Open Innovation in R&D: Co-Patenting With Breakthrough Innovations in Pharma

Bassem E. Maamari, Prince Mohammad Bin Fahd University, Saudi Arabia*
https://orcid.org/0000-0003-1294-6840
Alfred Osta, Arab Open University, Lebanon

ABSTRACT

Breakthrough innovations are crucial drivers of economic progress, often depending on external knowledge sources to complement internal knowledge. Co-patenting is one way to achieve this by implementing open innovation within research and development. The purpose of this paper is to explore the impact of co-patenting on breakthrough innovations in the pharmaceutical industry. A research question is tested empirically using an archival dataset comprising 866 patents in pharma. The findings show that co-patenting has a significant positive impact on breakthrough innovations. Short of previous investigation, this paper provides new empirical insights on the open innovation and co-patenting levels, leading to both academic and practical implications on the field.

KEYWORDS

Breakthrough Innovation, Co-Patenting, Open Innovation, Pharmaceutical, Radical Innovation, Research and Development (R&D) Collaborative Strategy

INTRODUCTION

The fundamental change of today’s globalized business context, where radical innovations are key drivers of economic progress (Sorescu et al., 2003), is compelling organizations to raise their innovation performance and production frontiers (Rothaermel, 2017; Kovacs, Marullo, Verhoeven, and Van Looy, 2019) towards the implementation of open innovation (OI) within research and development (Inauen and Schenker-Wicki, 2012). In fact, firms with the most novel innovations, including breakthrough innovations, have to simultaneously develop external (Yan, Dong, and Faems, 2020) and internal systems to disseminate diverse knowledge in order to enhance their requisite technological and marketplace competences (Agostini et al., 2016; Matskulyak, Sapožnikova, and Kharchilava, 2019). More specifically, the pharmaceutical research centres are in dire competition to innovate in treatments (Videira et al., 2020).

The extant literature on OI stresses on the combination of: (1) the inbound process (in-house exploitation of the outside knowledge), (2) the outbound process (external exploitation of the unused...
internal knowledge) (Huizingh, 2011), and (3) the coupled processes (combination of inbound and outbound) (Chesbrough and Bogers, 2014). However, the outbound and the coupled processes have not been analyzed in depth. In addition, the literature has acknowledged the positive relationship between OI and radical (or breakthrough) innovation (Inauen et al., 2012), but only few recent studies have contributed to our understanding of the effects of OI on breakthrough innovations (West et al., 2014; Kovacs et al., 2019).

Furthermore, today’s health care technological innovation is focusing on efficient and effective ways to conduct rigorous clinical trials (Narayanasetty and Ravindra, 2021), while another swarm of scientists and researchers are focusing their efforts today on the role of information technology and its role in innovation (Stiller, van Witteloostuijn, and Cambre, 2021), leaving limited efforts to investigate the direct impact of co-patenting, on radical or breakthrough innovations as managerial initiatives. For this reason, the purpose of our study is to fill this persisting gap, by investigating the impact of co-patenting on breakthrough innovations in the pharmaceutical industry which could be vital to research and development managers.

THEORETICAL CONSIDERATIONS AND HYPOTHESES DEVELOPMENT

Open Innovation and Innovation Performance

The extant innovation literature distinguishes between process innovation (new or significantly improved production systems) and product innovation (radical or incremental development of product or services) (Inauen et al., 2012). Innovations are also categorized in line with the novelty of the fundamental technology (where customer benefits the most) and its effects on the marketplace (where the substantial advantage is to buyer) (Chandy et al., 2006). In line with Sorescu et al. (2003), breakthrough innovation is thus defined when the innovation is a technological breakthrough, a market breakthrough, or both (i.e. radical innovation).

Moreover, OI implies the distribution of knowledge in the economy or society (Chesbrough et al., 2014) where the boundaries between the organization and its environment have become more permeable (Van Lancker et al., 2016).

