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ABSTRACT

Wildfires are extremely harmful to the environment. While producing gaseous pollutants and particles 
that cause smoke, wildfires also release carbon dioxide (CO2), a greenhouse gas that will continue to 
warm the planet after the wildfire ends. This article delves into the impact of wildfires and air quality 
on human living conditions. The authors’ machine learning models use wildfire data to forecast air 
quality with detailed indexes and geographic information during a wildfire. The work evaluates the 
performance of each machine learning model via statistical metrics like mean absolute error (MAE), 
R-squared (R2), and root mean squared error (RMSE). The experimental results used neural networks 
to predict a specific value for carbon monoxide (CO), ozone, and PM2.5. These are both promising 
and accurate, providing meaningful insight into air quality within a region. This work will be useful 
for cities, governments, citizens, and public safety.
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INTRODUCTION

Wildfires can increase air pollution and cause severe damage to air quality by emitting carbon dioxide 
(CO2), carbon monoxide (CO), and other greenhouse gases that contribute to global warming and 
environmental hazards (Castelli et al., 2020). In addition, they can damage forests that otherwise 
remove CO2 from the air and inject aerosols into the atmosphere. Smoke from wildfires can cause 
serious health disorders and respiratory diseases (Camia & Amatulli, 2009; de Groot et al., 2007) by 
reducing the size of green forests and eliminating CO2 in the air (Reid et al., 2019). Pollutants like 
particulate matter (PM) 2.5, ozone (O3), nitrogen dioxide (NO2), and CO are major parameters in 
the air quality index (AQI) of a region (Tian et al., 2011).
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This work delves into the impact of wildfires on air quality, using data science tools and 
technologies to predict the impact of air quality after a wildfire event. To achieve this goal, the 
authors must define key measurements with respect to air. For example, air has several important 
measurement metrics that affect air quality, including the CO level, ozone level, and PM2.5 (small 
inhalable particles with diameters no more than 2.5 micrometers) index. These pollutants can have 
severe negative impacts on human health, including wheezing, coughing, sore eyes, and throats. 
The authors, therefore, develop machine learning models to understand the health effects caused by 
wildfires and strengthen public awareness surrounding such events.

First, the authors develop a data-driven machine learning framework to predict air quality during 
and after wildfires. In addition, the study addresses the limitations of existing methods. The research 
provides insight into the significant impact of wildfires, enabling people and governments to prioritize 
environmental protections and prevention efforts. Residents can also monitor air quality changes more 
closely and prepare for potential wildfires.

Second, the authors use two sets of machine learning models to predict air quality during wildfire 
seasons. The study provides detailed explanations on how to determine and tune parameters. Analysis 
helps the public understand and anticipate air quality changes. It also enables individuals to compare 
and improve upon existing models.

Third, the study includes results driven by statistical analysis and machine learning. It aims 
to prove the significance of wildfires and predict air quality with improved accuracy. Descriptive 
and inferential statistical analysis tools, along with visualization diagrams and graphs, depict the 
difference between air quality before and after wildfires. The study’s regression and deep learning 
models generate precise metrics to increase accuracy.

Fourth, the study presents a data-driven approach for deploying an online wildfire air quality 
alert system. It uses real-life data to develop a proof-of-concept implementation. This prototype 
demonstrates the novel functionalities of the authors’ framework, benefiting both the public and 
city officials.

The article is organized as follows. The next section discusses related works. Then, the article 
describes the geographical location of the study, comprehensive data parameters, data pre-processing, 
and training and test data preparation. Wildfire air quality prediction models and experimental results 
are explored before navigating the system design, implementation framework, and visualization tools. 
Lastly, the study discusses the conclusion and future work.

RELATED WORK

Preisler et al. (2015) highlighted the shortcomings of research when predicting wildfire impacts 
from PM2.5 concentration at ground-level monitors in California. While most researchers rely on 
satellite-based observational tools, this work combined models with an autoregressive statistical model, 
incorporating weather and seasonal factors to identify thresholds for predicting unusual events. The 
study focused on ground-based monitoring of PM2.5 levels, with data consisting of hourly values of 
PM2.5 and meteorological data. Data was gathered from the United States Department of Agriculture 
Forest Services. Unexpectedly, the study found that smoke plumes could identify seasonal wildfire 
influence with high accuracy.

