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ABSTRACT

Sentiment classification constitutes an important topic in the field of natural language processing, 
whose main purpose is to extract the sentiment polarity from unstructured texts. The label propagation 
algorithm, as a semi-supervised learning method, has been widely used in sentiment classification 
due to its describing sample relation in a graph-based pattern whereas current graph developing 
strategies fail to use the global distribution and cannot handle the issues of polysemy and synonymy 
properly. In this paper, a semi-supervised learning methodology, integrating the tripartite graph and 
the clustering, is proposed for graph construction. Experiments on e-commerce reviews demonstrate 
the proposed method outperform baseline methods on the whole, which enables precise sentiment 
classification with few labeled samples.
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INTRoDUCTIoN

The past two decades have witnessed the flourishing of electronic commerce (e-commerce) in a variety 
of fields (Huang et al., 2018). The sizable volume of e-commerce is growing at a rapid, steady pace 
(Yu et al., 2013). E-commerce provides people with daily opportunities to purchase products and 
services in online marketplaces (Hajli et al., 2017). Along with these shopping activities, consumer 
reviews reflect users’ experiences and feelings (Zhang & Zhong, 2019). Consumer engagement 
always delivers specific sentiments; therefore, these reviews facilitate the purchase decision of other 
customers and benefits business sales. As such, a deep understanding of sentiment information serves 
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as the foundation of opinion mining and processing, which aims to outline individuals’ true intentions 
through their words (Bhargava et al., 2016).

In the field of natural language processing, sentiment analysis refers to the identification of 
language that carries an evaluative or affective attitude (Esuli & Sebastiani, 2005). Opinions are 
retrieved through unstructured texts. Then, the sentiment is classified into positive, negative, and 
neutral categories (Fu et al., 2018).

More recently, both supervised and unsupervised machine learning models have been applied to 
the sentiment analysis tasks. The former results in high costs and time to generate training samples. 
The latter lacks accuracy and processing reliability (Gao et al., 2013).

Semi-supervised sentiment classification is proven to be a flexible alternative for analyzing 
efficiency (Chapelle et al., 2006). Semi-supervised learning falls between unsupervised learning and 
supervised learning, which includes a small amount of labeled data and a large amount of unlabeled 
data (Li & Ye, 2018). Compared with the reliance on labeled samples of supervised learning and the 
low accuracy of unsupervised learning, semi-supervised learning uses as little cost as possible to obtain 
the classification accuracy close to supervised learning. This is acceptable in most practical scenarios.

Among these methods, the label propagation algorithm, as a graph-based semi-supervised 
learning approach, holds great promise in sentiment classification (Li et al., 2016). In general, the 
label propagation algorithm is used due to its intuitive, interpretable processing and easy resolve 
(Yang & Shafiq, 2018). Notably, label propagation is carried out by the graph. Once the graph is built, 
every instance is mapped into a node. The edge weight between two nodes represents the similarity 
of the two instances (Krishnakumari & Akshaya, 2019). Thus, the problem is formulated as a form of 
propagation on a graph where a node’s label propagates to neighboring nodes due to their proximity 
(Zhu et al., 2005). The labeled data act like sources that push labels through an unlabeled label 
(Xiaojin & Zoubin, 2002). In this way, the development of the label propagating graph is of great 
significance as it identifies the relation among samples. Before the deployment of a semi-supervised 
learning model, the graph must be established to reflect prior knowledge of the domain.

In line with the graph-developing principle, traditional strategies like word-document bipartite 
graph, K-nearest neighbor (KNN) graph, and Exp-weighted are applied to convey the relation within 
the texts (Rossi et al., 2016). Notwithstanding, the construction of graphs in a label propagation 
algorithm remains limited, primarily because the colloquial expressions of words in the document 
usually result in polysemy and synonymy issues. In a polysemy issue, the same sentiment word may 
express different degrees or completely opposite sentiment tendencies in different contexts. In a 
synonymy issue, the same sentiment may be expressed by different sentiment words (Potts, 2016). 
On the other hand, traditional graph-based methods pay more attention to the local distribution of 
the sample instead of the global information within the dataset (Yao et al., 2019). For this reason, the 
traditional graph-based methods are taken as a secondary choice unless a specific word with clear 
information can be recognized.

The objective of this research is to devise a sentiment classification framework for e-commerce 
reviews. The research focuses on the semi-supervised learning model integrated with other algorithms. 
A tripartite graph for defining words-documents-phrases is designed to better describe the sentiment 
information (Zhu et al., 2014). A seeds-based semi-supervised hierarchical clustering algorithm 
(S3HC algorithm) is developed to figure out the global distribution information. By combing the 
tripartite graph and clustering algorithm, a high-quality relation graph of samples can be obtained, 
and the label propagation strategy can be deployed (Lu & Xu, 2019).

The contributions of this article include:

1.  The tripartite graph is constructed to compute the similarities among review texts, which can 
eliminate the impacts of polysemy and synonymy.

