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ABSTRACT

Subjective attack trees (SATs) extend traditional attack trees by taking into account the uncertainty 
about the probability values of security events. Assigning precise values is often difficult due to lack 
of knowledge, or insufficient historical data, making the evaluation of risk in existing approaches 
unreliable, and therefore unreliable security decisions. With SATs, the author seeks to better reflect 
the reality underpinning the model and offer a better approach to decision-making via the modeling 
of uncertainty about the probability distributions in the form of subjective opinions, resulting in a 
model taking second-order uncertainty into account. The author further discusses how to conduct 
security analysis, such as risk measuring and security investments analysis, under the proposed model. 
Security investments analysis requires first to incorporate the model with countermeasures and then 
study how these countermeasures reduce risk in the presence of uncertainty about probability values. 
The importance and advantage of the SAT model are demonstrated through extended examples.
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INTRODUCTION

An attack tree (AT; Schneier, 1999) is a security paradigm used to define and model all possible 
attack scenarios against a system in a structured, hierarchical way. The general idea is to analyse how 
a system can be attacked, and this is done by identifying one or more attack goals against a system 
and then breaking down each goal into sub-goals (or sub-attacks). A simple example AT is shown in 
Figure 1, which depicts the possible scenario of infecting a computer by putting a virus on the system 
and executing the virus. Putting a virus on the system is done by either sending an email containing 
a malicious attachment or distributing a USB stick. The leaves of the tree represent the actions (also 
referred to as security events) an attacker can perform in order to complete the attack.

In ATs, reasoning about an attack is done by first evaluating the likelihood of the leaves (i.e., 
security events), and then propagating the likelihood values to the top of the tree to compute the 
likelihood of the root node. In ATs, therefore, the main goal of security analysis is to answer the 
question: What is the likelihood that an attacker can successfully achieve their goal (i.e., the top event 
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node in the tree, e.g., infect a computer as in Figure 1)? Traditionally, such an evaluation is done by 
assigning probability values to the security events. However, assigning precise values is often difficult 
in the domain of cybersecurity due to lack of knowledge or insufficient historical data, making the 
answer to the above question, and therefore the outcomes of risk analysis, unreliable.

Unreliability of likelihood values could lead to unreliable outcomes for risk and security analysis in 
general because, in order to conduct such analysis, it is essential first to know the likelihood of attacks. 
Therefore, to have a sound and reliable risk analysis of attack trees, the likelihood of security events 
should be correctly evaluated, and, in case there is uncertainty around the evaluation, we argue that 
such uncertainties must be explicitly expressed and reasoned with during the analysis. Doing so would 
better inform the decision-makers about uncertainties affecting the assessment of risk scenarios and 
enable them to use finer-grained tools to make a decision based on, for instance, their risk attitudes.

In 2021, my colleagues and I proposed a novel attack tree model, called a subjective attack tree 
(SAT), to take into account the uncertainty about the probabilities of security events, via subjective 
opinions (Al-Hadhrami et al., 2021). In subjective logic (Jøsang, 2016), a subjective opinion 
represents the probability distribution of a random variable complemented by an uncertainty degree 
about the distribution. The modelling of uncertainty about probability distributions in the form of 
subjective opinions would produce a model that takes second-order uncertainty (i.e., uncertainty 
about probabilities) into account.

In 2020, my colleagues and I extended the model of SAT to consider performing a complete 
security analysis, such as risk measuring and security investments analysis (using the index of return 
on investment—ROI; Al-Hadhrami et al., 2020). Compared to the security analysis in traditional 
ATs, such analysis in SATs is carried out in the presence of uncertainty over the probabilities of 
security events.

In this paper, the author extends on these developments and attempts to address some of their 
limitations through (a) providing a general form of propagation rules of subjective opinions in SATs 
to deal with the propagation of any number of input security events, (b) discussing the incorporation 
of countermeasures into the SAT model when the effectiveness values of these countermeasures 
are given as precise values in the range of [0, 1] and when given as uncertain values (e.g., due to 
uncertainties regarding their effectiveness), and (c) extending the discussion of risk analysis in (Al-
Hadhrami et al., 2020) to discuss risk measuring based on second order moment matching which 
approximates risk as a beta distribution.

The rest of the paper is organised as follows. The following section provides an overview of 
attack trees and subjective logic. Next, the SAT model is presented, and the propagation method of 
subjective opinions in the model is demonstrated. Following this, the security analysis in the SAT 

Figure 1. An example attack tree model. Here, the infect computer node represents an AND node, while the put virus on system 
node is an OR node



International Journal of Blockchain Applications and Secure Computing
Volume 1 • Issue 1

3

model is discussed. The discussion includes conducting risk computation, adding countermeasures 
to the model, and performing security investments analysis using the index of ROI to select the most 
profitable security controls for implementation. An illustrative security analysis example using the 
SAT model is given in the subsequent section. After that, the importance and advantages of the 
proposed model are demonstrated through a comparison model with the classic probabilistic attack 
tree model. The discussion section evaluates the proposed model, and finally, some promising future 
directions for this research are provided.

BACKGROUND

Attack Trees and Related Work
Attack trees (ATs) were first introduced in 1999 by Schneier as tools to analyse and evaluate all 
possible attack scenarios against complex systems in a structured, hierarchical way (Schneier, 1999). 
Recently, a number of computer-based models and systems are developed such that the security aspect 
in these systems is being evaluated using the AT model (for example, see Krichen et al., 2019; Scala 
et al., 2022; Valluripally et al., 2020; Shang et al., 2019). The general idea of ATs is to identify one 
or more attack goals against a system and then break down each goal into sub-goals (or sub-attacks), 
which can be further decomposed into other sub-goals until reaching a state where sub-attacks cannot 
be further refined. These final sub-attacks, representing the leaves of an AT, are the basic security 
events (or actions) an attacker can perform—by exploiting existing vulnerabilities—to achieve their 
overall goal, i.e., the root node of an AT. A node’s children can be decomposed in a conjunctive or 
disjunctive manner. The former requires that all of the node’s children be satisfied in order to complete 
an attack, while with the latter, at least one of the child nodes has to be satisfied.

The values of nodes in a tree can take on different forms, depending on the security attributes 
or properties that need to be analysed. Such values may represent the probability of success of a 
given attack, the likelihood that an attacker will try a given attack, the impact of an attack, and so on. 
Among these various input parameters used in ATs, the likelihood of attack parameter represents one 
of the core input parameters required to conduct security analysis, as it allows one to determine how 
likely a system can be attacked. Having determined the likelihood, it is possible after that to extend 
the security analysis to involve, for example, risk measuring, or conducting security investments 
analysis to select implementable countermeasures. However, security events often occur in a context of 
uncertainty, and security analysts should analyse the potential uncertainties around them for efficient 
identification, management, and evaluation of risk (Couce-Vieira et al., 2017).

The most common approach to evaluate likelihoods in the literature is the use of the probabilistic 
approach (e.g., Buldas et al., 2020; K. Edge et al., 2007; Kumar & Stoelinga, 2017; Pieters & 
Davarynejad, 2014; Roy et al., 2010; P. Wang et al., 2012), which provides precise values, as probability 
distributions, for likelihoods. In this approach, however, eliciting accurate probabilities is usually 
difficult due to a lack of expertise or insufficient historical data, meaning that the results obtained 
from using such an approach could be unreliable, and therefore unreliable security decisions (Kaplan 
& Ivanovska, 2018). Furthermore, using the probabilistic approach, we cannot model situations of 
ignorance, expressed by “I don’t know” (Jøsang, 2016), or situations of high uncertainties as a result 
of poor knowledge for assigning probabilities.