Reid et al. (2015) and Jaffe et al. (2013) evaluated the contribution of O3 caused by wildfires 
in the atmosphere in western U.S. The studies developed several statistical models to estimate the 
maximum daily eight-hour average (MDA8) O3 emissions and created methodology functions for 
three western areas in the U.S. The residual of the statistical model can provide information on O3 
emissions that cannot be explained by normal wildfires.

Similarly, Preisler and Westerling (2007) developed a statistical model for forecasting fire-danger 
and producing one-month ahead wildfire-danger probability in the western U.S. The model predicted 
a monthly average temperature and drought severity index to demonstrate significant potential 
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wildfire areas over historical data. Each of these studies focused on a different target variable and 
collected input features under different circumstances, locations, and methods. It was, therefore, a 
challenge to apply the same methods to different datasets (Jaffe et al., 2013; Preisler & Westerling, 
2007; Preisler et al., 2015).

Guan et al. (2020) highlighted the impact of PM2.5 caused by a large wildfire in the southeastern 
U.S. in November 2016. The study investigated the wildfire via the community multiscale air quality 
model and weather research and forecasting model. It revealed the effect of the aerosol on worsening 
air quality after a wildfire.

Reid et al. (2019) used machine learning to create daily surface concentration maps for PM2.5 
and O3 during an intense wildfire in California in 2008. The study linked daily exposures to the 
counts of respiratory hospitalizations and emergency department visits at the zip code level. Their 
work found that PM2.5 plays a significant role when considering the association between wildfires 
and respiratory hospitalizations. However, the associations with ozone were confounded.

Yao et al. (2018) studied British Columbia’s wildfire season from 2010 to 2015 via five data 
sources: (1) PM2.5 measurements; (2) fire activity; (3) ecozone; (4) meteorology; and (5) elevation. 
The authors acquired one-hour average PM2.5 measurements from more than 70 air quality monitoring 
stations. They calculated the average elevation of each grid cell in the study area with data from the 
GTOPO30 product.

Watson et al. (2019) aimed to use machine learning techniques to predict ozone emission during 
wildfires in California. They tested several machine learning models for predicting ground-level 
O3 during wildfires. Their work assessed model accuracy using MDA8, the same index used in the 
current O3 model. The study also used leave-one-location-out cross-validation (LOGO CV) as the 
evaluation metric. They found that among the 10 machine learning models, gradient boosting had 
the highest accuracy and lowest LOGO CV estimated RMSE. Random forest (RF) was the second-
best predictor. They also noted that the ranking of predictors may vary depending on the evaluation 
metric, such as 10-fold CV. They determined that differences in the evaluation results will be more 
significant when using flexible models like gradient boosting or RF.

The most important takeaway from the current study is that ensemble tree models have highly 
flexible mean structures when considering the output as the mean value. This is because the mean 
structure characterizing the relationship between covariates and O3 is likely to include interactions, 
nonlinearities, and possible discontinuities.

REGION OF STUDY AND DATASETS

To fulfill the objectives and expectations of the current research, the authors included data from three 
components: (1) wildfire; (2) weather; and (3) air quality. This resulted in three large datasets. The 
study focused on assessing the impact of wildfires on counties in northern California. Therefore, the 
authors carefully selected datasets with high-quality data for the relevant regions. They prioritized 
datasets provided by local governments (considered reliable sources). They also disregarded datasets 
with excessive null values, difficulty in accessing data at the desired scale, outdated information, or 
delayed updates (Huang et al., 2021). Table 1 provides the data types and their sources.

Data Preprocessing
This section addresses the data processing involved in preparing the dataset for training a model 
that predicts air quality. The dataset comprises historical wildfire, weather, and air quality data. It is 
collected from various sources. Data processing, a critical aspect of this research, can be challenging. 
To accomplish the authors’ research goals, machine learning tasks were used to identify input and 
output datasets. The authors aimed to predict the impact of northern California wildfires on air quality. 
Thus, their output dataset consisted of air quality, fire, and weather data. Both weather conditions 
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and wildfire factors significantly impact air quality; therefore, fire and weather data served as input 
features and air quality data served as output features.

