
Nancy R. Mead, CERT, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, USA

Ivan Flechais, Department of Computer Science, University of Oxford, Oxford, UK

Dan Shoemaker, Department of Computer and Information Systems, College of Liberal Arts
& Education, University of Detroit Mercy, Detroit, MI, USA

Carol Woody, CERT, Software Engineering Institute, Carnegie Mellon University,
Pittsburgh, PA, USA

Guest editorial Preface

i

Since computer programming began for com-
mercial applications 55 years ago, trillions
of lines of code have been produced, much
of which is still running in some computer
somewhere. Nobody knows precisely how that
vast landscape of code works, and that raises
some very serious questions when it comes to
protecting our national security and way of
life. We know that unknown or undocumented
code poses a major security risk and most code
contains defects. So identifying the subset of
those defects that are exploitable becomes a
matter of finding one black grain of sand on a
vast beach of white sand. As a result, it’s very
hard to find bugs and impossible to say with
any certainty whether a given application is
secure. In fact, it’s much easier to just assume
that all applications—no matter how rigorously
developed—will contain some exploitable flaw
that could cause a potential security problem.

We make this assumption in part because
software is an invisible, yet highly complex,
product. If software engineering as a discipline
had been around as long as civil engineering, the
engineering approach used for building a bridge,
for example, would be applied consistently
in a standard way, with universally accepted
checkpoints. Unfortunately, our profession
is not quite as mature as those that have been

around for centuries, so we cannot have the
same confidence level in the typical software
engineering product as we might have in a civil
engineering product.

While we could confirm, through testing
and other development methods, correct soft-
ware functionality, unless we engage in use of
formal methods for every element of the soft-
ware system, whether developed or acquired,
and under every possible usage scenario, we
cannot say with absolute confidence that it is
impervious to a buffer overflow or command
injection. Even worse, we cannot say for sure
that a malicious object is not lurking somewhere
in it. This is precisely why having some form of
standard, objective measurement is so important
to the security of software.

Accurate and trustworthy measures would
allow the developer, or sustainer, to observe
and judge the code, and standard measures of
performance accumulated over a period of time
would help make the coding process more effec-
tive and efficient. However, because software
is intangible, it’s hard to measure. For tangible
civil engineering structures like a bridge, we
have traditional, well-known, and, in many
cases, ancient measurement processes, along
with standard units of measure. For instance,
we can answer a question like “What kind of

ii

load can the structure sustain?” But for software,
rigorous research is still needed to define both
what to measure, how to measure it, and what
that measure translates to in terms of meaning-
ful information.

Previously, the only available answers to
“how big is the software?” were management-
type responses, such as a $5 million develop-
ment or two-year project. Project managers
accept such measures because those measures
inform their decisions. But information that
vague is not very helpful to software engineers,
leaving them to make important decisions
based on guesswork and creativity. Standard
performance measures in software engineering
define concrete, quantifiable code attributes.
More importantly, persistent and commonly
understood measures make the software engi-
neering process more reliable.

Reliability is the probability that a system
will operate without failure for a given time in
a given environment. The given time in this
definition may represent any number of actual
data items, such as number of executions; num-
ber of lines of code traversed, or time of day.
The challenge is to turn all of these potentially
meaningful items into a standard and commonly
accepted system of measurement. Measurement
has gotten a lot of attention lately. Defects in
code have always had obvious effects on a
product’s security, yet we still do not have a
commonly accepted and standardized way to
reliably characterize those defects. As a result,
reliable, standard measurement data has become
critical in the discussion of how best to produce
secure code.

The right measure will ensure that engineers
can monitor the right things. In effect, reliable
measurement data makes the process and prod-
uct visible to all participants, and that visibility
helps establish assurance. Metrics research
provides the link between development work
and our need to truly understand the nature of
the product. Nevertheless, we need to know how
to describe software in ways that are meaningful
to engineers, developers, and managers, while
including practical considerations such as the

nature of the collected data and the units of
measurement. That need leads us to ask this
question: “What is the current state of the art
in the process of making software visible?” The
aim of this edition is to open this discussion up
to the profession. To that end, we present five
views on how to make the software process
and product more visible. Each view presents
a different aspect of the problem and provides
its own individual insight into the solution.
We believe this sort of wide-ranging dialogue
is the first step in overcoming existing hurdles
to maturing the software assurance discipline.

The rest of this issue is organized as follows:

• “Principles and Measurement Models
for Software Assurance” by Mead et al.
presents an effective measurement model
organized by seven principles that capture
the fundamental managerial and technical
concerns of development and sustainment.