2.  The S3HC algorithm, via the clustering strategy, aims at mining the hierarchical distribution 
information at a global level.
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3.  The integrating of the tripartite graph and S3HC algorithm can deliver a graph that reflects the 
exact relationship of the texts and further facilitates the sentiment classification tasks.

4.  In the case of few labeled samples, the proposed method can still achieve a higher classification 
accuracy on all three datasets.

This article is organized as follows. The next section introduces the present research of semi-
supervised learning and background theories employed in this article. This is followed by a model 
construction for sentiment analysis, developed by using tripartite graph and clustering. Then, the 
article explores experimental results with the analysis. Finally, it provides concluding remarks.

PREREQUISITES

Literature Review
Previous research on sentiment classification is dominated by three basic approaches: (1) unsupervised 
learning methods; (2) supervised learning methods; and (3) semi-supervised learning methods. 
Unlike the other two, semi-supervised learning is the machine learning paradigm concerned with 
utilizing little labeled data to build better classifiers and regressors (Goldberg & Zhu, 2010). Research 
outcomes have shown that the application of semi-supervised learning methods improves the accuracy 
on low resource sentiment polarities classification (Gupta et al., 2018). Indeed, the semi-supervised 
learning approaches are already employed in the sentiment analysis of microblogs, Twitter, and 
online product comments to achieve a decent working performance (Karan et al., 2018; Sun et al., 
2016; Yu et al., 2015).

Typically, semi-supervised learning approaches can be further divided into the generative method 
(Nigam et al., 2000), semi-supervised support vector machine (S3VM, Joachims, 1999), disagreement-
based method (Blum & Mitchell, 1998), and graph-based method. Early work assumes that all the data 
(labeled and unlabeled) is generated by one implicit model. In this way, the generative method must be 
carried out on the foundation of reliable specialized knowledge and accurate prediction to ensure the 
model effectiveness (Nigam et al., 2000). Furthermore, S3VM can be regarded as a derivation of SVM 
in semi-supervised learning, which is able to find the hyperplane for classifying the two categories. 
The basis of S3VM is the assumption of low-density separation. Hence, the objective function of 
S3VM has to be the nonconvex function with more than one low-density separation. In addition, the 
disagreement-based methods take advantage of the disagreements among the classifiers to improve 
the properties. Notably, this requires several classifiers that can generate significant differences. In 
turn, for the issues of a few labeled samples, especially the data without multiple views, the model 
must be dedicatedly designed.

Compared to the previous approaches, the graph-based method provides a better resolving 
strategy. Until now, graph-based semi-supervised learning methods have played a large role in 
sentiment classification. Typically, the use of label propagation for the graph-based semi-supervised 
learning model has been deeply explored in applications in the natural language processing (NLP) 
area (Liu et al., 2018). The application of domain knowledge, as well as the extrinsic information, 
plays an important role in the field of sentiment classification. Li et al. (2018) proposed a two-view 
label propagation algorithm for sentiment classification based on the analysis of the task and corpus. 
Zhuang et al. (2017) exploited label information in both the graph learning and label propagation 
stages. They formulated the label information of the samples into any self-representation methods, 
keeping the same computational cost. Graph-based deep learning methods, or graph neural networks 
(GNN), are creative for sentiment analysis according to the ongoing research (Kipf & Welling, 2017; 
Yang et al., 2016). In comparison to the label propagation method, GNN still needs validation sets 
for model training and selecting, which results in the large cost of sample making tasks.
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Label Propagation Algorithm
Label propagation intends to propagate label information from labeled samples to nearby samples 
through weighted edges until a global stable stage is obtained (Xiaojin & Zoubin, 2002). Suppose 
we have n  sample points X x x x

n
= { }1 2

, ,...  in which the first l  samples are labeled by y y y
l1 2

, ,...{ }  
and the remaining samples are unlabeled. The purpose is to predict the labels of the unlabeled samples. 
We concentrate on an undirected graph:
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W
W
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and define T  as the probabilistic transition matrix. W
ij

 is the edge strength between x
i
 and x

j
. 

At this stage, the authors prefer to introduce a matrix Y R
L

l c∈ × , representing the labels attached 
to samples. Correspondingly, the probability distribution matrix, delivered as    F Rn c∈ × , consists of 
F
L

 and F
U

, where F
L

 is initialized as Y
L

 and F
U

 is randomly initialized. The propagating step is 
carried out until the matrix F  reaches a converge. Due to the label propagation definition, we have 
F TFt t+ =1 . T  represents the row-normalized matrix of T . Distinctively, each F

L
t  tL is reset from 

Y
L

, which is consistent with labeled samples. In this way, we can model the geometric relationships 
of all samples in the form of a graph.