Furthermore, the literature recognizes three core processes in open innovation. First, the outside-in (inbound) process which stresses the importance of outsourcing relevant external knowledge (Chesbrough, 2003). Second, the inside-out (outbound) process that calls to transfer the unused and under-used knowledge outside the organization for others to use in their businesses (Chesbrough et al., 2014). Third, the coupled process which refers to combine the inbound and outbound processes to create and sell innovations (Enkel et al., 2009).

Empirical findings have frequently recognized that organizations are engaged more in outside-in than in inside-out OI (Huizingh, 2011). However, integrated collaborative research and development (Van Lancker et al., 2016) with universities and research institutes is considered beneficial in developing radical innovations (Belderbos et al., 2014). Moreover, large multinational firms are looking not only for internal but also for external knowledge opportunities (Miguelez and Moreno, 2018) in addition to their internal lab research through universities or strategic alliances to develop breakthrough innovation and to enhance their competitiveness (O’Connor and DeMartino, 2006; Boddy, 2019) and innovation variety and knowledge structure (Castaldi, Frenken, and Los, 2015; Hesse and Fornahl, 2020). OI offers multiple advantages such as cost reduction in research and development, reduced time-to-market (Chesbrough, 2012), risk-sharing collaborations (Inauen et al., 2012) and acquisition of complementary financial and intellectual resources from external stakeholders (Van Lancker et al., 2016; Batraga et al. 2019).

Nonetheless, a number of roadblocks discourage some organizations from implementing OI (David, 2020). First, organizations’ concerns of losing internal competitive knowledge by selling them to competitors (Kline, 2003). Second, the technological risk for both customer and supplier
who tend to resist the outside-in OI practices such as NIH (the Not-Invented-Here) and inside-out OI practices such as NSH syndromes (the Not-Sold or Share-Here) since ideas are indivisible and sharing or selling just a portion of an innovative idea is practically inconceivable (Van Lancker et al., 2016; Pénin and Neicu, 2018).

Co-Patenting: Role and Performance Implications

Co-patenting is defined as “the joint ownership of collaborative outcomes” (Belderbos et al., 2014) in terms of co-patents. Extant literature on co-patenting mainly stresses its negative association with economic accomplishment (Belderbos et al., 2010) and characterizes it as a second-best game plan (Hagedoorn, 2003). For instance, partners may favour opting for joint ownership of patent rights rather than dividing them if they perceive that the research and development outcomes have the opportunity to become a core competency for the other partner(s) (Belderbos et al., 2014). Nonetheless, the number of co-owned patents in the USA shows signs of steady increase over time (Hagedoorn, 2003) while the share of European co-patents of research and development-intensive firms remained stable between 1996 and 2003 (Belderbos et al. 2010) and increased with governmental initiatives to promote radical innovation (BMBF, 2018).

Co-Patenting and the Effects of Value Appropriation

Co-patenting generates ambiguity over the control that each partner has on the co-owned patents. IP appropriability can be a significant challenge in collaborative research and development endeavors (Belderbos et al., 2014) notably in organizations exercising high degrees of openness (Van Lancker et al., 2016). Moreover, appropriation issues are more pronounced when organizations co-patent with competing organizations operating within the same industry (Belderbos et al., 2014), as they risk to be more prone to use the jointly-created knowledge for similar exploitation purposes, leading to a risk of intensified competition that can hinder value appropriation. When co-patenting with universities, appropriation concerns are expected to be low because universities do not have the motive and capabilities to economically becoming a competitive threat (Belderbos et al., 2014).

Co-Patenting and Value Creation Opportunities

An organization that is too focused internally is at risk to miss the beat of acquiring external proficiencies to its competences (Chesbrough, 2003). It is worth noting that external research and development should not entirely substitute internal research and development and a combination of both is prosperous (Van Lancker et al., 2016). However, firms collaborating in research and development risk failing the creation of their technologies unaided (Boschma, 2005) while the attainment of value creation can also be restricted by threats of knowledge infiltration (Belderbos et al., 2014). For that, Belderbos et al. (2014) uncover clear empirical indications that ex-ante contractual negotiation of co-patenting agreements can have positive impact on value-creation as it promotes mutual relational trust and lessen ex-ante knowledge appropriation worries.