Other approaches proposed to model uncertainty about likelihoods in risk analysis models, aiming 
to address the limitations of the probabilistic approach, is the use of interval analysis (Jürgenson & 
Willemson, 2007) and fuzzy numbers (Buoni et al., 2010; Zhang et al., 2017). In the interval analysis 
approach, a range of possible values, bounded by lower and upper values, is defined (rather than just 
a single value) to express possible probabilities for likelihoods. Similarly, with the fuzzy numbers 
approach, a range of possible values is also defined, but additionally, the approach determines the 
most likely value within the range, having assigned a possibility of one to this value, while others 
are assigned lower possibilities (i.e., membership degrees). In these approaches, however, specifying 
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lower and upper bounds (or determining the most likely value in the fuzzy numbers approach) does 
not resolve the issue of how these values were precisely determined, that is, in case of insufficient 
historical data, for example, how can one be certain that the probability is bounded by two known 
values and therefore cannot be less than the lower value nor greater than the upper value?

Subjective Logic
Subjective logic (Jøsang, 2016) is a formalism for reasoning under uncertainty that extends the 
probabilistic logic to allow for second-order uncertainty to be expressed about probability values, 
via so-called subjective opinions. In subjective logic, a subjective opinion represents the probability 
distribution of a random variable complemented by an uncertainty degree about the distribution. 
Consider a proposition X  such as “the workstation is compromised.” The validity of X  is uncertain 
in general, but we can assume there is a “ground truth” probability p

x
 that X  is true, and p

x
 (i.e., 

1− p
x

) that X  is false. This makes X  a binary random variable over the domain X x x� �= { }, . If 
little evidence supporting this proposition is available, or if there is a lack of relevant knowledge 
regarding the truth of the statement, then we will be unable to obtain the exact probabilities p

x
 and 

p
x

. A subjective opinion, expressed in terms of both the belief itself and the uncertainty in this belief, 
models such a situation better. In the security domain, such subjective opinions are clearly useful. In 
subjective logic, two types of subjective opinions are defined: binomial opinions (opinions over 
binary frames, i.e., frames with only two possible states) and multinomial opinions (opinions on a 
frame larger than binary). This paper deals with only binomial opinions.

Definition 1: Binomial Opinion

Let X x x� �= { },  be a state space containing x  and its complement x . A binomial opinion about 
the truth of state x  is the tuple ω

x x x x x
b d u a� �= 〈 〉, , , , where b

x
 is the belief mass in support of x  

being true, d
x

 is the belief mass in support of x  being false, u
x

 is the amount of uncommitted belief 
mass (i. e., uncertainty), and a

x
 is the prior probability, also called the base rate, in the absence of 

committed belief mass. Further, these components must satisfy the conditions that b d u
x x x
+ + =� �1  

and b d u a
x x x x
, , , ,∈ 


0 1 .

For a given binomial opinion ω
X

, the corresponding projected probability distribution 
P x x( ) → 


: ,0 1  is determined by

P x b a u
x x x( ) = + ⋅  	 (1)

where P x( )  represents the probability estimation of x  which varies from the base rate value, in the 
case of complete ignorance (u

x
� �= 1 ), to the actual probability in case that u

x
� �= 0 .

Subjective Logic Operators
Subjective logic provides a set of operators where input and output arguments take the form of 
opinions. There is a standard set of logical operators (such as conjunction, disjunction, and negation) 
used in domains containing uncertainty, and, more specifically, domains in which there are opinions 
regarding the truth or falsehood of a (set of) domain elements. Here, only three operators are needed, 
namely the conjunction (also called multiplication), disjunction (also called co-multiplication), and 
complement (also called negation) operators.
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Definition 2: Conjunction Operator

Given two opinions, ω
x x x x x

b d u a� �= 〈 〉, , ,  and ω
y y y y y

b d u a� �= 〈 〉, , , , where x  and y  belong to 
independent frames of discernment, we compute the conjunction of the two opinions, ω

x y∧ , as

b b b
a a b u a a u b

a ax y x y

x y x y x y x y

x y
∧ = +

−( ) + −( )
−

� �
1 1

1
, 	

d d d d d
x y x y x y∧ = + −� � , 	

u u u
a b u a u b

a ax y x y

y x y x x y

x y
∧ = +

−( ) + −( )
−

� �
1 1

1
, and	

a a a
x y x y∧ =� � . 	

By using the symbol ( ⋅ ) to denote this operator, multiplication of opinions can be written as 
ω ω ω
x y x y∧ = ⋅  .

Definition 3: Disjunction Operator

Given two opinions, ω
x x x x x

b d u a� �= 〈 〉, , ,  and ω
y y y y y

b d u a� �= 〈 〉, , , , where x  and y  belong to 
independent frames of discernment, we compute the disjunction of the two opinions, ω

x y∨ , as

b b b b b
x y x y x y∨ = + −� � , 	

d d d
a a d u a a u d

a a a ax y x y

x y x y x y x y

X y x y
∨ = +

−( ) + −( )
+ −

� �
1 1

, 	

u u u
a d u a u d

a a a ax y x y

y x y x x y

x y x y
∨ = +

+

+ −
� � , and	

a a a a a
x y x y x y∨ = + −� � . 	

By using the symbol ( ) to denote this operator, co-multiplication of opinions can be written 
as ω ω ω

x y x y∨ =   .

Definition 4: Complement Operator

Given an opinion ω
x x x x x

b d u a� �= 〈 〉, , ,  where x  belongs to a frame of discernment, we may compute 
the complement opinion ω¬x , known as the propositional negation, as

b d
x x¬ =� � , 	

d b
x x¬ =� � , 	

u u
x x¬ =� � , 	

a a
x x¬ = −� �1 . 	
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Binomial Opinions and Beta Distributions
A binomial opinion translates directly into a beta distribution. To understand such a connection 
between binomial opinions and beta distributions, this section begins with an overview of beta 
distributions and then discusses how subjective opinions are translated into beta distributions and 
vice versa. When probabilities are uncertain (e.g., due to limited observations), such an uncertainty 
can be captured by a beta distribution (Gupta & Nadarajah, 2004), i.e., a distribution of possible 
probabilities. Let us consider a binary variable X  that can take on the value of true or false (i.e., 
X x  =  or X x  = ). As discussed earlier, there is an underlying ground truth probability p

x
 that 

X  is true, and p
x

 (i.e., 1− p
x

) that X  is false. If p
x

 is drawn from a beta distribution, it has the 
following probability density function (PDF; Cerutti et al., 2019):

f p p p
x

x x

x x
x x

β
α αα

β α α
;

,
( )( ) =

( )
−− −

� �
1

11
1 	

for 0 1≤ ≤p
x

. , where β ⋅( )  is the beta function and the beta parameters α α α
X x x
� �= 〈 〉, , such that 

α
x
� �>1 , α

x
� �>1 .

The value of X  can be determined from N
ins

 independent observations. Let n
x

 be the total 
number of observations supporting X x  = , and n

x
 be the total number of observations supporting 

X x  = , then the beta parameters α
X x x x x

n Wa n W a� �= 〈 + + −( )〉, 1 , where a
x

 is the prior 
assumption, and W  is a prior weight indicating the strength of the prior assumption. In this paper, 
unless specified otherwise, we assume ∀ =X a

x
, .� �0 5 , and W � �= 2 , to obtain the prior beta distribution 

as a uniform distribution, which is an uninformative prior. By making W � �= 2  and a
x
� �= 0 5. , the 

above formula of beta parameters thus becomes α
X x x

n n� �= 〈 + + 〉1 1, , which reflects the parameters 
of a posterior beta distribution when having a likelihood in a Bernoulli distribution and a uniform 
prior expressed as a beta distribution with parameters 〈 〉1 1, . Suppose, for example, that the total 
observations for X  is 10, 7 of which support X x  =  (and thus 3 observations support X x  = ), 
the beta parameters then becomes 〈 〉11 4, . Figure 2 shows the beta distribution of this example.