Formally, this algorithm predicts each sample � ( )y l m n
m
< ≤  with a ŷ

m
 as:
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For the label propagation algorithm, the key procedure is the construction of a graph, especially 
when the training data is scarce. Generally, there are two types of graphs, namely fully connected 
graphs and sparse graphs, which are widely used to measure the similarities between nodes. As for 
the sparse graph, the KNN graph, with the weight value of w k

ij
= 1/  where node i  falls into the 

first kth  nearest neighbor of node j , is commonly employed. 
On the other hand, the fully connected graph (such as Exp-weighted graph) takes the radial basis 

function (RBF) to represent the weight, which is w
x x

ij

i j= −
−










exp
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2σ
 where x x

i j
− 2  indicates 

the distance between the two nodes. In sentiment analysis, we employ the term frequency-inverse 
document frequency (TF-IDF) principle for instances of vectorization and Euclidean metric to 
characterize the distances.

Word-Document Bipartite Graph
The word-document bipartite graph was initially developed to capture the relationship in the corpus 
(Sindhwani & Melville, 2008). Unlike the fully connected graph and sparse graph, the bipartite graph 
describes the connection between the word and document instead of using feature words as the input 
vectors. More effectively, more lexical knowledge related to target words can be introduced. Regarding 
parameter selection, both the fully connected graph and sparse graph contain hyperparameters (i.e., 
k  in the sparse graph and σ  in the fully connected graph), which are difficult to determine. It can 
be derived for the bipartite graph; however, no hyperparameter is involved. 
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According to Figure 1, the left-side nodes represent words and the right-side nodes represent 
documents. An edge is added between words if they occur within a document. Each of the edge weights 
can be set in a way to suit a specific text classification task. In this way, the transition probabilities 
of document-to-word and word-to-document can be calculated.

There is a connection between the two sides once an edge is constructed. This indicates that 
the word belongs to the document. Then, we define the transition probability from one document 
to another:
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Together with the document-to-word transition probability and the word-to-document transition 
probability as:
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Figure 1. Example of a bipartite graph representing the word-document relationship
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where m  is the number of feature words, n  is number of documents, and tf
ik

 is the term frequency 
of the word w

k
 in the document d

i
. In practical use, the transition probability between two documents 

can be converted to:

T T T
dw wd

= ⋅  (6)

where T
dw

 stands for the probabilistic transition matrix from all the documents to all the words while 
T
wd

 stands for that from all the words to all the documents. 

METHoDoLoGy

This article proposes a semi-supervised learning model to identify the sentiment information from 
e-commerce reviews. To measure the information with global consistency, the word document-phrase 
tripartite graph is designed, which originates from the application of the word-document bipartite 
graph. Meanwhile, the semi-supervised clustering is introduced to optimize the working performance.

Tripartite Graph
As pointed out, the consumer review is usually of the colloquial expressing form. For this reason, the 
synonyms pattern and bigram phrases pattern are developed to construct the word document-phrase 
tripartite graph.

Synonyms Pattern
As shown in Figure 1, the sentences “房间干净 (The room is clean.)” and “房间整洁 (The house 
is tidy.)” deliver a similar meaning. Considering that the bipartite graph is based on the word 
cooccurrence principle, the words within the two sentences are so different that they cannot be 
identified via the bipartite graph. This establishes the synonyms pattern to address the word synonymy:

1.  Dataset Generating: A vocabulary list that serves as a lexicon with all words from the corpus 
built via sample collection.

2.  Word Similarity Calculating: Computing and recording of the relationship between any word 
to another in the lexicon.

3.  Synonymy Information Integrating: Every word in each review is reinterpreted with its 
synonyms.

Hence, the review can be resolved based on the synonyms pattern. Specifically, word similarity 
is calculated on the foundation of the word2vec model, which is trained to measure similarity via 
cosine distance (Mikolov et al., 2013). The word2vec model originated from an unsupervised language 
model. We employ sentiment information and part of speech (POS) information for distinguishing 
the words of different sentiment polarity or different POS. Let v

i
 and v

j
 be the vectors of words w

i
 

and w
j
, respectively. The similarity between the two words are:
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where Senti w w
i j
,( )  and POS w w

i j
,( )  are indicator functions for sentiment information and POS 

information (Dong & Dong, 1999; Hu & Liu, 2004; Ku & Chen, 2007). The researchers use a publicly 
available sentiment lexicon to obtain the sentiment polarity of words. We concatenate each adjacent 
word in a sentence to extract the bigram; we remove the bigram that appears in low frequency. Only 
if w

i
 and w

j
 are of the same polarity will we get Senti w w

i j
,( ) = �1  and otherwise Senti w w

i j
,( ) = �0 . 

The value of POS w w
i j
,( )  can be obtained in the same way.

Further, a similarity threshold parameter β ∈ ( )0 1,  is given to characterize the outcome. For 

each sim w w
i j
,( ) > β , we identify w

i
 and w

j
 as synonyms and vice versa.