In sum, the extant literatures have neither analysed in depth the outbound process and the coupled process, nor the impact of co-patenting on breakthrough innovations were investigated. Consequently, we aim to fill this gap by answering the research question of whether co-patenting affects breakthrough innovations in the pharmaceutical industry.

MEASURES AND DATA COLLECTION

Empirical Context

Following the lead of Kovacs, Marullo, Verhoeven, and Van Looy (2019) in analysing trends, we conducted this research in the context of the pharmaceutical industry (Pharma) which is thoroughly documented by the Food and Drug Administration (FDA) since 1939 (Prabhu, Chandy and Ellis, 2005).
 Pharma is the ideal setting for our study since it relies intensely on innovation and offers ample data that is free of self-report and retroactive coding worries (Sorescu et al., 2003). Besides, innovation in Pharma generally relies on a combination of patents (Dahlin and Behrens, 2005).

Measures

The dependent variable (innovation type) is operationalised as a binary variable (0=non-breakthrough innovation; 1=technological/market breakthrough) [Table 1]. The independent variable (CoPAT—co-patent—indicates whether the patent is a co-owned patent, and is dichotomous; 1=co-owned; and 0=otherwise). In line with Belderbos et al. (2014), we utilized information on patent ownership to differentiate between individually-owned and co-owned patents.

The value of a patent (FwdCITA), measured using patent forward citations (e.g. Belderbos et al., 2014), is the control variable used in our study.

RESEARCH METHODS

Data and Methods

Secondary data was used to accomplish the aim of the study, which is exploratory in nature. The sample/dataset in our study consisted of 271 FDA-approved product innovations (2000-2004). Pharma allowed for the direct identification of patents that were essentially transformed to marketed innovations. The two sources of data collection for our study were the websites for the FDA (www.fda.gov) and the United States Patent and Trademark Office, or USPTO (www.uspto.gov). Originally, our sample consisted of 336 drug innovations. Sixty five of those were excluded from the dataset because the FDA Orange Book did not provide the corresponding patent numbers. Similarly, we excluded the innovations that did not include both the chemical type and the review classification that are at the core of FDA definitions of innovations (Sorescu et al., 2003) [Table 1].

Consequently, our finalized dataset is reduced to 271 product innovations (105 breakthrough innovations and 166 incremental innovations), collectively consisting of 866 patents (including 16 co-patents). We used the FDA website to access information on the organizations’ name and new product innovations. At the same time FDA categorizes new product innovations according to 2 dimensions: therapeutic potential and chemical composition. Based on their chemical composition, innovations are categorized as new molecular entities (NMEs), indicating that innovations are either new formulations or have new indications of use. It is worth noting that the FDA classification concurs with the adopted classification of innovation in our study [Table 1].

Data Analysis

We explored the relationship between co-patents and breakthrough innovations by using a quantitative methodology and relying on empirical analysis of secondary data using SPSS. Since the dependent variable –innovation type – is a binary variable, a binary logistic regression is used. More specifically, we used a hierarchical binary logistic regression because we included a control variable – the value of a patent – in our model. In SPSS, the predictor and control variable are added in steps (or Blocks). Initially, the control variable is added in SPSS in Block 1; the predictor (independent variable) – co-patents – are added next in Block 2. The results produced by a hierarchical binary logistic regression are interpreted by comparing the results of the model in Block 2 with the results of the model in Block 1.