In the feature engineering process, the aim was to reduce the dataset dimensionality and 
eliminate collinearity through variable selection. According to a report by Dominick et al. (2012), 
air pollutant concentration (e.g., ground-level O3, PM2.5, and NO2) is affected by meteorological 
factors and local topography. Meteorological conditions like air quality are dependent on processes 

Table 1. Data types and sources

Data Data Type Source Time Range

Wildfire SQL Lite

Kaggle Wildfire dataset* 
This publication provides a spatial database of wildfires 
that took place in the U.S. from 1992 to 2015. The database 
was originally developed to support the national Fire 
Program Analysis (FPA) system. It is the third update 
to the publication. The data on wildfires were obtained 
from the reporting systems of federal, state, and local fire 
organizations.

1992-2015

Weather CSV/txt file
Statewide Integrated Pest Management Program: Current 
and past weather data for approximately 400 weather 
stations throughout California**.

1951-present

Air 
Quality CSV U.S. Air Protection Agency (EPA) [] 1990-present

*https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires
**https://ipm.ucanr.edu/WEATHER/wxactstnames.html

Table 2. Datasets and important features

Dataset Important Features

Fire

• Fire_code 
• Fire_name 
• Fire_year 
• Discovery_doy 
• Discovery_time 
• Stat_cause_descr 
• Cont_doy 
• Cont_time 
• Fire_size 
• Fire_size_class 
• Latitude 
• Longitude

Weather

• Station 
• Datetime 
• Precip 
• Temp_max: 
• Temp_min:

Air Quality

• Date 
• Ozone Concentration 
• CO Concentration 
• PM2.5 Concentration
• Daily_AQI_INDEX 
• COUNTY/COUNTY CODE 
• Location

https://www.kaggle.com/datasets/rtatman/188-million-us-wildfires
https://ipm.ucanr.edu/WEATHER/wxactstnames.html
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like air pollutant emission, transportation, chemical transformations, disposition (wet and dry), and 
dispersion (Demuzere et al., 2009).

Wildfire Data Processing
After reviewing multiple publicly available wildfire datasets, the authors chose a dataset provided 
by the Department of Agriculture. It contained a spatial database of wildfires that occurred in the 
U.S. from 1992 to 2015, totaling 1.88 million geo-referenced wildfires records. The study used the 
records that occurred in Santa Clara County and Sonoma County in northern California. Records in 
the wildfire dataset are labeled by county code, simplifying the online search with corresponding 
county codes.

Weather Data Processing
The weather dataset, with one section for Santa Clara County and one for Sonoma County, included 
precipitation, temperature, humidity, and other weather-related information. The main tasks analyzed 
and predicted impacts on air quality in terms of air metrics based on the California wildfire dataset. 
Given the datasets, the authors chose four machine learning-based data algorithms for each aspect. 
These were traditional multi-linear regression (MLR), generalized boosting model (GBM), RF, and 
artificial neural network (ANN) model. The last two models were suggested by previous research 
papers (Ramona-Gottschling & Gottschling, 2016), in which the researchers compared 11 models and 
illustrated the favorable performance of the GBM and RF in detail. In particular, the work explored the 
performance of the two models on predicting PM2.5 concentrations after wildfire events in California.

Air Quality Data Processing
Regarding air data, the authors’ dataset used O3, CO, and PM2.5. All five years of daily pollution 
indexes were collected with labeled dates and geographic location information. The authors needed 
individual pollutant’s air concentration from Santa Clara County and Sonoma County from 2000 
through 2015. Data were downloaded from the U.S. Environmental Protection Agency (EPA).

In terms of air quality, the authors analyzed the relationship between wildfires and substances in 
the air (PM2.5, O3, and CO). This was achieved by comparing the content of each substance before 
and during the wildfire.

Air quality data contains the following four air pollutant indexes: (1) MDA8 for O3; (2) MDA8 
for CO; (3) daily mean for PM2.5 concentration; and (4) AQI. For other columns, some descriptive 
features were removed, including site ID or site name. Only date and location information were 
maintained for visualization purposes.