Bigram Phrases Pattern
A major property of the consumers’ review is the nonstandard expression, which results in the 
polysemy of words. In line with Figure 1, both “high cost-effectiveness” and “high price” have the 
same word, “high.” Still, the sentiments are opposite. To address this issue, this article proposes the 
definition of bigram phrases by integrating the neighboring words according to context. In this way, 
the phrases make more sense than single words in the reviews.

In addition to the synonyms pattern, the bigram phrases can be integrated into the relationship 
computation. This is given by:
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where m  is the number of feature words, b  is the number of phrases, and n  is the number of 
documents. After integration, the feature word w

k
 has a frequency of tf

ik
 in the revised document 

d
i
' . The phrase p

q
 has that of tf

iq
. Appropriately, both the feature words and the bigram phrases are 

taken into consideration for sentiment classification. As shown in Figure 2, the words in green refer 
to the synonyms pattern. Those in blue refer to the bigram phrases pattern. This results in a more 
accurate understanding of the sentiment information.

Semi-Supervised Clustering
Classical similarity computing approaches are developed largely relying on the samples’ local 
distribution information. In this research, however, the global distribution property of samples within 
the entire dataset must be considered for similarity determination. The devising of semi-supervised 
clustering based on seed set reveals the deep distribution of cluster in the corpus. This can be employed 
in line with the tripartite graph.

Seeds-Based Semi-Supervised K-Means Algorithm
In semi-supervised clustering, some labeled data is used with the unlabeled data to obtain a better 
clustering. Basu et al. (2002) proposed two kinds of semi-supervised K-Means clustering algorithms, 
namely the seeded-K-Means and constrained-K-Means. These guide the clustering process (Basu et 
al., 2002). For details, see Algorithm 1.

Seeds-Based Semi-Supervised Hierarchical Clustering Algorithm
According to the seeds-based semi-supervised K-Means algorithm, the number of clusters should 
be set as two for common sentiment binary classification. In practical use, the cluster number 
cannot be simply selected as two in which way the samples with strong relation may be neglected. 
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Algorithm 1. Seeds-based Semi-supervised K-Means

Input: Set of data points χ = …{ }x x x
n1 2

, , , ,  x
n

d∈  , number of clusters K  labeled samples S S
l

K

l
=

=1∪  
as initial seeds

Output: Clustering outcomes C c c c
K

= …{ }1
, , ,

   1: Initialization of cluster centers µ
h

h
x SS
x
h

0 1( )
∈

← ∑ , for h K= …1, , ;� �  t ← 0

   2: Cluster assigning: for Seed-KMeans take 2(a); for Constrained-KMeans take 2(b)

        2(a): Assign each data x  to the cluster h*  (i.e., set χ
h

t
*

+( )1 ) where h argmin x
h h

t* = − ( )� �µ 2

        2(b): For x S∈ , if x S
h

∈ , assign x to the cluster h  (i.e., set χ
h

t+( )1 ); For x S∉ , assign x  to the cluster 

        h*  (i.e., set χ
h

t+( )1 ) where � *h argmin x
h h

t= − ( )� �µ 2

   3: Re-calculation of cluster centers µ
χ χh

t

h

t x h

x
+( )

+( ) ∈
← ∑

1

1

1
 while �t t← +( )1

   4: Repeating the preceding steps until the convergence.

Figure 2. Example of a tripartite graph with synonyms pattern and bigram phrases pattern
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Traditional K-Means clustering is, however, unable to find a proper cluster number. Note that the 
divisive hierarchical clustering theory can be applied to cluster number selection. Therefore, this 
article proposes a seeds-based semi-supervised hierarchical clustering algorithm (S3HC) for mining 
the distribution of the samples in the corpus.

Hierarchical clustering constructs a tree hierarchy by decomposing data sets. The divisive 
hierarchical clustering subdivides the dataset into increasingly smaller clusters until a termination 
condition is reached. Similarly, the S3HC algorithm integrates the seeded-K-Means with the divisive 
hierarchical clustering, setting the cluster splitting termination condition via labeled samples and 
deciding the cluster number.

The process of S3HC algorithm can be described as in Algorithm 2. According to Figure 3(a), 
the dataset contains six documents with two labeled samples (d

1
 and d

4
) of different categories. In 

line with the processing of S3HC, a hierarchical clustering tree is established. Each node on this 
hierarchical clustering tree represents a cluster (i.e., C C C

1 2 5
, ,..., ). Figure 3(b) aims to fully exploit 

Algorithm 2. Seeds-Based Semi-supervised Hierarchical Clustering

Input: Set of data points χ = …{ }x x x
n1 2

, , , ,  x
n

d∈  , samples vectorization via TF-IDF algorithm, labeled 

samples S S
l

K

l
=

=1∪  as initial seeds, K  is the number of categories of labeled samples

Output: Clustering outcomes C c c c
K

= …{ }1
, , , . . For each c r k

r
, , , ,= …{ }′′1 2 , ′′k  as the number of clusters

   1: C = ∅ , C C= ∪{ }χ

   2: function SUBDIVISION (χ, , )K S

   3:       if K≠ 0  and K≠ 1 then ▷ The condition of subdivision

   4:            disjoint K  partitioning χ{ }
=l

K

1
 of χ  via Seeded-KMeans (χ, , )K S

   5:            for l K= →1  do ▷ Continue to subdivide the newly obtained K sub-cluster respectively