Given a beta-distributed random variable X , its Dirichlet strength S
X

 and mean µ
X

 are 
computed using the following two equations, respectively:

Figure 2. Example beta distributions: (a) a prior beta distribution with parameters 〈 〉1 1, , and (b) a posterior beta distribution 
with parameters 〈 〉11 4,
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S
X x x

  = +α α 	 (2)

µ
α

X
x

X
S

  = 	 (3)

From these two equations, the beta parameters can be equivalently written as:

α µ µ
X X X X X

S S� �= 〈 −( ) 〉, 1 	 (4)

The variance of a beta-distributed random variable X  is:

σ
µ µ

X

X X

X
S

2
1

1
� �=

−( )
+

	 (5)

and from this equation we can rewrite S
X

 as:

S
X

X X

X

� �=
−( )

−
µ µ

σ

1
1

2
	 (6)

As mentioned earlier, there is a correspondence between beta distributions and binomial opinions. 
The mapping from a beta-distributed random variable X with parameters α α α

X x x
� �= 〈 〉,  to a subjective 

opinion is defined by:

ω
α α

X
x x

X

x x

X X
x

Wa

S

W a

S

W

S
a� �= 〈

− − −( )
〉, , ,

1
	 (7)

With this transformation, the mean of X  is equivalent to the projected probability P X( )  defined 
in Equation 1, and the Dirichlet strength is inversely proportional to the uncertainty of an opinion, 
which can be directly computed from the subjective opinion as:

S
W

uX
x

  = 	 (8)

Conversely, a subjective opinion ω
X

 translates directly into a beta distributed random variable. 
Given a subjective opinion ω

X x x x x
b d u a� �= 〈 〉, , , , the corresponding beta parameters α α α

X x x
� �= 〈 〉,  

are determined by:
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α
X

x
x x

x
x x

W

u
b Wa

W

u
d W a� �= 〈 + + −( )〉, 1 	 (9)

Cerutti et al. (2019) defined some operators that can be applied on independent beta distributed 
random variables such as sum and product, designed as alternatives to the operators of addition and 
multiplication on subjective opinions, and thus are useful when converting opinions into corresponding 
beta distributions. These operators approximate the resulting distribution as a beta distribution via 
moment matching on mean and variance. In this paper, we make use of the product operator.

Definition 5: Product
Given X  and Y  as two beta-distributed random variables, the product of X  and Y  is defined 
as  the  bet a -d is t r ibu ted  random var iab le  Z  such  tha t  µ µ µ µ

Z XZ X Y
    = =  and 

σ σ σ µ σ µ σ σ
Z XY X Y Y X X Y
2 2 2 2 2 2 2 2� � � �= = + +( ) ( ) . By knowing the mean (µ

Z
) and variance (σ

Z
2 ) of a 

beta-distributed random variable Z , it is possible to compute the beta parameters by first 
determining the Dirichlet strength according to Equation 6, and then obtaining the beta parameters 
using Equation 4.

SUBJECTIVE ATTACK TREES

The Model
Subjective attack trees (SATs) extend the classical probabilistic attack trees by allowing for uncertainty 
degrees about the probabilities of security events to be explicitly expressed via subjective opinions, 
resulting in a model taking second-order uncertainty into account. Therefore, the tree structure in 
SATs is not different from the one in traditional ATs in that it also allows for the (conjunctive or 
disjunctive) decomposition of the main goal of an attacker into sub-goals, except that the input 
parameters represent subjective opinions rather than probabilities.

Figure 3 shows an example SAT with three possible paths (ways) an attacker can choose to 
achieve their main goal (MG). These paths begin by the execution of the following security events: 
(SE

1
 and SE

2
), SE

3
, and (SE

4
 and SE

5
). Taking the first path with security events SE

1
 and 

SE
2

 as an example, the subjective opinions on them, respectively, are denoted by ω
SE1

 and ω
SE2

. 

Figure 3. A subjective attack tree (SAT) model uses subjective opinions as input parameters to capture uncertainty degrees about 
the events’ likelihoods. Here, ω

i
 is a subjective opinion capturing aspects of the likelihood of event i
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The subjective opinion on sub-goal 1 (ω
SG1

) is computed from the conjunction of ω
SE1

 and ω
SE2

, 

and the subjective opinion on the main goal (ω
MG

) is computed from the disjunction of ω
SG1

 and 

ω
SG2

. The subjective opinion on MG represents the belief and disbelief that an attacker can 
successfully achieve their main goal, complemented by an uncertainty degree about such belief 
and disbelief masses.

Propagation of Subjective Opinions in SATs
Subjective opinions in the SAT model are assigned to the leaves, and then propagated up the tree to 
compute a subjective opinion about the root node. Such propagation is achieved by solving two types 
of gates between nodes, namely the AND gate and OR gate.

Propagation Through an AND Gate
An AND gate signifies that the output event E  occurs if all the input events have accrued 
simultaneously. To compute an output from AND gate, the conjunction operator of subjective logic 
is used. Let E  be an event node in a SAT, where E MG SG

i
∈ { }, . In other words, E  is the main 

goal MG  (i.e, the root node), or any sub goal (SG
i
) in a SAT. Let ω ω ω

CE CE CEn1 2
, ,. . . ,  be the 

subjective opinions on the children nodes of the event E , which all must be satisfied to ensure the 
occurrence of E . We compute a subjective opinion on E  using the following AND gate’s propagation 
rule ω ω ω ω

E CE CE CEn
� � ���= ⋅ ⋅ ⋅

1 2
... , where ⋅  is the conjunction operator, and ω ω

CE SEi i
  =  for any 

i n∈ { }1 2, ,. . . ,  in case that E  is the direct parent of the security events (i.e., the leaves), or ω
CEi

 
is computed first from its children nodes using either the same propagation rule or the OR-gate’s 
propagation rule we discuss below. Figure 4a shows an example computation of a subjective opinion 
on event E  via AND gate.

Propagation Through an OR Gate
An OR gate signifies that the output event E  occurs if at least one of the input events has accrued. 
To compute an output from OR gate, the disjunction operator of subjective logic is used. Let E  be 
an event node in a SAT, where E MG SG

i
∈ { }, . In other words, E  is the main goal MG  (i.e., the 

root node), or any sub goal (SG
i
) in a SAT. Let ω ω ω

CE CE CEn1 2
, ,. . . ,  be the subjective opinions on 

the children nodes of the event E , which at least one of them must be satisfied to ensure the occurrence 
of E . We compute a subjective opinion on E  using the following OR gate’s propagation rule 
ω ω ω ω
E CE CE CEn
� � ���=

1 2
  ... , where   is the disjunction operator, and ω ω

CE SEi i
  =  for any 

i n∈ { }1 2, ,. . . ,  in case that E  is the direct parent of the security events (i.e., the leaves), or ω
CEi

 
is computed first from its children nodes using either the same propagation rule or the AND gate’s 

Figure 4. Computing a subjective opinion on event E through (a) AND gate, and (b) OR gate
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propagation rule we discussed above. Figure 4b shows an example computation of a subjective opinion 
on event E  via OR gate.

SECURITY ANALYSIS IN SATS

In this section, we discuss how to conduct security analysis (e.g., risk computation and security 
investments analysis) under the proposed SAT model. This requires us to enrich the model with 
additional metrics and components such as impact (for risk computation) and countermeasures (and 
their costs) for security investments analysis to determine which countermeasures are profitable, 
using the index of ROI (Sonnenreich et al., 2006). Since likelihoods in the SAT model are subjective 
opinions (i.e., there is uncertainty about the probabilities), the security analysis differs from the 
analysis of security in traditional ATs models. Therefore, it is essential to study how risk or security 
investments analysis is conducted, simultaneously showing how to handle uncertainties in the model 
for effective decision analysis.