RESULTS

The results show that the model is statistically significant for Chi square (X^2) = 4.711 (p<.05 with df=1) [Table 2]. Accordingly, the existence of the association between the predictor and the dependent variable is supported. The results for the model’s Chi square, which represents the cumulative reduction
-2 log likelihood (-2LL) for the control and the independent variables reveal a reduction in -2LL from 356,000 in Block 1 (where only the control variable is added) to 351.289 in Block 2, implying a better fit for the full model [Tables 3 and 4].

A two-step hierarchical binary regression analysis was implemented. The results of the analysis [Table 5] show a significant positive relationship between the predictor and the dependent variable (Wald=4.283; df= 1; p=0.038 (<0.05)). The value of the beta (β) coefficient (1.277) indicates a positive effect of the predictor on the dependent variable, increasing the odds of being in the category of interest (i.e. breakthrough innovation). Alternatively, the value of Exp(β) is 3.586 (>1 and β>0) indicating that when one unit increases in co-patenting (an increase of one co-patent per innovation), this increases the odds by roughly 4 times that the developed innovation is a breakthrough innovation.

Table 1. FDA Definitions and Operationalisation of Innovations. Source: Sorescu et al. (2003)

<table>
<thead>
<tr>
<th>FDA Definitions</th>
<th>NME</th>
<th>An active ingredient that has never been marketed in the United States.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Update</td>
<td></td>
<td>A drug that is a new formulation, a new dosage of existing components, or a commercialized drug that has a new usage.</td>
</tr>
<tr>
<td>Priority review drug</td>
<td></td>
<td>A drug that appears to represent an advance over available therapy.</td>
</tr>
<tr>
<td>Therapeutic Potential</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Standard review drug</td>
<td></td>
<td>A drug that appears to have therapeutic qualities similar to those of an already marketed drug.</td>
</tr>
</tbody>
</table>

Operationalization of innovations

<table>
<thead>
<tr>
<th>Therapeutic Potential</th>
<th>Standard Review</th>
<th>Priority Review</th>
</tr>
</thead>
<tbody>
<tr>
<td>Update</td>
<td>Incremental innovation</td>
<td>Market breakthrough</td>
</tr>
<tr>
<td>Chemical Composition</td>
<td>NME</td>
<td>Technological breakthrough</td>
</tr>
</tbody>
</table>

Source: Sorescu et al. (2003)

Table 2. Omnibus Tests of Model Coefficients (Block 2)

<table>
<thead>
<tr>
<th>Step</th>
<th>Chi-square</th>
<th>Df</th>
<th>Sig.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>4.711</td>
<td>1</td>
<td>.030</td>
</tr>
<tr>
<td>Block</td>
<td>4.711</td>
<td>1</td>
<td>.030</td>
</tr>
<tr>
<td>Model</td>
<td>10.547</td>
<td>2</td>
<td>.005</td>
</tr>
</tbody>
</table>

Table 3. Model Summary (Block 1)

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox and Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>356.000a</td>
<td>.021</td>
<td>.029</td>
</tr>
</tbody>
</table>

a. Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.
The presence of a significant relationship between co-patenting and breakthrough innovations is thus confirmed by the analysis. The empirical results conclude that there is a significant and positive impact of co-patenting on breakthrough innovations in the pharmaceutical industry.

DISCUSSION AND CONCLUSION

Discussion of Results

By analysing a dataset of 271 product innovations and 866 patents in Pharma, our empirical analyses uncover a significant positive impact of co-patenting on breakthrough innovations.

Furthermore, our findings indicate that the organizations which emphasize co-patenting are more likely to develop breakthrough innovations. Conversely, relying on individually-owned patents appears to favour the development of incremental innovations. Despite the important contributions above, we duly note that the number of co-patents in our dataset (16 out of 866) is rather small. A potential explanation might be associated to organizations’ concerns relating to NIH and NSH which is deemed as potential barrier for implementing OI.