   6:                  C C
l

= ∪{ }χ

   7:                  ′ =
=

′
S S

l

K

l1∪
'  is labeled samples of χ

l

   8:                  ′K  is the number of categories of labeled samples in χ
l

   9:                   SUBDIVISION χ
l
K S, ,′ ′( )

   10:           end for

   11:      end if

   12: end function
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the hierarchical cluster structure information. The global distribution matrix is constructed by 
integrating the clusters from the hierarchical clustering tree.

Integration of Tripartite Graph and S3HC Algorithm
This article proposes a method to detect the sample distributing information using the tripartite graph 
and S3HC algorithm. As a result, a more accurate sample relation graph can be obtained from the 
review corpus. The primary steps of the proposed method are as follows:

1.  With the application of the semi-supervised clustering algorithm, each cluster is acquired with 

a uniformly distributed subtransition matrixT j k
C

C C

j

j j∈ ∈ …{ }× �
, , ,� , "1 2 , where C

j
 is the 

number of samples in cluster C
j
:

a.  For seeded-K-Means and constrained-K-Means, the value of each element in T
Cj

 is set as 

1/ C
j

 considering the cluster size. The fewer samples in the cluster, the closer relationship 
exists (and vice versa). 

b.  As for the S3HC algorithm, the element value in the T
Cj

 is given as 1/ C depth
j j
⋅( ) , 

where depth
j
 indicates the depth of cluster C

j
 in the cluster tree. The clusters with more 

depth tend to contain less samples than those with less depth; therefore, we utilize the depth 
information to balance the transition probability of samples within different depths.

2.  We integrate all the k "  sub-transition matrices into one transition matrix T
C

n n∈ ×  with the 
global distributing information of all samples. According to the working principle of S3HC, one 
sample can belong to different clusters of different depths. Hence, the specific element in the 
transition matrix comes from the combination of the corresponding elements from each 
subtransition matrix.

3.  At this stage, two matrices are acquired: the transition matrix T
C

 from semisupervised clustering 
and sample relation matrix T  from tripartite graph. An optimized matrix T

F
 for characterizing 

sample distribution is obtained via weighted fusion. This is given by:

T T T
F C
= −( ) +1 α α  (9)

As for the example given in Figure 3, the weighted fusion process can be illustrated as Figure 4. 
In line with the weighted fusion principle, G

2
, which corresponds to matrix T

C
, represents the sample 

relation via S3HC algorithm. G
1
, which corresponds to matrix T , is the sample transition probability 

Figure 3. Example of S3HC algorithm
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by using tripartite graph. Characteristically, graph G , which corresponds to matrix T
F

, stands for 
the weighted fusion outcome.

EXPERIMENT

The experimental setup and results are used to evaluate the effectiveness of the proposed sentiment 
classification framework.

Experimental Setup
Data
The comparison experiments are on both Chinese and English sentiment corpus. For Chinese corpus, 
we conduct the processing on ChnSentiCorp (Tan & Zhang, 2008) from a hotel domain (ChnSentiCorp-
Htl-del-4000) and a laptop domain (ChnSentiCorp-NB-del-4000). Each dataset contains 2,000 positive 
and 2,000 negative documents for model training and testing, respectively. Correspondingly, for 
English corpus, the Amazon Electronic product review (Fang et al., 2014) and IMDB movie reviews 
(Hajli et al., 2017) are employed. The Amazon Electronic product review contains 1,000 positive 
and 1,000 negative documents for model training and testing. All the samples in the IMDB dataset, 
25,000 positive and 20,000 negative documents, also consider the resolution of unbalance issue.

Preprocessing
Original samples are transformed to processable data for further analysis. For Chinese corpus, we 
employ the ICTCLAS. This is provided by the Chinese Academy of Science for Chinese word 

Figure 4. Weighted fusion of graphs
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segmentation and POS tagging (Maas et al., 2011). The function words without sense and the 
neutral words without sentiment must be removed from the documents. Consequently, the Chinese 
POS tagging set of the Institute of Computing Technology (Zhang & Liu, 2002) and the Stop word 
list of the Harbin Institute of Technology (Liu et al., 2004) are utilized for stop-word removal. For 
English corpus, we use the Stanford CoreNLP for lemmatization and POS tagging (HIT-SCIR, 2013). 
Moreover, we remove the punctuation from reviews and leave the top 10,000 feature words with the 
highest word frequency for higher computational efficiency.