Risk Computation
In the context of ATs, the risk to a system refers to the system’s risk with respect to a particular attack 
scenario, i.e., risk at the root node. Here, two measures need to be taken into consideration, the first 
is the probability of attack success, and the other one is the amount of damage that an attack scenario 
can render to the system. Combining the two, risk to the system can be defined as the expected value 
of the impact (review the discussion in Roy et al., 2012):

Risk probability impact= × 	 (10)

The likelihood of attack success in our SAT model is a subjective opinion, and so the risk cannot 
be simply computed using Equation 10 directly—we cannot directly multiply a subjective opinion 
(which represents the likelihood) by a number (representing the impact). Also, sometimes the impact 
can be represented as a beta distribution (rather than a single value) to express confidence in the 
level of impact, such as the approach given by Lallemant and Kiremidjian (2015) for characterizing 
earthquake damage. Here, representing the impact as a beta distribution in our model would have to 
be combined with the subjective opinion of the likelihood in order to compute risk (i.e., the expected 
value of the impact). In this section, we discuss how to calculate risk in the SAT model based on the 
representation of the impact value (i.e., when the impact is represented as a single value, and when 
it is given as a beta distribution).

Risk Computation With a Single Value of Impact
The problem of computing risk in our SAT model using Equation 10 is that the impact value (given 
it is a single value in the range [0, 1]) cannot be directly multiplied by the subjective opinion of 
the likelihood. One possible way to calculate risk in this case is to multiply the impact value with 
the projected probability of the subjective opinion, meaning that we are considering only the most 
expected value of risk. However, using this simple approach, we move away from the advantage of 
keeping the distribution of the likelihood explicit when computing risk in order to enable using finer 
grained tools to make a decision based on, for example, risk appetite.

Given that the likelihood is a subjective opinion (knowing that subjective opinions translate 
directly into beta distributions) and the impact is a single value, the risk is a scaled version of the 
beta distribution with support from zero to the value of impact. It is therefore possible to approximate 
risk as a regular beta distribution as long as the impact is bounded by one (i.e., within the range [0, 
1]). To approximate risk as a beta distribution, we perform second order moment matching so that 
the Dirichlet strength represents the variance. The second order moment matching method has been 
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discussed further by Kaplan and Ivanovska (2018), but here we briefly discuss the steps to calculate 
risk in our model based on such a method.

To compute the beta parameters of risk, we need to determine the mean and Dirichlet strength. 
The mean is calculated by multiplying the impact value with the projected probability of the subjective 
opinion, i.e., µ

R
i P x� �= × ( ),  where i  is the impact value and P x( )  is the projected probability. 

To compute the Dirichlet strength, we follow the following approach. By using the symbols r , i , 
and p  to denote risk, impact, and probability, respectively, we write the risk formula (see Equation 
10) for simplicity as r i p  = × . In our approach, impact i  is considered to be deterministic and p  
is beta distributed. This makes r  a random variable with expected value:

E r i E p


 = × 



  	 (11)

Note that E r
R




 =  µ  (i.e., the mean of risk as discussed above), and so:

E r i E p2 2 2


 = × 



� � 	 (12)

where E p
S

E px

x

2 1

1



 =

+

+



� �

α
.  (also see Owen, 2008, for the method of moments).

In Equation 12, E p

  represents the projected probability of the subjective opinion. By knowing 

E r 2


 , it is possible to compute the variance of risk as:

σ
R

E r E r2 2 2� �= −

[ ] 	 (13)

where E r[ ]2  is the square value of E r

  obtained from Equation 11.

Now having the mean of risk, µ
R

, and its variance, σ
R
2 , we can compute the Dirichlet strength, 

S
R

, as follows (review Equation 6):

S
R

R R

R

� �=
−( )

−
µ µ

σ

1
1

2
	 (14)

Finally, knowing the Dirichlet strength S
R

 and mean µ
R

, we compute the beta parameters as 
α µ µ
X X X X X

S S� �= 〈 −( ) 〉, 1 .

Example 1

Suppose the subjective opinion about security event SE  is ω
SE
� �= 〈 〉0 6 0 2 0 2 0 5. , . , . , .  and the impact is 0.4. 

The mean of risk µ
R
� � � �= × =0 4 0 7 0 28. . . , where 0.7 is the projected probability of ω

SE
. Using Equation 

12, we obtain E r 2 20 4 0 51 0 0816


 = × =� � � �. . . . Now based on Equation 13, we obtain the variance of risk 

as σ
R
2 20 0816 0 28 0 0031� � � �= − =. . . . Having the mean of risk as µ

R
� �= 0 28.  and variance as σ

R
2 0 0031� �= . , 

we compute the Dirichlet strength using Equation 14 as S
R
� � � �= × −( ) −( ) =0 28 1 0 28 0 0031 1 64. . / . . 
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Accordingly, α� � � �= 〈 × −( )× 〉 = 〈 〉0 28 64 1 0 28 64 17 9 46 1. , . . , . . The beta distribution of risk in this example 
is shown in Figure 5a.

Risk Computation With a Beta Distribution Representation of Impact
When the impact is given as a beta distribution, risk is measured based on two beta-distributed random 
variables, representing the impact and likelihood (knowing that subjective opinions for likelihoods 
can be translated directly into beta distributions). Our approach for calculating risk is therefore based 
on first translating the subjective opinion into a beta distribution, and then enabling the product of 
the two beta-distributed random variables according to Definition 5. The following summarises the 
steps to calculate risk in case that the impact is given as a beta distribution:

1. 	 We translate the given subjective opinion into the corresponding beta distribution (see Equation 
9), and then compute its mean and variance via Equation 3 and Equation 5, respectively.

2. 	 We compute the mean and variance of the impact from the given beta parameters of the impact 
distribution.

3. 	 We use the product operator of independent beta-distributed random variables (see Definition 
5) to compute the mean and variance of risk.

4. 	 We use these values of mean and variance to calculate the Dirichlet strength of risk using 
Equation 6.

5. 	 We use the mean and Dirichlet strength of risk to get the beta parameters of risk distribution 
using Equation 4.

Example 2

Suppose the subjective opinion about security event SE  is ω
SE
� �= 〈 〉0 9 0 0 0 1 0 5. , . , . , . . Suppose also 

the impact I  is represented as a beta distribution with shape parameters α� �= 〈 〉18 4, . The risk (loss) 
distribution is then obtained by first computing the mean and variance of both the likelihood (i.e., 
ω
SE

) and impact distributions. This yields µ
SE
� �= 0 95. , σ

SE
2 0 00226� �= . , µ

I
� �= 0 82. , and 

σ
I
2 0 0064� �= . . Using the product operator (see Definition 2.5), we obtain the mean and variance of 

risk R  as µ
R
� �= 0 78.  and σ

R
2 0 00764� �= . . The Dirichlet strength is therefore S

R
� �= 21 5. . Based 

on this, we obtain beta parameters for risk as α� �= 〈 〉16 8 4 7. , . . The risk (loss) distribution is shown 
in Figure 5b.

Figure 5. The beta distributions of loss (risk) in (a) Example 1 and (b) Example 2, where 0 indicates no risk and 1 indicates that 
the risk is catastrophic
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Since both representations of impact (the single value and beta distribution representation) yield 
a beta distribution for risk, for simplicity, in the rest of this paper, we model impact through single 
values. Here, two measures need to be taken into consideration in order to compute risk at the root 
node: the subjective opinion on the attack success, ω

goal
 and the amount of damage (i.e., impact) that 

an attack scenario can present to the system, I
goal

. The propagation of subjective opinions in the 
attack model to compute ω

goal
 is discussed in the previous section, and the propagation of impact 

values to compute I
goal

 is discussed in (K. S. Edge et al., 2006). However, since our impact scale is 
[0, 1] and not [1, 10], we redefine the propagation rule of impact values defined in (K. S. Edge et al., 
2006) as follows (see Table 1, which summarises the formulae for computing the impact in our model):

1 1
1

− −( )
=∏i

n

A
I
i

	

where n  is the number of children nodes and each A
i
 is the unique name of a child node. Figure 

6 shows an example propagation of impact values, as well as subjective opinions, to compute risk 
at the root node. Our approach of decision analysis takes into account the uncertainty about a 
likelihood or about risk, so we discuss in the next section how we deal with uncertainty for risk 
and decision analysis.