This study used a five-step data analysis approach. Step one found relevant datasets for the 
analysis. These included outdoor air quality data provided by the EPA. The authors also found wildfire 
datasets for their study on the National Oceanic and Atmospheric Administration (NOAA) website. 
It included wildfire location, burning area, wildfire time, and lighting conditions. Step two included 
the necessary data cleaning process and exploratory data analysis. For instance, the authors could 
combine those datasets to create a single comprehensive dataset on desired air quality perspectives. 
Each combined dataset contained all features and aspects within their study. Step three performed 
feature engineering to reduce the correlation between features and converting categorical features 
into numerical features using encoding methods. Step four fed data into evaluated performance of 
different models in terms of multiple statistical metrics.

Data sources and standards are not uniform. Therefore, the authors understood that they needed to 
apply some form of data scaling or centering. Hence, the study performed the required transformation 
for later modeling because the data sources were inconsistent. The min-max method was used to set 
a reasonable range for the normalized data and prevent inconsistency in number size. To achieve 
min-max normalization, the authors imported the MinMaxScaler from sklearn.preprocessing to 
construct the scalar model in Python.
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PROPOSED MODELS

After merging and cleaning the datasets, the authors had a dataset consisting of six independent 
variables and three dependent variables. This number was suitable for machine learning tasks. The 
authors had three dependent variables to predict. They, therefore, needed to run each model three 
times. Next, the researchers explored major approaches for solving these problems by applying 
statistical and machine learning models.

Linear regression is widely used in all kinds of machine learning projects. It is also simple 
enough to be used as a performance baseline (Noorian, 2015; Preisler et al., 2015; Yao et al., 2018). 
Therefore, the authors chose linear regression as the first model for analysis.

For predicting air quality, the authors used ANN. This is a widely used machine learning model 
that can solve non-linear problems and predict output values based on input parameters from training 
data. In this study, the authors implemented an ANN model with three hidden layers and activation 
functions to calculate PM2.5, CO, and O3 values using input values (Elia et al., n.d.; Jain et al., 
n.d.; Tonini, n.d.; Zhana et al., 2017). Despite its apparent simplicity, the ANN algorithm is highly 
effective at replicating relationships within datasets, which makes it an ideal solution for the current 
air quality prediction study.

Recurrent neural network (RNN) is a type of deep learning algorithm that is useful for time-series 
data like air quality measurements. Overall, RNN is a powerful tool for air quality prediction. It can 
capture the complex temporal dynamics of pollution levels and provide accurate forecasts based on 
past measurements.

This study used an RNN model to predict air quality levels based on past measurements. Unlike 
other neural networks, RNNs have a memory of previous inputs, which allows them to better model 
temporal dependencies (Wang & Wang, n.d.; Xhu et al., n.d.; Zhana, 2017). This is important for 
air quality prediction because pollution levels are affected by factors that change over time, such as 
weather patterns, traffic, and industrial activity. The authors’ RNN model had multiple layers, with 
each layer using a combination of recurrent and activation functions to generate an output based on 
the input data from the previous time steps. The authors used the output to predict next step air quality 
levels based on patterns and trends observed in the historical data.

The last model was the gated recurrent unit (GRU), a type of RNN that addresses the problem of 
vanishing gradients. It is an improvement over traditional RNNs. GRU is like long short-term memory 
(LSTM) in design; however, it uses an updated gate and reset gate to selectively transfer information to 
the output (Watson et al., 2019; Yao et al., 2018). These gates are trained to remember (without deleting) 
information, even if it is not immediately relevant to the current prediction. Compared to LSTM, GRU 
is computationally more efficient and simpler to modify. Thus, it was chosen for this study.

EXPERIMENTAL STUDY

This section analyzes the proposed models for predicting air quality during wildfires. First, it 
describes the steps the authors took to prepare the dataset, including six independent variables and 
three dependent variables. Then, it explores statistical and machine learning approaches to analyze 
the problem. A linear regression was used as the baseline model, as it is a commonly used and simple 
machine learning technique. The authors also deployed ANN with three hidden layers to predict 
PM2.5, CO, and O3 values. While simple, the ANN algorithm proved to be effective in emulating 
relationships in data sets. However, after examining the data visualization graphs, the authors realized 
that the input feature might not be a simple linear relationship. As such, the authors used deep learning 
models like RNN and GRU to capture the complex relationships between weather and wildfire data.