For Chinese word embeddings, the SogouT corpus, which contains over 130 million pages crawled 
in the Chinese Web, is employed for language model training in word2vec (Manning et al., 2014). 
We use pretrained word representations for English word embeddings. These are trained on Common 
Crawl and Wikipedia in advance (Liu et al., 2012). Typically, the issue of synonymy is appropriately 
addressed by word embedding. Afterward, considering that the domain knowledge will affect the 
sentiment delivery, we tend to make use of the specific domain knowledge in an e-commerce review 
for further processing.

Dataset Subdivision
In aiming to classify the unlabeled samples automatically, we subdivide the dataset into labeled 
sample sets (L ) and unlabeled sample sets (U ) via the method of randomly dividing. Size L, denoted 
as L , is from 10 to 100, with an interval of 10. The unlabeled samples are considered test samples 
to calculate model accuracy. In addition, each experiment is run 10 times to reduce the impact of 
randomness. The average outcome is taken as the experimental result.

Evaluation Protocol
The average accuracy is widely adopted to evaluate the classification methods. This is defined as:

Average accuracy
TP TN

TP FP TN FN
 =

+
+ + +

 (10)

where TP , TN , FP , and FN  represent the number of true positive samples, true negative samples, 
incorrectly identified positive samples, and incorrectly identified negative samples, respectively.

On the other hand, two hyperparameters must be determined in our framework. These are the 
weighted fusion of graphs threshold α  and the word-similarity threshold β . The labeled samples 
are limited; therefore, we take the leave-one-out cross-validation (LOOCV) method to determine the 
hyperparameters. We take corpus ChnSentiCorp-Htl-del-4000 and L = 100  as an example. It can 
be seen from Figure 5 that when threshold α < 0 8. , the average result is continuously improved as 
the global distribution information between samples is gradually strengthened. The highest value 
occurs when α = 0 8. . As α increases, the average result decreases. When α = 1 , the model achieves 
the worst accuracy rate (77%). In this occasion, the model does not use the tripartite graph information, 
indicating that tripartite graph can improve model performance by alleviating the synonym and 
polysemy issue. As can be seen from Figure 6, the best performance is achieved when the word 
similarity threshold β  is set to 0.5. Higher values may lead to the introduction of nonsynonym words. 
Lower values will lead to an insufficient number of synonyms to capture synonym patterns in 
documents. 

Likewise, two other hyperparameters are worked out in baseline methods in the same manner. 
The first is the parameter k  in KNN graph. The second is the parameter σ  in Exp-weighted graph.

Figure 7 is a workflow chart of the experiment procedure. E-commerce consumer reviews are 
collected and preprocessed into normalized data. Hereafter, both the tripartite graph and the S3HC 
relation graph can be obtained. Via weighted fusion of the graphs, the sample relation graph is applied 
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to the label propagation algorithm. This transmits the categories from labeled to unlabeled samples. 
In this way, the sentiment information can be identified.

RESULTS

The performance of the sentiment classification method proposed in this article is analyzed by comparing 
it to verified approaches. The KNN graph, Exp-weighted graph, and word-document bipartite graph 
were traditional methods used for comparison. Deep learning methods use multilayer perceptron (MLP), 
Planetoid, and graph convolutional networks (GCN, Kipf & Welling, 2017; Yang et al., 2016).

Figure 5. Weighted fusion of graphs threshold α  results 

Figure 6. Word-similarity threshold β  results
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Regarding the ablation study, the bipartite graph was taken in combination with the synonyms 
pattern and bigram phrases pattern. Further processes were taken to verify the capabilities of the 
tripartite graph and S3HC. Regarding the working performance evaluation, the tripartite graph is 
combined with the Seeded-KMeans clustering, Constrained-KMeans clustering, and the S3HC 
algorithm. This was abbreviated as Tripartite+SK, Tripartite+CK, and Tripartite+S3HC, respectively.

The classification accuracy of the methods in the experiment are obtained by using the labeled 
samples from the aforementioned datasets (see Tables 1-5). The performance of different methods 
is statistically compared. The classification accuracy of traditional methods (i.e., KNN graph, Exp-
weighted graph, and Word-document bipartite graph) raises progressively in line with the increasing 
number of labeled samples. Comparing deep learning methods in all datasets, these approaches tend 
to obtain better outcomes than the three deep learning methods.

In the ChnSentiCorp dataset and Amazon Electronic product review, the tripartite graph can 
effectively remove the polysemy and synonymy; therefore, it has an even higher accuracy in both 
datasets. Quantitative results of the proposed methods provide evidence that combining the tripartite 
graph with different clustering algorithms can generate a higher classification accuracy. In this way, 
sample global information obtained from clustering can benefit the relation description.

