiency values for 7 and 8 processors is not significantly more, 
showing that all the processors are busy executing the assigned tasks. Figure 5 shows the redundancy 
values for 3 datasets chosen randomly, one from each small, medium, and large dataset on all the 
processors. For calculating redundancy, we calculated the number of operations performed in both 
the PSOC and PPSOC techniques.

Table 4 shows the total number of operations for all the datasets for 4 processors. 4 processors 
are chosen for evaluation as maximum efficiency for small category dataset when the number of 
processors is 4 (see figure 4). It is observed that the operations in PSOC are significantly more in 
number compared to the number of operations in PPSOC. For example, the total number of operations 
for PSOC for the Github dataset is 339303 for all records in the dataset. The total number of operations 
in the PPSOC algorithm is 38476. The operations are more in PSOC because each loop in step 3 and 
step 4 calculates the similarity index for all the particles in each subswarm.

Moreover, cluster id is assigned in a separate procedure called cluster_async (), which runs 
asynchronously. In PPSOC, cluster-id is assigned in the master process, which significantly reduces 
the time and operations. From figure 5, it can also be observed that the rate of increase in redundancy 

Figure 4. Chart showing efficiency values for all the datasets
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is more till 4 processors for small datasets, 6 for the medium-sized dataset, and 7 for large datasets, 
which supports our conclusion (on the maximum number of processors required for maximum 
efficiency, (see figure 4)) which is drawn while calculating efficiency.

Table 5 shows the evaluation values for measuring the clustering efficiency using the proposed 
method on social network datasets. It can be observed that the method returned satisfactory values 
for all the measured metrics. The omega index value is the maximum for the Hungary Deezer dataset. 
Table 6 shows the total number of overlapping clusters identified. It can be observed that the average 

Figure 5. Chart showing redundancy values for some datasets

Table 4. Number of operations for PPSOC and PSOC for 4 processors

Dataset
Number of Operations

PSOC PPSOC

Github 339303 38476

Deezer (RO) 375960 42202

Deezer (HR) 491160 60042

Deezer (HU) 427845 52303

Wikipedia
20496 2516

(Chameleon)

Wikipedia
104682 12806

(Crocodile)

Wikipedia
46812 5733

(Squirrel)

Twitch

64137 7850
(England)

Facebook Ego network

Google Plus Ego network

Pokec 3027800 209880

Facebook large page-page network 65789 7657
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execution time of PSOC is 120% more than PPSOC execution time. For PSOC, the algorithm is 
initialized with default PSO parameters(c1 andc2 are 1.49445, ω=0.729), and the number of subswarms 
is taken as 4, αi=3, β=0.5.

4.1 Discussion on Migration Policy
Identifying the number of particles to be migrated among islands and identifying the correct iteration 
in which migration should be triggered plays a vital role in this process. As explained in section 3, the 
particles whose objective function value is less than Ω are eligible for migration. In this process, we 
take the value of Ω as 0.3. In a scenario where the many particles in the island have a value less than 
Ω, too many particles are exchanged among the islands, resulting in too much information sharing 
between islands, leading to expensive communication costs. On the other hand, if too few particles 
are exchanged, then there is a chance that the particle’s position in the islands does not get updated, 
leading to a premature convergence problem. In addition to this, the total program execution time 
and time taken to find the optimal solutions can be more.

We suggest the below method to choose the number of particles to be migrated among islands. 
We explain the method by optimizing the rastrigin function, one of the complex benchmark functions 
that can be easily trapped in local optima, resulting in premature convergence. Figure 6 represents 
the chart showing execution time in seconds for the rastrigin function. The value of Ω is taken as 0.3. 
The PPSOC procedure is executed for 1000 iterations which is the stopping criteria. The number of 
particles for which have an objective function value less than Ω is turned out to be 11. The X-axis 
corresponds to the total particle count. The Y-axis corresponds to the time taken to execute the 
objective function for finding the optimal solution after exchanging the n particles for 100 iterations. 

Table 5. Evaluation parameter values-cluster quality

Dataset
Cluster Evaluation Parameter Values

Omega Silhoutte Tanimoto

Github 0.61 0.67 0.7

Deezer 
(RO) 0.68 0.72 0.8

Deezer 
(HR) 0.65 0.85 0.8

Deezer 
(HU) 0.85 0.84 0.69

Wikipedia 
(Chameleon) 0.57 0.67 0.71

Wikipedia 
(Crocodile) 0.65 0.71 0.59

Wikipedia 
(Squirrel) 0.72 0.69 0.83

Twitch 
(England) 0.68 0.51 0.83

Facebook Ego network 0.63 0.61 0.76

Google Plus Ego network 0.74 0.83 0.76

Pokec 0.73 0.79 0.83

Facebook large page-page 
network 0.53 0.64 0.74
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Table 6. Total number of clusters identified

Dataset
Total number of overlapping clusters

PPSOC PSOC

Github 2,702 2,152

Deezer
3,772 4,432

(RO)

Deezer
4,753 5543

(HR)

Deezer
12,358 11875

(HU)

Wikipedia
566 663

(Chameleon)

Wikipedia
1,152 1124

(Crocodile)

Wikipedia
101 208

(Squirrel)

Twitch
1,126 1300

(England)

Facebook Ego network 1334 1231

Google Plus Ego network 18344 12445

Pokec 56113 45123

Facebook large page-page network 38787 25223

Figure 6. Chart showing execution time of Rastrigin function for 10 particles
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We choose the number of particles for which the time taken to execute is minimum. It can be observed 
from the chart in fig. 3 that the time taken to execute is less if either 5 or 9 particles are exchanged. 
We suggest exchanging 5 particles to 9 particles as exchanging 9 particles out of 11 particles can lead 
to too much information exchange between islands, increasing the overall execution time.

As an attempt to find the number of iterations after which migration can be started, we execute 
the same Rastrigin function for a particle and compute the velocity of a particle in 1 dimension. 
We examine the iteration in which the velocity of the particle is degraded. It can be observed from 
figure 7 that the particle’s velocity has started degrading after 1200 iteration. Hence, in this case, the 
iteration count where the migration should be started can be taken as 1200. Both of these values may 
not be generalized. Some of the parameters on which the variance depends are the type of objective 
function, the number of dimensions, execution methodology, category of the dataset, etc.

5. CONCLUSION

In this paper, we proposed a CPU-based parallel architecture based on Master-slave and island 
models. We applied that to an existing clustering algorithm called PSOC to find out communities in 
large social networks with node attributes. The model supports information exchange among CPUs 
with the help of the message passing interface(MPI). The model is scalable based on the computer 
architecture and can fully utilize modern computers’ processing power. The model executes PSO 
principles and decomposes the problem into multiple subproblems executed in islands separately. 
The particles in each island are distributed randomly, and the threads are created for each particle 
with local memory. The model is tested on real-time datasets from the social networks domain and 
evaluated the performance using evaluation metrics related to parallel systems and social networks. 
The model has returned significantly good values on all the measured metrics. From the results, it 
can be observed that the model had achieved the below benefits over PSOC:

1. 	 The proposed model takes 40% less execution time when compared to PSOC.
2. 	 The proposed model is suitable for large dimensions.
3. 	 The proposed model is suitable for large datasets.
4. 	 There is an overall increase of 110 percent in terms of efficiency.

Figure 7. Chart showing velocity of a particle for Rastrigin function
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