Dealing With Uncertainty for Decision Analysis
In our approach, metrics such as likelihood and risk are defined as beta distributions (given that 
subjective opinions for likelihoods translate directly into beta distributions) rather than single values. 
For decision analysis, it is important therefore to handle the uncertainty in such metrics, as we will 
see in the next section when coming to analyse security investments. We discuss in this section two 
possible approaches to reason about risk (or about likelihood) in the presence of uncertainty about 
the values. These approaches are: (a) reasoning with the most expected value, and (b) reasoning with 
best and worst-case scenarios via confidence intervals.

Approach 1: Reasoning With the Most Expected Value
In this approach, security managers use the most expected value of risk (or likelihood) to reason 
about risk under the most expected scenario. For likelihoods, the most expected value is the projected 
probability of the subjective opinion, and it is the distribution’s mean when reasoning about risk. 
For example, in Example 2 discussed earlier, one could make a decision based on the most expected 
scenario of risk using the value of 0.78, which represents the mean of risk as shown in Figure 5b.

Approach 2: Reasoning With Confidence Intervals for Best- and Worst-Case Scenarios
Unlike in the previous approach, which represents risk as a single value, risk in this approach is 
represented by a range of possible values, determined by lower and upper bounds with a given 

Table 1. Formulae for attack impact computation

Gate type Attack impact

AND gate 1 1
1

− −( )
=∏i

n

A
I
i

OR gate max I
i
n

Ai� �=1
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confidence level, therefore allowing one to consider additional scenarios for risk such as the best 
and worst-case scenarios. The approach thus offers the advantage of conducting a what-if analysis, 
for example, by analysing the outcome according to different possible values.

In the literature, several approaches exist to compute confidence intervals of a beta distribution 
(e.g., Newcombe, 1998; Daly, 1992; Julious, 2005). A simple approach is the one Julious discussed 
(2019), wherein the lower bound of the confidence interval is determined as:

1 1 2 1− − − +( )BETAINV kα / , ,n k 	

and the upper bound as:

BETAINV k1 2 1− + −( )α / , ,k n 	

where α  is the level of statistical significance, k  the number of events observed, and n  the sample 
size. BETAINV() is the cumulative distribution function (taken from Excel) of a beta distribution. 
The lower and upper bounds calculated from the two equations above will determine the range of 
possible values that the risk value is likely to be within.

As an example, consider again the example of Figure 5b, which represents the beta distribution 
of risk with shape parameters α� �= 〈 〉16 8 4 7. , . . . The sample size n  represents α α

x x
+ =� �21 5. . 

The number of events observed k , as discussed in Section 2.6.2, represents n
x

 in the formula 
α
X x x x x

n Wa n W a� �= 〈 + + −( )〉, 1 . If we assume (as discussed earlier) that W � �= 2  and a
x
� �= 0 5. , 

then k  in this example is 15.8. For a 95% confidence interval, the statistical significance level α  
takes the value 0.05. Using the BETAINV function in Excel, we obtain the lower bound as 0.50 and 

Figure 6. An example SAT showing propagation of impacts and subjective opinions. The top event shows the system risk with a 
beta distribution representation, calculated from the subjective opinion 〈 〉0 68 0 07 0 25 0 81. , . , . , .  and impact value of 0.92
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the upper bound as 0.89. Therefore, the 95% confidence interval in this example is [0.50, 0.89]. This 
means that we are 95% confident that the risk value is likely to be within this interval, and so, additional 
risk scenarios could be considered as part of dealing with uncertainty.

Analyzing Security Investments
In this section, we discuss security investment analysis in SATs. In order to conduct such an analysis, 
we first need to incorporate the model with countermeasures and study how these countermeasures 
reduce risk in the presence of subjective opinions. Following this, we conduct an investment analysis 
using the index of ROI for countermeasures.

Adding Countermeasures to SATs
The SAT model presented in the third section does not take into account defence mechanisms which 
can be implemented by the defending organization orhe costs sustained for security investments. In 
this section, we discuss the addition of countermeasures to the SAT model, studying how these 
countermeasures reduce risk (here, likelihoods) in the presence of uncertainty about probability 
values (i.e., in the presence of subjective opinions). Each added countermeasure should be associated 
with a value representing the effectiveness of the countermeasures in reducing risk. In the literature, 
the effectiveness value of a countermeasure is expressed as a percentage or as a value in the interval 
0 1,

  (see for example (Roy et al., 2012; Bistarelli et al., 2006)), and the estimation of such a value 

is typically determined by expert knowledge. The likelihood of an attack in the presence of a 
countermeasure is then calculated by multiplying the attack probability without the countermeasure 
by the countermeasure’s effectiveness value subtracted from one. However, when there is uncertainty 
about the likelihood (as in SATs), the calculation should be different.

Our approach to calculating the likelihood (i.e., the subjective opinion) on a node when adding 
a countermeasure (with an effectiveness greater than 0) to it is based on ensuring that the projected 
probability of the resulting subjective opinion from the application of the countermeasure is obtained 
as if the projected probability of the original subjective opinion (i.e., the subjective opinion without 
a countermeasure) was reduced in the same way a probability value is reduced as a result of the 
application of a countermeasure. In other words, a countermeasure reduces (indirectly) the projected 
probability of the subjective opinion in the same way it does with probability values. For example, 
if the projected probability on a node is 0.8, then adding a countermeasure of 0.5 effectiveness would 
reduce the projected probability to 0.4 (based on the calculation discussed above). To achieve this, 
we assume here that the effectiveness value would affect only the belief mass and base rate of the 
subjective opinion while maintaining the same uncertainty value. The disbelief mass is then calculated 
by subtracting the total value of the resulting new belief mass and uncertainty from one. This process 
ensures to have a subjective opinion that has a reduced projected probability according to the 
effectiveness value of the countermeasure. Formally, assuming ω

SE se se se se
b d u a� �= 〈 〉, , ,  is the subjective 

opinion about a security event SE , CM  is a potential countermeasure to reduce risk, and E
CE

 is 
the countermeasure effectiveness, we compute the opinion about SE  with countermeasure CM , 
denoted by ω

SE se se se se
b d u a' ' ' ' ', , ,� �= 〈 〉 , as follows:

b b E
se se CE
' � �= × −( )1 , 	

a a E
se se CE
' � �= × −( )1 ,	

u u
se se
' � �= , and	

d b u
se se se
' ' '� �= − +( )1 .	
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Note that in the approach above, we considered, as in existing approaches, the use of precise values 
in the range [0, 1] to represent the effectiveness values of countermeasures, ignoring the uncertainty 
aspect in them as a result of poor knowledge for assigning such values. Since the effectiveness of a 
countermeasure actually represents the probability of the countermeasure’s success (see Roy et al., 
2012), therefore, it might be possible, to consider assigning each countermeasure a subjective opinion 
such that they represent the likelihood (with associated uncertainty degrees) that each countermeasure 
would be successful in reducing risk. In this case, calculating the likelihood of a node in the presence 
of a countermeasure is based on multiplying the subjective opinion on the node with the complement 
of the subjective opinion (review Definition 4) about countermeasure success.