Academic Contributions

This paper represents, to the best of our knowledge, the first study that investigates the direct impact of co-patenting, a novel approach to measuring OI (West et al., 2014), on breakthrough innovations. We also contribute to the literature by adding to the body of knowledge on the coupled process in OI and the determinants of radical innovation that is still scarce despite its significance (Perin et al., 2016). Moreover, we analyse our dataset across two levels of analysis: co-patents – at the individual level – and product innovations – at the organizational level – thus answering recent calls for more research in OI across multiple levels of analysis (West et al., 2014). Finally, we suggest for future quantitative research to enhance our understanding of the relationship between OI, namely at the level of the individual patent, and breakthrough innovations.

Managerial Implications

Our results offer significant implications for practitioners, namely Research and development managers, and permit an enhanced understanding of the influence of OI on organizations’ innovation performance. Research and development managers should recognize the importance of collaborative

Table 4. Model Summary (Block 2)

<table>
<thead>
<tr>
<th>Step</th>
<th>-2 Log likelihood</th>
<th>Cox and Snell R Square</th>
<th>Nagelkerke R Square</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>351.289⁺</td>
<td>.038</td>
<td>.052</td>
</tr>
</tbody>
</table>

⁺ Estimation terminated at iteration number 4 because parameter estimates changed by less than .001.

Table 5. Variables in the Equation (Block 2)

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>S.E.</th>
<th>Wald</th>
<th>Df</th>
<th>Sig.</th>
<th>Exp(B)</th>
<th>95% C.I. for EXP(β)</th>
<th>Lower</th>
<th>Upper</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1⁺</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CoPAT</td>
<td>1.277</td>
<td>.617</td>
<td>4.283</td>
<td>1</td>
<td>.038</td>
<td>3.586</td>
<td>1.070</td>
<td>12.018</td>
<td></td>
</tr>
<tr>
<td>FwdCITA</td>
<td>-.045</td>
<td>.021</td>
<td>4.491</td>
<td>1</td>
<td>.034</td>
<td>.956</td>
<td>.917</td>
<td>.997</td>
<td></td>
</tr>
</tbody>
</table>

⁺ Variable(s) entered on step 1: CoPAT.
Research and development, which allows effective amalgamation of internal and external knowledge needed to drive breakthrough innovations. Managers are, moreover, encouraged to recruit and appropriately compensate “radical innovation hunters” (O’Connor et al., 2006) to help identify breakthrough innovations internally and/or externally. Furthermore, managers ought to consider co-patenting as a viable strategic option in their quest to develop breakthrough innovations in order to boost their respective organizations’ competitiveness. Finally, research and development managers should not underestimate the importance of ex-ante contractual co-patenting negotiations and agreements as they may carry positive impact on value-creation, and thus can mitigate appropriation issues.

Limitations
In this study, we employ a cross-sectional approach for analysis. This limitation can be addressed in future research by using a longitudinal approach which investigates the way co-patenting activities progress over an extended time period. Another limitation is the use of one industry (Pharma), which restricts generalisability. Further research can benefit by building on and testing our findings on a bigger sample. Additionally, we encourage future studies that explore the impact of co-patenting on breakthrough innovations in SMEs and in low-tech industries.

ACKNOWLEDGMENT

This research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.
REFERENCES

Bassem Maamari earned a terminal degree and joined the academic world as a full-time faculty. He brings a wealth of practical experience in consulting in the areas of sales management, finance, MIS, and human resources management of SMEs. He has a number of studies, and his research interests include job satisfaction of employees, emotional intelligence, and the impact of technology on people.

Alfred Osta earned his Doctorate of Business Administration (DBA) at Grenoble Ecole De Management, France, in 2014. He started his university teaching career in 2003 and is currently a faculty member at Arab Open University in Lebanon. Dr. Osta is dedicated to both teaching and research. He served as a voluntary peer Reviewer of conference papers and presenter symposia for a number of annual meetings of the Academy of Management, USA. His research interests include Innovation Management, Human Resource Management and Entrepreneurship.