• “Towards a More Systematic Approach to
Secure Systems Design and Analysis” by
Miller et al. presents research on measuring
the variability in decision making among
security professionals, with the ultimate
goal of improving the quality of security
advice given to software system designers.

• “A New Method for Writing Assurance
Cases” by Matsuno and Yamamoto presents
a new method for writing assurance cases
and describes a preliminary experiment
carried out on a web server demo system.

• “Analyzing Human Factors for an Effec-
tive Information Security Management
System” by Alavi et al. identifies direct
and indirect human factors that can impact
information security.

• “Advancing Cyber Resilience Analysis
Based on Metrics from Infrastructure
Assessments” by Vugrin and Turgeon
describes a hybrid infrastructure resil-
ience assessment approach that combines
both qualitative analysis techniques with
performance-based metrics.

Acknowledgment

We would like to acknowledge Valori Nicolai
for her outstanding work in managing the review
process and our colleagues who served as review-
ers for this issue:
• Saeed Abu-Nimeh
• Chris Alberts
• Julia Allen
• Mark Ardis
• Matt Bishop
• Paul El Khoury
• Bob Ellison
• Shamal Faily

• Tom Hilburn
• Chris Lamb
• Seiya Miyazaki
• Adesh Rampat

Nancy R. Mead
Ivan Flechais
Dan Shoemaker
Carol Woody
Guest Editors
IJSSE

Nancy R. Mead is a principal researcher with the CERT Program at the Software Engineering Institute
(SEI). Mead is also a faculty member in the Master of Software Engineering and Master of Informa-
tion Systems Management programs at Carnegie Mellon University. She is currently involved in the
study of security requirements engineering and the development of software assurance curricula.
Mead has more than 150 publications and invited presentations, and has a biographical citation in
Who’s Who in America. She is a Fellow of the Institute of Electrical and Electronic Engineers, Inc.
(IEEE) and a Distinguished Member of the Association for Computing Machinery (ACM). Dr. Mead
received her PhD in mathematics from the Polytechnic Institute of New York, and received a BA and
an MS in mathematics from New York University.

Ivan Flechais is a lecturer in the Software Engineering Program at the University of Oxford and
has been researching computer security for over ten years. In particular, given that secure systems
are frequently exploited by subverting their users, this involves researching how secure systems can
be designed, implemented and tested to take human needs into account. Some recent research was
conducted on webinos: an EU-funded project aiming to deliver a platform for web applications
across mobile, PC, home media (TV), and in-car devices. Part of this work entailed applying tools
and techniques from Usability, Security, and Requirements Engineering to ensure that users are ac-
commodated in the design of the system. Other ongoing research involves exploring the usability of
out-of-band authentication protocols for practical applications in different contexts of use, such as
mobile device pairing, group authentication, and ad-hoc security.

Daniel P. Shoemaker, PhD, is Principal Investigator and Senior Research Scientist at UDM’s Center
for Cyber Security and Intelligence Studies. Dan is also a full time Professor and former Depart-
ment Chair at University of Detroit Mercy. As the Co-Chair for the, National Workforce Training
and Education Initiative he is one of the authors of the DHS Software Assurance Common Body of
Knowledge (CBK). He also helped author the DHS IA Essential Body of Knowledge and he serves as
a SME for the NIST-NICE workforce framework. Dan’s doctorate is from the University of Michigan
and within the State of Michigan he leads the International Cyber-Security Education Coalition. This
Coalition covers a five state region with research partners as far away as the United Kingdom. Dan
also spends his free time authoring some of the leading books in Cyber Security. His book Cyber
Security: The Essential Body of Knowledge, is Cengage publishing’s flagship book in the field. His
first book, Information Assurance for the Enterprise, is McGraw-Hill’s primary textbook in IA and
is in use all over the globe. His next book Engineering a More Secure Software Organization, which
is also published by Cengage, will be out next spring.

iii

Carol Woody has been a senior member of the technical staff at the Software Engineering Institute
since 2001. Currently she is the manager of the cyber security engineering team which focuses on
building capabilities in defining, acquiring, developing, measuring, managing, and sustaining secure
software for highly complex networked systems as well as systems of systems. Dr. Woody is an ex-
perienced technical researcher whose work has focused on government agencies, higher education,
and medical organizations. She has helped organizations identify effective security risk management
solutions, develop approaches to improve their ability to identify security and survivability require-
ments, and field software and systems with greater assurance. She holds a BS in mathematics from
the College of William & Mary, an MBA from Wake Forest University, and a PhD in information
systems from NOVA Southeastern University.