Suppose a countermeasure with an effectiveness value of 〈 〉0 6 0 2 0 2 0 5. , . , . , .  is added to a node 
with likelihood of 〈 〉0 7 0 1 0 3 0 5. , . , . , . . The subjective opinion on the node in the presence of the 
countermeasure is then calculated as:

〈 〉 ⋅〈 〉 = 〈 〉0 7 0 1 0 3 0 5 0 2 0 6 0 2 0 5 0 16 0 64 0 2 0 25. , . , . , . . , . , . , . . , . , . , .� � .	

Since both representations of the effectiveness value (i.e., the single value and subjective opinion 
representations) yield a subjective opinion on a node, for simplicity, in the rest of this paper, we model 
countermeasures’ effectiveness through single values.

Figure 7 shows two countermeasures (in the ovals) added to the subjective attack tree of attacking 
a system with a remote login. These countermeasures were added to the nodes of exploiting an online 
vulnerability (update the system periodically) and exploiting a web server vulnerability (use an anti-
virus software) to reduce their likelihoods, which are expressed by the subjective opinions of 
〈 〉0 7 0 2 0 1 0 5. , . , . , .  and 〈 〉0 6 0 1 0 3 0 5. , . , . , . , respectively. The effectiveness of the two countermeasures 
are 0.8 and 0.6, respectively. The figure shows the resulting subjective opinions on the nodes after 
applying these two countermeasures, which led to a change in the risk value on the root node (attack 
the system with a remote login) from 〈 〉0 88 0 65 0 77 0 75. , . , . , .  to 〈 〉0 35 0 44 0 21 0 28. , . , . , . .

ROI Analysis
We discuss in this section how a security investment is analysed in the SAT model, using the 
index of ROI, an economic metric that is used to measure the profit obtained by the 
implementation of a specific countermeasure CM

i
. ROI for a security investment is calculated 

as (Sonnenreich et al., 2006):

ROI � �
Risk�exposure� %�Risk�mitigated �Investment�cost�

�
=

×( )−
IInvestment�cost�

.	 (15)

Figure 7. A SAT model with two countermeasures (ovals), showing how they reduce likelihoods (i.e., subjective opinions) on the 
leaves, and subsequently on the root node. The variable ECM  denotes countermeasure effectiveness
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In AT models, risk exposure represents risk at the root node. Depending on the purpose of the 
model, risk exposure can represent different forms. For example, it can be the likelihood on the 
root node if the model is concerned only with determining how likely a system can be attacked 
without considering impact values. Here, the purpose of countermeasures is to reduce the likelihood 
of attack. Risk exposure could also be the expected impact on the root mode if impact values are 
considered in the model, and the countermeasures applied to such models would aim to reduce 
the overall expected impact.

In this paper, we consider ROI analysis with risk exposure to be defined as the likelihood (in 
our model, the subjective opinion) with regard to the goal (i.e., the top event node). We do so for two 
reasons: (1) for the sake of simplicity, and (2) because countermeasures do not affect the impact value 
directly (the impact value at the root node is the same apart from whether there were countermeasures 
applied or not), but rather affect the likelihood of an event occurrence (see Roy et al., 2012). This 
means that by reducing likelihoods, the expected impacts are reduced accordingly. We should note 
here that in case of considering risk exposure to be the expected impact, and since the expected impact 
in our model is a beta distribution, we can first translate the beta distribution into the corresponding 
opinion and then follow the same approach discussed below (or alternatively, we consider the beta 
distribution itself and use the value of mean or any of the confidence interval bounds to represent 
the value for risk exposure in the formula above, as discussed below).

The % Risk mitigated value is the amount of the percentage risk mitigated as a result of applying 
a specific countermeasure. Unlike with single probabilistic values, it is difficult in our approach to 
directly calculate such a percentage because the uncertainty value and base rate at the root node 
might change as a result of applying a countermeasure to the model. Therefore, we must first resolve 
the uncertainties in the subjective opinions (using one of the approaches discussed in the previous 
section) in order to be able to compute the percentage risk mitigated, and then use this percentage 
in the above formula of ROI.

As an example, suppose the subjective opinion at the root node without countermeasure 
CM

i
 i s  ω

goal without CMi− −
= 〈 〉� �0 65 0 15 0 20 0 85. , . , . , .  a n d  w i t h  t h e  c o u n t e r m e a s u r e  i s 

ω
goal with CMi− −

= 〈 〉� �0 42 0 25 0 33 0 72. , . , . , . . Suppose also we want to reason about risk using the most 

likely value, i.e., the projected probability of each subjective opinion. The projected probability 
of ω

goal without CMi− −
 is 0.82, and it is 0.66 for ω

goal with CMi− −
. The percentage risk mitigated is then 

calculated as 1 0 66 0 82 0 195−( ) =. / . .� � . For abbreviation, we denote such a calculation of risk 
mitigated by %RM .

Investment cost is the cost of the applied countermeasure. In this paper, we assume, as in existing 
approaches, that the cost of a countermeasure is a single value. Based on the discussion above, we 
re-define ROI for a countermeasure CM

i
 as

ROI
R RM C

CCM

sys CM

CM
i

i

i

� �
%

=
×( )−

	 (16)

where R
sys

 is the system risk, i.e., the subjective opinion on the root node ω
goal

, with an uncertainty 
treated according to the approaches in the previous section. In other words, R

sys
 can take on any of 

the following values: the projected probability of ω
goal

, the lower bound of the desired confidence 

interval, or its upper bound. %RM  is computed as demonstrated above; 1−( )− − − −R R
sys with CM sys without CMi i

/ .
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In Equation 16, a countermeasure CM
i
 is only profitable if R RM C

sys CMi
×( )>%  (here, C

CMi
 

is the cost of the countermeasure CM
i
), and this is satisfied when the risk value is within the scale 

of [0, 100] rather than [0, 1] (see Bistarelli et al., 2006). Therefore, we calculate risk as R
sys
×100 . 

If ROI is zero or a negative number, the investment is not profitable. Otherwise, it is financially 
justified, and so the higher the value of ROI, the more desirable the investment. Suppose in the 
example given above,  the cost  for  implementing CM

i
 is  $20.  ROI

CMi
 is  then 

82 0 195 20 20 0 2×( )− = −. ) / .� � . Since ROI is negative, the countermeasure is not profitable.

ILLUSTRATIVE EXAMPLE

Consider the attack tree example for the data attack scenario presented by Bistarelli et al. (2012); a 
version of the model with countermeasures is also presented, but for simplicity, we consider here only 
four countermeasures, as shown in Figure 8. The attack tree model demonstrates two different attack 
scenarios against data belonging to a hosting service provided by an internet service company. An 
attacker can consider either (a) damaging the business activity of the company, or (b) accessing data 
about customers. To damage the business activity of the company, the attacker can perform a denial-of-
service attack (DoS) by performing the following attack actions: (a) scanning the network to discover 
some vulnerabilities, (b) gaining access to a machine, (c) installing a zombie, and (d) performing the 
attack activating the zombie. The DoS attack node is therefore of the AND type because, in order 
to successfully perform this attack strategy, the attacker must perform all the actions composing the 
attack. In order to access data about customers, the attacker can perform different alternative actions 
such as performing a man-in-the-middle attack or performing a phishing attack. The model in Figure 
8 shows examples of subjective opinions associated with the six security events of the attack model. 
Table 2 presents the impact values of each security even, and Table 3 presents the effectiveness and 
cost of implementation of each countermeasure. To compute the impact at the top event node (data 
attack node) in Figure 12, we propagate the impact values given in Table 2 according to the set of 
propagation rules given in Table 1.