As noted, RNN internal memory can consider previous calculations and results when making 
decisions. This proved to be useful for the current project and related data. GRU, an improved version 
of RNN, solved the vanishing gradient problem and was also computationally efficient. The authors 
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chose GRU over LSTM models because they are computationally more efficient and simpler to 
modify (Huang et al., 2021).

Experimental Results
The authors experimented with linear regression, ANN, RNN, and GRU. All the models demonstrated 
distinct strengths and weaknesses in predicting outcomes (Huang et al., 2021). For each of the four 
models, the authors used six features as input and selected one AQI as the output each time. To 
predict three AQIs, the authors ran each model three times, resulting in three sets of test results. 
Figure 1 displays the six input features and three AQIs.Figure 2 shows the performance of the linear 
regression model, which performed poorly. All three AQIs received very low scores. This indicated 
that the linear regression model was not suitable for the authors’ problem. It also suggested there may 
be nonlinear associations among the independent variables and dependent variable.

Figure 1. Input features and three AQIs

Figure 2. Linear regression
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The study constructed an ANN model with two hidden layers. It used the ReLU activation 
function and calculated the loss through the mean squared error method. Figures 3 through 5 display 
the training loss and validation loss on O3, PM2.5, and CO values with the ANN model. The ANN 
model had an overfitting issue on CO value prediction; however, it performed well on O3 and PM2.5 
value prediction. Both the training loss and validation loss decreased as the number of training epochs 
increased. However, this may be because the model was trained for too long. The authors should, 
therefore, reduce the number of training epochs.

Figure 3. Training Loss vs. validation loss on ozone value prediction with the ANN model

Figure 4. Training loss vs. validation loss on PM2.5 value prediction with the ANN model

Figure 5. Training loss vs. validation loss on CO value prediction with the ANN model
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The authors built an RNN model with three hidden layers and set the return sequence as true. 
Next, they calculated the loss through the mean squared error method, using rmsprop as the optimizer 
when compiling the model. Figures 6 through 8 display the training loss and validation loss on CO, 
O3, and PM2.5 values with the RNN model. The RNN model performed best on PM2.5 values, with 
training losses for all three AQIs decreasing. The validation loss of CO fluctuated more than the other 
two AQIs. Still, there was a downward trend.

Figure 6. Training loss vs. validation loss on CO value prediction with the RNN model

Figure 7. Training loss vs. validation loss on ozone value prediction with the RNN model

Figure 8. Training loss vs. validation loss on PM2.5 value prediction with the RNN model
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The authors built a GRU model with three hidden layers, set the return sequence as true, and used 
tanh as the activation function. They calculated the loss through the mean squared error method and 
used SGD as the optimizer when compiling the model. Figures 9 through 11 display the training loss 
and validation loss on CO, O3, and PM2.5 values with the GRU model. The GRU model outperformed 
the ANN and RNN models, with training losses for all three AQIs decreasing. The validation loss for 
all three AQIs decreased significantly as the number of training epochs increased.

Figure 9. Training loss vs. validation loss on CO value prediction with the GRU model

Figure 10. Training loss vs. validation loss on ozone value prediction with the GRU model

Figure 11. Training loss vs. validation loss on PM2.5 value prediction with the GRU model
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SYSTEM IMPLEMENTATION

System Requirements
The proposed system focused on individuals whose lives were affected by the wildfires to predict 
the air quality impact of California wildfires (Huang et al., 2021). Users can use this application to 
predict the impact of wildfires on air quality by looking at the PM2.5, CO, and O3 information (data 
collected over 15 years. The air quality impact due to wildfire application system will benefit people 
with health conditions related to air quality sensitivity and those working to contain wildfires (e.g., 
firefighters, first responders, and people living close to wildfire areas). In addition, the system will 
actively learn about fires as they occur throughout the year.