Generally, the combination of the tripartite graph and S3HC algorithm presents a best working 
performance due to its subdividing of text and capturing of the hierarchical distribution. Despite the 

Figure 7. Flow chart of the experiment

Table 1. Accuracy on ChnSentiCorp-Htl-del-4000 (%)

|L| 10 20 30 40 50 60 70 80 90 100

Baselines

KNN graphs 62.82 64.34 65.23 65.47 65.75 66.69 66.62 66.63 667.61 67.79

Exp-weighted graph 69.22 72.54 74.68 75.79 75.72 76.10 76.32 77.06 76.96 77.34

Bipartite graph 67.13 69.79 71.77 73.08 73.73 75.09 75.14 75.96 76.66 77.34

This paper

Bipartite+Phrase 66.84 71.00 73.34 74.52 75.60 76.87 77.06 78.06 78.59 79.34

Bipartite+Synonym 71.94 73.39 75.91 76.70 77.43 77.93 78.13 78.74 79.14 79.29

Tripartite 71.94 73.37 76.43 77.29 77.98 78.54 78.96 79.62 79.95 80.22

S3HC 68.00 71.64 73.32 75.37 77.90 77.32 77.61 78.04 78.93 78.49

Tripartite+SK 74.10 76.38 79.33 80.98 81.41 81.43 81.69 81.91 82.26 82.39

Tripartite+CK 73.86 75.90 79.34 81.29 81.65 81.72 81.85 82.20 82.36 82.58

Tripartite+S3HC 75.37 77.97 79.97 81.67 82.13 82.23 82.23 82.39 82.81 83.53



International Journal of Data Warehousing and Mining
Volume 18 • Issue 1

15

Table 2. Accuracy on ChnSentiCorp-NB-del-4000 (%)

|L| 10 20 30 40 50 60 70 80 90 100

Baselines

KNN graph 65.16 65.78 66.50 67.15 68.20 68.39 68.79 68.77 69.34 69.07

Exp-weighted graph 69.38 73.16 75.07 76.66 77.53 77.47 77.67 78.28 78.43 78.85

Bipartite graph 65.60 70.00 71.61 73.53 75.43 74.87 77.53 77.78 78.54 79.15

This paper

Bipartite+Phrase 67.27 72.81 73.46 75.31 77.02 76.82 78.82 79.29 79.22 80.07

Bipartite+Synonym 72.91 76.52 76.89 77.76 78.12 78.12 78.34 78.34 78.40 78.40

Tripartite 73.43 77.10 77.41 78.28 78.83 79.06 79.13 79.25 79.52 79.71

S3HC 73.57 79.33 80.94 81.77 80.66 81.35 81.56 81.92 82.12 82.07

Tripartite+SK 79.05 82.99 83.73 83.92 83.93 83.86 83.82 83.89 83.97 84.00

Tripartite+CK 78.87 83.11 83.89 84.05 84.05 83.88 84.03 83.99 84.08 84.06

Tripartite+S3HC 80.04 82.38 82.84 83.43 83.60 84.19 84.10 84.64 84.73 84.77

Table 3. Accuracy on Amazon Electronic product review dataset (%)

|L| 10 20 30 40 50 60 70 80 90 100

Baselines

KNN graph 50.16 50.32 50.34 50.81 50.63 50.94 50.87 51.50 51.07 51.43

Exp-weighted graph 71.14 71.25 71.41 71.50 71.34 71.73 71.97 72.37 72.49 72.50

Bipartite graph 70.33 70.79 71.02 71.21 71.47 71.70 71.61 71.72 71.75 72.01

This paper

Bipartite+Phrase 70.52 70.92 71.39 71.43 71.55 71.77 71.82 72.17 71.97 72.32

Bipartite+Synonym 72.19 72.71 72.67 72.75 72.86 72.90 73.05 73.33 73.31 74.05

Tripartite 73.29 73.33 73.77 73.79 74.12 74.33 74.63 75.02 75.82 75.93

S3HC 75.12 75.37 75.65 75.79 76.02 76.21 76.83 77.07 77.10 77.67

Tripartite+SK 76.78 77.17 78.39 79.62 79.73 78.12 78.67 78.94 78.89 79.49

Tripartite+CK 76.64 77.23 78.47 79.60 79.84 78.02 78.69 78.87 78.93 79.67

Tripartite+S3HC 79.01 79.14 79.20 79.36 79.39 79.57 79.87 80.03 80.17 80.21

Table 4. Accuracy on IMDB review dataset (%)