The subjective opinion about data attack is 〈 〉0 57 0 18 0 25 0 76. , . , . , . , and the impact is 0.96. 
Therefore, the risk (as discussed in the preceding section) is approximated as a beta distribution with 

Figure 8. The SAT model with countermeasures (ovals) for data attack example
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parameters α� �= 〈 〉7 74 2 86. , . . The mean of risk is 0.73, representing the most likely value of risk. 
The 95% confidence interval of the risk distribution is [0.30, 0.89], providing the lowest and highest 
possible values. Security managers here, in comparison to traditional risk assessment approaches, 
can use these values to reason about risk and make decisions as per their risk attitudes. Suppose, for 
example, that the security manager would only consider protection against the attack if the risk is 
greater than 0.5. Here, if they tend to use the most likely value (0.73) or if they are pessimistic 
regarding risk by considering the worst-case scenario (the risk value is 0.89), then they will go for 
protecting the system. However, considering the best-case scenario for those who tend to be optimistic 
regarding risk, they might go for not protecting the system as the value of risk considered in this case 
is only 0.30, which is below the defined threshold value. The consideration of uncertainty explicitly 
when conducting risk analysis, as this example demonstrates, offers therefore a better approach to 
decision-making by allowing one to consider different scenarios of risk and make decisions based 
on, for example, risk attitudes.

We now turn our attention to the analysis of security investments, using the ROI index. Applying 
each countermeasure would result in a reduction in the subjective opinion about the top event, i.e., 
ω
goal

. Table 4 shows the subjective opinion about data attack when applying each countermeasure, 
as well as the percentage risk mitigated following uncertainty treatment using the most likely value 
approach. Using Equation 16, we obtain ROI for each countermeasure as shown in Table 4. As appear, 
two countermeasures, CM

1
 and CM

2
, since their ROIs are negative, they should be excluded. The 

only two countermeasures that are profitable are CM
3
 and CM

4
, and CM

3
 is more profitable than 

CM
4

. However, ROI for CM
4

 approaches from zero, and so it does not seem to be significantly 

Table 2. The impact value of each attack in the data attack example

Attack (security event) Attack impact

Network scanning 0.2

Gaining access 0.5

Install zombie 0.6

Find vulnerable computers 0.8

Provoke the attack 0.6

Man in the middle 0.7

Phishing 0.4

Table 3. The effectiveness and cost of implementation of each countermeasure in the data attack example

Countermeasure Countermeasure effectiveness Countermeasure cost (in $)

CM
1 0.80 15

CM
2 0.75 20

CM
3 0.60 10

CM
4 0.45 05
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financially justified. As a result, the security manager may think of applying CM
3
 (authentication 

of the IP address) as a possible security solution against the attack.

COMPARISON WITH PROBABILISTIC ATs MODELS

In this section, we provide a detailed example to compare our approach against probabilistic ATs 
in terms of risk and security investments analysis. With the example, we aim to demonstrate why 
uncertainty about the probabilities of security events should be taken into account when conducting 
security risk analysis in ATs. Furthermore, we show how the decision-making process is better offered 
by the SAT model in comparison to traditional probabilistic ATs models. We begin by describing the 
comparison model, and then presenting and analysing the results.

Comparison Model Description
We use the SAT model in Figure 9 as an example model to conduct the comparison. The model 
contains two countermeasures, CM

1
 (with a cost of $10 and 0.8 effectiveness) and CM

2
 (with a cost 

of $20 and 0.9 effectiveness), applied to the security events SE
1

 and SE
4
, respectively. The subjective 

opinions about the four security events were established to contain relatively high uncertainty values. 
Propagating these opinions led to also having a relatively high uncertainty (0.38) about the likelihood 
on the root node.

Figure 9. A SAT model with two countermeasures. The values below the subjective opinions are impact values

Table 4. The subjective opinion on the root node, risk mitigated, and ROI for each countermeasure in the data attack scenario

Applied countermeasure Subjective opinion on goal Risk mitigated (%) ROI

CM
1

〈 〉0 53 0 20 0 27 0 75. , . , . , . 4 -0.79

CM
2

〈 〉0 53 0 20 0 27 0 75. , . , . , . 4 -0.85

CM
3

〈 〉0 40 0 36 0 24 0 62. , . , . , . 28 1.13

CM
4

〈 〉0 52 0 19 0 29 0 66. , . , . , . 7 0.06
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The uncertainty values in the opinions lead to several different underlying probability values in 
contrast to a 0 uncertainty. For example, the probabilities of 0.75, 0.6, and 0.55 could represent 
possible truth values for the subjective opinion about SE

4
 (〈 〉0 40 0 25 0 35 50. , . , . , ). Here, the uncertainty 

value (0.35) has affected these probabilities as follows: it has affected only the belief mass of the 
probability distribution of 0.75 (because the sum of the uncertainty value and the belief mass of the 
opinion, i.e., 0.4, is 0.75), it has affected only the disbelief mass of the probability distribution of 0.6 
(because the sum of the uncertainty value and the disbelief mass of the opinion (i.e., 0.25) is 0.6), 
and it has affected both the belief and disbelief masses of the probability distribution of 0.55 (here, 
the uncertainty has affected the belief mass by only 0.15).

Based on such a discussion, we generate probability values for the four security events in the 
example (assuming they represent truth values) as follows: Prob SE

1
0 3( ) =� � . , Prob SE

2
0 25( ) =� � . , 

Prob SE
3

0 4( ) =� � . , and Prob SE
4

0 45( ) =� � . . Here, we assumed that the uncertainties in the opinions 
about the security events had affected both the belief and disbelief masses of these probabilities at 
random. Propagating these probabilities, using the propagation method of probabilities discussed 
previously, resulting in a probability of 0.24 at the root node.

Results and Analysis
First, we began by comparing the risk outcomes from the SAT model in Figure 9 with the risk obtained 
from applying traditional risk analysis using the above set of probabilities. In the case of the SAT 
model, the risk obtained is a beta distribution with parameters α� �= 〈 〉2 92 3 43. , .  and mean 0.46. The 
95% confidence interval of the risk distribution is [0.04, 0.74]. In the case of the AT approach, the 
risk obtained is a single value of 0.22. Suppose the security manager would only protect the system 
against the attack if the risk is greater than 0.45. It is evident that in the case of the AT approach, the 
system would not be protected. In the case of the SAT model, there are cases in which the security 
manager would choose to protect the system. For example, if the security manager tends to use the 
most expected value (i.e., the mean of risk), or if they are too pessimistic and wish to consider the 
worst-case scenario (via the upper bound of the confidence interval), they might go for protecting 
the system, as both values are greater than the defined threshold value. However, the decision would 
be the same as in the AT approach if they are optimistic and wish to consider the best-case scenario 
(via the lower bound of the confidence interval).

Next, we evaluated security investments (with ROI index) using the two models. In the SAT 
model, the subjective opinion about the attack without countermeasures is 〈 〉0 33 0 29 0 38 0 44. , . , . , . . 
When applying each of CM

1
 and CM

2
 to the model, the resulting subjective opinions are 

〈 〉0 27 0 32 0 41 0 26. , . , . , .  and 〈 〉0 14 0 44 0 42 0 27. , . , . , . , respectively. The projected probability of each 
subjective opinion and their 95% confidence intervals are given in Table 5. Using this information 

Table 5. The projected probability of each subjective opinion about the attack with and without countermeasures and their 95% 
confidence intervals

Protection status Opinion on attack Projected probability 95% Confidence interval

no protection 〈 〉0 33 0 29 0 38 0 44. , . , . , . 0.5 [0.29, 0.71]

with CM
1

〈 〉0 27 0 32 0 41 0 26. , . , . , . 0.37 [0.12, 0.61]

with CM
2

〈 〉0 14 0 44 0 42 0 27. , . , . , . 0.25 [0.03, 0.47]
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and the cost of each countermeasure, we considered three scenarios for computing ROI for each 
countermeasure: (1) the most expected scenario (based on the projected probability), (2) the best-case 
scenario (based on the lower bound of the confidence interval), and (3) the worst-case scenario (based 
on the upper bound of the confidence interval). We denote the ROI calculated from the first scenario 
by ROIµ , and by ROI

lower
 and ROI

upper
 for the other two scenarios, respectively.