The deep learning models can help users learn about and understand the relationships between 
air quality indicators and fire parameters. However, the system has limitations. For instance, multiple 
factors could negatively affect the machine learning and deep learning models’ prediction accuracy. 
Although fire data has been collected from the past 15 years, there are only tens or hundreds of fires 
per year in California. Most wildfires occur in the summer and autumn (June to November), making the 
prediction less accurate in the winter and spring. Furthermore, the dynamic nature of air quality means 
that other potential features could affect the air, such as ocean currents, geological activities, and human 
activities. The current model will focus, therefore, on analyzing air quality due to wildfire activities.

The high-level data analytics in this project displayed air quality before, during, and after wildfires. 
It also captured information for major fires that left a large impact.

System Design and Architecture
The authors’ prototype is a Web-based application with a Python Flask framework. Most of the 
artificial intelligence-powered function components are written in Python. The authors used an 
AWS cloud environment in the backend to deploy the application. It is seamlessly integrated with 
the front-end. The study deployed the authors’ application on an AWS cloud platform that supports 
scalable computing capabilities (Huang et al., 2021).

For data management, the authors generated two datasets through an API provided by the EPA 
weather data. These include file_data (filtered by duration) and AQI data (containing all air quality 
data collected by sensors from 2000 to 2015 for each county in California). As explained, these 
datasets served as input variables. When the Web application was deployed in the production mode, 
the machine learning and deep learning models would be operational and available online.

User Interface Design
The study used Tableau to design the visualizations and interactive dashboard on the online application 
for user interface design and data visualization. The visualization included two maps that served as 
filters for each other. It also included a legend to help users select a date range and move forward 
along the timeline automatically to represent the data as tooltips on map points. The indicator legend 
displayed a continuous color range to represent fire size, with orange representing the smallest and 
red representing larger fires (> 100000). See Figure 12.

Figure 12. Legends in the dashboard
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For example, Figure 13 depicts all wildfires in June 2008 across California. The left map shows 
the exact location of each wildfire (latitude and longitude). The right map displays wildfires that 
occurred during a specified time by county. Clicking on a county displays a tooltip with the exact 
numbers for the summation of fire size, CO, O3, PM2.5, and temperature within a given time. The 
interactive visual created in Tableau has significantly improved the use of the Website.

In addition to Tableau visualizations, the authors developed a report generation feature that can be 
accessed by clicking the “generating report” button. This report demonstrates the statistical analysis and 
changing plots for air quality throughout the duration of the wildfire. Figures 14 and 15 are examples 
of how the air changes with wildfires that lasted more than 100 days. The CO value shows a significant 
increase after the fire has burned or across several weeks. The O3 value decreases as the fire burns.

Figure 13. California wildfire (June 2008)

Figure 14. Change of CO value caused by wildfires
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The authors generated 21 bar charts for the three air quality indices (O3, PM2.5, and CO). Users 
can select the pollutant they need to view. Furthermore, the authors developed three-dimensional (3D) 
plots to visualize the trend for air quality indices and the relationship of fire size and air quality. Each 
3D plot represents a single long duration fire for one county in one year. The x-axis represents days 
for one year from January 1 through December 31. The y-axis represents the fire size. The z-axis 
represents the air quality value for one AQI.

Figures 16 and 17 display the change in PM2.5 (2006 and 2008) at county 19. Through these 
visualizations and reports, users can gain a better understanding of the relationship between wildfires 
and air quality.

Figure 15. Ozone value change caused by wildfires

Figure 16. Change in PM2.5 in 2006 at county 19
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Prototype Implementation
The authors conducted experiments with various machine learning models, including linear regression, 
ANN, RNN, and GRU. Each has its own strengths and weaknesses in predicting outcomes. The 
study aimed to develop a prototype that gives users a seamless experience and delivers accurate 
predictions. To achieve this, the authors implemented the GRU model, which has demonstrated the 
highest accuracy compared to other models. Although the study did not include other deep learning 
models in the prototype, the authors provided brief introductions and training results for models like 
RF, ANN, and logistic regression.

During a wildfire season, predicting air quality is crucial when making life-saving decisions. 
The authors aimed to deliver superior results and optimized outcomes. They fine-tuned parameters 
for each layer and continuously trained their machine learning models to minimize loss. For this 
specific case, they chose a GRU model with five layers, a return sequence feature, and tanh activation 
functions. The experiments show that the GRU model yields excellent results. Thus, the authors were 
ready to integrate it into the system.