|L| 10 20 30 40 50 60 70 80 90 100

Baselines

KNN graph 54.16 54.34 54.73 54.96 55.04 55.04 54.78 55.06 53.25 53.29

Exp-weighted graph 65.14 67.43 69.34 69.12 70.87 72.09 73.17 74.25 73.95 74.24

Bipartite graph 62.73 64.28 65.44 65.19 66.41 67.00 67.91 69.23 69.90 69.91

This paper

Bipartite+Phrase 64.51 65.67 67.04 66.39 67.43 68.03 68.90 69.92 70.31 70.31

Bipartite+Synonym 78.69 79.21 79.91 79.64 80.28 80.48 80.71 80.98 81.11 81.05

Tripartite 78.50 78.97 79.59 79.30 79.84 80.09 80.20 80.71 80.86 80.79

S3HC 73.57 79.33 80.94 81.77 80.66 81.35 81.56 81.92 82.12 82.07

Tripartite+SK 76.40 76.57 76.89 75.12 75.92 76.77 76.99 77.61 77.29 78.35

Tripartite+CK 73.82 73.90 72.91 72.08 72.00 71.68 71.81 71.45 71.16 71.56

Tripartite+S3HC 79.36 79.57 79.59 77.46 78.78 79.47 79.80 80.65 80.63 81.30
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sophisticated method and inputting samples, the algorithm cannot always improve results. Notably, 
when the numbers of the labeled sample are 20, 30, 40, and 50 in dataset ChnSentiCorp-NB-del-4000, 
the classification of tripartite+S3HC drops slightly. This suggests that the noise within the raw data 
can be amplified and transmitted during the cluster splitting.

In the IMDB dataset, the application of synonyms pattern sees great progress in classification 
accuracy. This is because documents generate more connections and the number of connected 
components decrease through the graph. Basically, large amounts of samples of colloquial expressing 
forms will lead to too many connected components. As the labeled samples are selected randomly, 
most of the connected components may not have labeled samples. Therefore, the samples in the 
connected components will be classified incorrectly. For this reason, the improvement caused by 
clustering is slight. Correspondingly, there is a significant gap between the deep learning models 
and synonyms pattern-based methods.

CoNCLUSIoN

To better classify the sentiment polarity of the e-commerce review, an approach using tripartite graph 
and seeds-based semi-supervised hierarchical clustering is designed and presented. Experimental 
results reveal that the working performance can be evaluated by applying the proposed methods to 
consumer reviews. The methodology presented in this article improves the classification accuracy. 
It also as addresses the optimal description of the sentiment information.

Regarding future work, semi-supervised sentiment classification of complex conditions may 
impact accuracy and robustness. The current method is insufficient due to difficulties in obtaining 
high-quality labeled samples. In future work, the active learning method can be used to achieve a 
delicate selection of high-quality labeled samples.

Table 5. Experimental results compared to deep learning algorithms (%)

|L| 10 20 30 40 50 60 70 80 90 100

ChnSentiCorp-
Htl-del-4000

MLP 71.50 67.41 63.53 64.55 68.94 70.25 75.57 74.21 75.60 75.00

Planetoid 65.49 70.13 68.49 70.53 74.71 75.31 76.87 75.69 76.65 77.69

GCN 77.19 79.37 78.59 77.37 79.01 79.34 79.21 78.73 79.51 78.64

Tripartite+S3HC 75.37 77.97 79.97 81.67 82.13 82.23 82.39 82.81 83.53 83.21

ChnSentiCorp-
NB-del-4000

MLP 57.34 71.58 70.91 73.21 74.03 74.26 75.45 75.82 75.50 76.41

Planetoid 60.13 71.56 72.09 73.97 75.70 76.73 78.14 78.27 77.57 77.77

GCN 77.89 77.61 80.15 80.00 80.25 77.46 78.63 80.41 77.57 78.80

Tripartite+CK 78.87 83.11 83.89 84.05 84.05 83.88 84.03 83.99 84.08 84.06

Tripartite+S3HC 80.04 82.38 82.84 83.43 83.60 84.19 84.10 84.64 84.73 84.77

Amazon 
Electronic 
product review

MLP 68.36 68.75 67.20 67.74 67.15 67.79 68.44 69.27 68.59 68.30

Planetoid 67.63 66.23 67.11 67.20 68.05 69.19 70.37 71.26 71.07 70.19

GCN 66.78 66.90 67.90 68.11 69.88 69.43 69.45 69.07 71.40 72.71

Tripartite+S3HC 79.01 79.14 79.20 79.36 79.39 79.57 79.87 80.03 80.17 80.21

IMDB

MLP 60.27 58.53 56.21 56.74 57.15 57.69 58.40 59.08 58.61 58.04

Planetoid 57.63 56.23 57.11 57.20 58.05 59.19 60.37 61.26 61.07 60.41

GCN 56.90 56.93 57.68 58.82 59.14 59.14 59.07 59.07 61.24 62.07

Bipartite+Synonym 78.69 79.21 79.91 79.64 80.28 80.48 80.71 80.98 81.11 81.05

Tripartite+S3HC 79.36 79.57 79.59 77.46 78.78 79.47 79.80 80.65 80.63 81.30
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The current method uses a label propagation algorithm (LPA) as the learning method of the 
sample category. A drawback of LPA is the instability of classification results. In addition, the results 
of multiple times propagation may vary. The effects of deep learning methods like graph neural 
networks in graph structure modeling continues to improve due to the development of deep learning. 
Future work can combine the deep learning method with end-to-end training to improve stability.
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