ROIµ  for CM
1
, for example, is computed based on using the projected probability 0.37 (from 

the subjective opinion about the attack when presenting CM
1
) as a value for R

sys
 in Equation 16, 

and the percentage risk mitigated (%RM) is computed as 1 0 37 0 5 0 26−( ) =. / . .� � . Given that the 

cost of CM
1
 is $10 , ROIµ  for CM

1
 is then 50 0 26 10 10 0 3×( )−( ) =. / .� � . The ROI values obtained 

for each countermeasure are all positives (except in one case) as shown in Table 6. In the case of AT 
model, the ROI obtained for each countermeasure, denoted by ROI

pro
, is-0.49 for CM

1
 and-0.24 

for CM
2
 (see Table 6). Clearly, none of the countermeasures is profitable, unlike in the SAT model, 

wherein the two countermeasures are financially justified in the three defined scenarios, except with 
the worst-case scenario for CM

1
, in which ROI returned a 0 value.

These results clearly demonstrate the importance of taking uncertainty into account when 
conducting cybersecurity risk assessments, as doing so can lead to completely different security 
decisions. In terms of the risk analysis, the SAT model offers a more flexible approach to decision-
making by allowing one to consider different scenarios (e.g., the best and worst-case scenarios), and 
therefore allowing security managers to make decisions based on, for instance, their risk attitudes, 
or the organisation’s financial capabilities. In terms of the security investments analysis (with ROI 
index), in addition to that the SAT model resulted in different ROI values for countermeasures, our 
example above interestingly showed that introducing uncertainty about the probabilities resulted in 
higher ROI values for countermeasures (in contrast to a 0 uncertainty). This means that the chance 
to apply a countermeasure in the SAT model was higher, which might be also interpreted as follows: 
the SAT model in our example showed it is more inclined to protect the system in comparison to the 
traditional attack tree approach. To evaluate whether this observation generalises, more examples 
and analysis dealing with different sets of probabilities and different uncertainty values are required, 
which we leave for future work. For now, it has been clearly shown by the given example that the 
SAT model could result in different analysis of security investments, and therefore a different set of 
implementable countermeasures, demonstrating therefore the importance of considering uncertainty 
about the probabilities during security risk analysis.

Table 6. ROI values for each countermeasure in the case of the SAT model (ROIµ , ROIlower , and ROIupper ) and in 

case of AT approach (ROIpro )

Countermeasure ROIµ ROIlower ROIupper ROI pro

CM
1 0.3 0.6 0 -0.49

CM
2 0.25 0.29 0.17 -0.24
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DISCUSSION

In this paper, we have presented a novel attack tree model, called a subjective attack tree (SAT), 
that takes second-order uncertainty into account, via subjective opinions. We also discussed the 
propagation rules of subjective opinion in the proposed model. Furthermore, we extended the SAT 
model to consider conducting a comprehensive security analysis, such as risk measuring and security 
investments analysis using ROI index. In the proposed SAT model, risk computation was discussed as 
one aspect of the security analysis. Since the probability component required to compute risk is not a 
single value, but rather a subjective opinion, the calculation of risk was different. We discussed how 
to compute risk (i.e., the expected impact) in case the impact is given as a single value in the range 
[0, 1] and in case it is represented as a beta distribution, demonstrating that in both representations 
of impact, the resulting value of risk is approximated as a beta distribution. It was therefore essential 
to also discuss how to understand risk as a beta distribution, and how to handle the uncertainty in 
the distribution for decision analysis.

Following this, we considered defence modelling, i.e., adding countermeasures to the model, 
to study how risk is reduced when adding them to a model containing uncertainty values about 
probabilities (i.e., subjective opinions). Here, because the nodes in our model contain subjective 
opinions (as likelihoods of attacks), adding a countermeasure to a node should affect the subjective 
opinion on it towards reducing its likelihood value, based on the effectiveness value of the 
countermeasure. We suggested that a countermeasure reduces (indirectly) the projected probability of 
the subjective opinion in the same way it does with probability values. To achieve this, we assumed 
that the effectiveness value of the countermeasure would affect only the belief mass and base rate 
while maintaining the same uncertainty value. This process ensures to have a subjective opinion 
that has a reduced projected probability according to the effectiveness value of the countermeasure.

Having incorporated countermeasures into the model, we discussed another aspect of security 
analysis, namely security investments analysis, using the index of ROI as a metric to measure 
the profitability of a given countermeasure. Classically, the formula for computing ROI for a 
countermeasure (see Equation 15) defines risk as a single value (because the probability and impact 
are assumed to be single values). In our model, the risk is beta distributed, and so we redefined the 
formula so as to capture the uncertainty aspect in likelihoods, discussing the difference in computing 
ROI in contrast to the computation in probabilistic models.

We discussed the importance and advantage of our approach in terms of risk and security 
investments analysis through a comparison model with the probabilistic approach. The results showed 
that risk analysis in SATs is different, and such a difference can lead to different security decisions. 
This is because that the uncertainty in the SAT model allows one to consider different scenarios 
for decision analysis, with which risk could be interpreted differently. Furthermore, regarding the 
security investments analysis, it has been shown that the SAT model resulted in different ROI values 
for countermeasures, and more interestingly, our example showed that these values were higher (in 
contrast to a 0 uncertainty). This means that the chance to apply a countermeasure in the SAT model 
was higher. To be able to evaluate whether this observation generalises, more examples and analysis 
dealing with different sets of probabilities and different uncertainty values are required, which we 
leave to future work.

FUTURE WORK

In this section, we point out some future directions. In the section of security analysis using SATs, 
we used the index of ROI for security investment analysis (i.e., analysing the benefit from applying 
a particular countermeasure). Another index used in ATs aiming to analyse the gain from conducting 
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a particular attack is the return on attack (ROA; see Roy et al., 2012). It might be worth extending 
the security analysis by incorporating additional metrics, such as the cost of attack, allowing one 
to conduct ROA analysis (see Roy et al., 2012, Equation 14). First, the ROA formula needs to be 
redefined for the SAT model as we did with the ROI formula, and then use these defined formulas to 
quantify the nature of the competition between the attacker and the defender. One could also study 
how uncertainty about probabilities might affect such a competition, and how the best countermeasures 
can be selected under uncertainty about the two indexes.

Another future direction is more general that focuses on the possibility of extending the use of 
subjective logic to formalise other models of security risk analysis. Considering other models of 
security risk assessment, it might be worth examining how subjective logic could be used in these 
models to formalise the risk problem. For example, like attack trees, another model that is widely 
used to analyse risk of an enterprise network is attack graphs (Phillips & Swiler, 1998). In attack 
graphs, risk is analysed based on understanding how vulnerabilities can be combined and exploited to 
stage an attack. Traditionally, the composition of vulnerabilities can be modelled using probabilistic 
attack graphs (for example, see Feng & Jin-Shu, 2008; Keramati & Akbari, 2012; and L. Wang et al., 
2008), which show all paths of attacks that will lead to network penetration. Using subjective logic, 
it might be possible to develop an alternative approach that measures security in absence of evidence 
about the vulnerability evaluations. Given that cycles could appear in attack graphs (as a result of 
the various ways that host interconnections and network privileges could be gained; see Homer et 
al., 2009), a key challenging may arise from the development of a subjective logic approach is that 
how to treat such cycles (to prevent distortion of the results) in the presence of uncertainty values 
about nodes probabilities.
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