To implement the prototype, the authors needed to ensure that all required features and functional 
components were included:

•	 Provide accurate predictions of air quality based on relevant fire parameters.
•	 Offer insightful and meaningful data visualizations based on statistical and exploratory data 

analysis.
•	 Provide an explanation of the generated prediction result, such as the meaning of the predicted 

variable value based on the machine learning models.
•	 Offer the latest summary statistics on the main page of the application along with instant news 

updates regarding the fire to users of interest (e.g., firefighters and county residents).

Figure 17. Change in PM2.5 in 2008 at county 19
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The application has three main tabs. The first tab, Overview, displays statistics, insights, and 
current information about a wildfire or the fire season. This page includes financial losses, millions 
of acres burned, number of studies performed in the wildfire field, and number of people injured or 
dead due to the wildfire. Additionally, three of the authors’ best-performing machine learning and 
deep learning models are listed on this page.

The second tab, Data Preparation, illustrates the key parts of the data cleaning and preparation 
process in the authors’ project. First, it presents the filtering process, corner/nullable/invalid data 
processing, and merging dataset. Second, it prepares the information into the machine learning ready 
state dataset.

The third tab, Result, displays both our artificial intelligence-powered model prediction results 
and the authors’ insightful data visualization graphs and animations. The first portion of this tab 
displays best-performing prediction scores in terms of error loss. The authors also enable a form 
to allow users to perform current or future wildfire impact on air quality. The information will be 
processed on the back end, producing a prediction value displayed to the user. The output includes 
O3, CO, and PM2.5 value. Additionally, based on these values, the authors determine whether the 
predicted air quality is healthy, okay, or hazardous for people going outside without a mask.

In the second portion of the third tab, the authors provide two major categories of data 
visualization. The first category shows the specific air quality metric before, after, and during a 
fire. It is displayed in a two-dimensional fashion, with CO, O3, or PM2.5 as the Y-axis and time of 
interest as the X-axis. The second category is an interactive, animated heat map, which demonstrates 
the past 15 years of California fires with respect to fire size per county and specific location. These 

Figure 18. California wildfire portal
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are displayed side by side. Users can toggle the 15-year time interval to see months with fires, fire 
size, and impact on air quality.

The authors also included a user interface for raw data source (see Figure 20). This interface 
enables users to access the raw data used in the research and understand the data cleaning and 
preparation process.

Visualization
After the authors implemented various models, they developed a prototype with a visualization tool 
(see Figure 22). This enables users to receive notifications of future air quality in terms of CO, PM2.5, 

Figure 19. Predictions on air and water due to wildfire

Figure 20. Raw data sources
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and O3 concentration indexes. Thus, they can act accordingly, save time, and save lives during and 
after a wildfire.

As mentioned, AQI is an index utilized by government agencies to measure the level of air 
pollution. The EPA reports that AQI values range from 0 to 500, with higher values indicating higher 
levels of pollution. To interpret AQI values, it is important to reference the classification in Figure 21. 
The authors hope this study will become a trustworthy source of weather, air, and wildfire reporting 
systems, with clear visualizations including line charts, interactive maps, and 3D plots. They aim to 
serve the purpose of providing appropriate predictions and offer recommendations (Huang et al., 2021).

This prototype has two main parts for visualization. These can display the experimental results 
along with data analytics. The first part is the authors’ data visualization result from the data analytics 

Figure 21. AQI categories defined by EPA

Figure 22. Dashboard showing CO value prediction
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section. They developed the Tableau interactive visualization, which allows users to observe changes 
over 15 years related to wildfires in California. Furthermore, the authors display their data analytics 
results, such as 2D and 3D wildfire-related charts and graphs.

The authors also developed a map-based UI (User Interface) that displays statistics of active 
wildfires in California and uses the authors’ deep learning model to predict air quality for the next 
five days. When the user clicks on the county where the fire is located, the visualization tool generates 
predictions for CO, O3, and PM2.5. The map-based UI displays relevant information like the fire’s 
position and impact radius. The four tabs on the right display air quality levels for the next five days, 
allowing users to plan their outdoor activities accordingly. These predictions are powered by artificial 
intelligence and derived from the study’s deep learning model. Additionally, the authors included a 
fourth tab. It includes valuable information like weather forecasts for the next five days, temperature, 
humidity, wind speed, and ultraviolet index. Overall, the map-based UI provides a user-friendly way 
to visualize data and predictions related to active wildfires in California, empowering users to stay 
informed and make informed decisions.

The next feature of the visualization tool allows users to input their own wildfire metadata and 
predict wildfire air quality values using the methodology as described. On the left-hand side, the 
authors created a form where users can configure their own fire metadata, including county name, 
fire size, fire duration, mean precipitation, and min-max temperature. Three linear gauge labels are 
displayed on the right-hand side, with each representing a single air quality metric prediction value. 
These values are shown on the top of the tab and the pointer inside the linear gauge label. Overall, 
this feature provides a user-friendly way to input individual data and receive predictions about future 
wildfire air quality levels.

CONCLUSION AND FUTURE WORK

This study investigated the impact of wildfires on air quality and developed a Web-based application 
to provide accessible information on air quality patterns after a wildfire event. The authors collected 
data from publicly available trustworthy sources and used machine learning models to extract data 
for their application. Then, the authors trained multiple models, choosing a GRU model based on its 

Figure 23. Dashboard showing weather prediction
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high accuracy and low loss rate. The prototype Website showcases the authors’ research findings, 
datasets, visualizations, and live air quality predictions through a map with ongoing wildfires.

The proposed framework serves two functions. First, individuals in northern California can 
monitor current wildfire situations and receive air quality predictions for the next five days. The model 
also advises on whether the predicted air quality is dangerous for human health and recommends 
whether to stay indoors. Second, firefighters and researchers can use the artificial intelligence-
powered model to predict air quality based on imaginary fire scenarios and estimate their impact on 
air quality in northern California. Lastly, the authors present a data-driven approach for deploying 
a Web-based wildfire air quality alert system. The proof-of-concept implementation demonstrates 
the novel functionalities of the proposed framework, benefiting both the public and city officials. 
Through this study, individuals can take precautions to keep themselves safe and follow the authors’ 
predictions or recommendations to prepare for potential impacts caused by wildfires.

However, the current solution only considers wildfire and weather data. Thus, it cannot cover all 
factors that impact air quality, such as industrial exhaust emissions and natural disasters like sandstorms. 
The authors acknowledge the limitations of the sample input data, noting room for improvement in 

Figure 24. Impact of wildfires on air quality prediction
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modeling, tuning, and data preprocessing. In future work, the authors plan to incorporate factors that 
contribute to air quality during a wildfire to gain better insights based on other datasets.

The current approach used a trained neural network to predict CO, O3, and PM2.5 values. It is 
more accurate and provides better insights into regional air quality. The Web-based application offers 
historical wildfire impact analysis, appropriate charts, and explanations for easy understanding of 
the authors’ approach and prior wildfires in northern California.

The current study limited its scope to California. It also used precipitation and maximum and 
minimum temperatures as proxies for weather. However, future work could incorporate additional 
features like wind direction, wind speed, and atmospheric pressure. This would allow the authors’ 
machine learning model to produce more accurate predictions and improve its overall capability and 
robustness. Furthermore, the authors can expand their scope to include the western portion of the 
U.S. or the entire country.

The prototype, including the online application, provides California residents with real-time and 
future air quality information, as well as a visual representation of a wildfire’s extent. By regularly 
checking the application, individuals can make informed decisions about outdoor activities and adjust 
their schedules if the air quality is poor.

The effects of wildfires on people and the economy are significant in California. Therefore, the 
authors aim to assist residents and firefighters impacted by wildfires through the use of their air quality 
prediction study. The work has provided people who may be impacted by wildfires with predictions 
and recommendations to prepare for potential impacts caused by wildfires. These recommendations 
include circulating ambient air with air filters, limiting outdoor time, and wearing masks. The authors 
hope their research can also be used by city governments and citizens concerned with public safety.
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