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INTRODUCTION

Personalized medicine is a new approach to 
medicine that takes into account the patho-
physiology of the patient, molecular information 
such as genomic, proteomic, and metabolomic 
processes and interactions, and pharmacodiag-
nostic tests to prescribe the “right drug(s) for 
the right patient”. This approach is radically 
different from the traditional “blockbuster” 
approach for drug development, marketing, 
and prescription. Personalized medicine brings 
tremendous potential for the treatment of 
diseases by avoiding roadblocks such as ad-
verse side effects and ineffective responses to 
medication. Personalized medicine also brings 
tremendous challenges in that it can revolu-
tionize the entire pharmaceutical industry by 
changing it from its current “big pharma” model 
to the personalization of drugs and treatment 
outcomes. Personalized medicine will require 
technological advances such as next generation 
sequencing, understanding the interactions 
among intra and inter-cellular components, 

and pharmacodiagnostic tests to individualize 
drug prescription for each individual patient. 
This will require a radical shift from large-
scale randomized clinical trials prevalent in 
current practice for drug development to more 
targeted, homogeneous subgroups of patients 
that are more likely to respond positively to 
drugs due to their similarities at the molecular 
level (Jørgensen, 2008). Hence, personalized 
medicine is one of the grand challenges in sci-
ence, technology, and the healthcare industry 
of the twenty-first century.

EXAMPLE APPLICATIONs OF 
PERsONALIZED MEDICINE

Some aspects of personalized medicine are 
already in use for the treatment of diseases 
such as cancer. For example, in treating breast 
cancer a pharmacodiagnostic test is performed 
to determine whether the human epidermal re-
ceptor (HER2) protein is over-expressed in the 
tumor cells, which happens in 20-25% of the 
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cases. In such cases the monoclonal antibody 
trastuzumab (Herceptin®, Genentech, CA, 
USA) has been found to be an effective adju-
vant to chemotherapy (Slamon et al 2001). A 
number of anticancer drugs that target specific 
gene products resulting from generic variations 
exist for other cancers including colorectal 
cancer, gastrointestinal stromal tumors, and 
head and neck cancer. In all of these cases phar-
macodiagnostic tests are performed to identify 
patients that are likely to respond positively to 
the treatment.

Genetic factors can also affect treatments 
in other ways. For example, patients with muta-
tions of the melanocortin-1 receptor gene require 
higher doses of anesthetics as compared to those 
without such mutations (Liem et al., 2005). 
Another example of the importance of genetic 
factors is for drugs that are metabolized through 
the CYP enzymes. Patients with polymorphisms 
of the CYP2D6 and CYP2C19 genes can experi-
ence adverse side effects to many drugs such 
as β-blockers, antidepressants, antipsychotics, 
and proton pump inhibitors. An example of 
a phramacodiagnostic test is the AmpliChip 
CYP450 test1 that can detect polymorphisms 
of CYP2D6 and CYP2C19 genes that play a 
significant role in the metabolism of a large 
number of prescription drugs.

BIOLOGICAL NETWORKs

Recent advances in systems biology have 
given rise to the notion of the human “inter-
actome” that can be modeled as graphs of the 
biomolecular system and analyzed to gain 
insights into the pathogenesis of diseases 
and responses to treatments. This is a radical 
departure from the approach of one-gene, one-
disease, one-drug model to interactions within 
and between elements of multimodal networks 
such as protein-protein interaction networks, 
metabolic networks, regulatory networks, and 
genetic networks. Interesting similarities have 
been found between the properties of real world 
networks such as social networks and biological 
networks such as protein interaction networks. 

In a protein-protein interaction network a node 
represents a protein and an edge represents 
physical or binding interactions (Barabási et 
al., 2011).

A biological network is represented as a 
graph that contains a set of nodes and a set of 
edges connecting the nodes. The degree of a 
node is the number of other nodes it is directly 
connected to. If two nodes are not directly con-
nected it might still be possible to traverse from 
one to the other through the other nodes in the 
graph. A connected component is a path in 
which all nodes are either directly or indirectly 
connected with each other. A fully connected 
graph will have one connected component, 
which is unusual in real-life graphs. On the 
other hand too many connected components 
indicate that most nodes are not linked to each 
other. Hence the number of connected compo-
nents provides a measure of connectivity of the 
network. The diameter of a graph is length of 
the path that connects two of the furthest nodes 
in the graph, without backtracking, taking de-
tours, or going around loops. Hence the diam-
eter is sometimes referred to as the “longest 
shortest path”. The degree distribution of a 
graph, P k( )  describes the probability that a 
node will have a degree k . Typically, the degree 
distribution of real world networks exhibit a 
power law distribution, which is an L-shaped 
graph where the x-axis represents the degree 
and the y-axis represents the number of nodes 
with the corresponding degree. This indicates 
that very few nodes have very large degrees 
whereas most nodes have very small degrees. 
The web pages on the Internet exhibit this 
clearly. For example websites such as google.
com have very high in-degrees (number of sites 
that link to them) whereas most of the web 
pages have much smaller in-degrees. In contrast, 
random networks have Gaussian degree distri-
butions. The degree distribution of protein-
protein interaction networks have been shown 
to obey the power law distribution described 
by the equation below:

P k k( ) ≈ −γ  (1)
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where P k( )  is the probability that a protein 
will have a degree k , and γ is a constant whose 
value is reported to gave the value 1.57 in the 
human protein-protein interaction network 
(Bader et al 2007). Important information can 
be gleaned from the properties of such networks 
including the number of connected components, 
average component size, diameter, and average 
path length. Furthermore, centrality measures 
of nodes can provide important information 
about the significance of proteins that are hubs 
connecting sub-networks. The network topol-
ogy can also provide a way to compare the 
networks of different organisms.

Another network property is the clustering 
coefficient, which is a measure of the connec-
tivity of the nodes in a graph. The neighborhood 
of a node consists of all the nodes it is directly 
connected with. The clustering coefficient for 
v  is given by equation (2) below, where nv  is 
the actual number of edges connecting the 
neighboring nodes of v :
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In other words, the clustering coefficient 
of a node is the ratio of the actual to the maxi-
mum possible number of connections in its 
neighborhood. The distribution of the clustering 
coefficient tends to be uniform in both random 
and scale-free networks, which indicates that 
neighborhoods are roughly equally connected 
for nodes with all degrees.

NETWORK PROPERTIEs

In this section we discuss some implications of 
network properties that can be used to charac-
terize its behavior:

• Network Connectivity: Networks can 
vary in their degrees of connectivity, from 
tightly to sparsely connected. As expected, 
nodes tend to affect each other more quickly 

in tightly connected networks than in 
sparsely connected networks. The rate at 
which a viral infection may die out depends 
on the connectivity of the network and 
when the connectivity is above a threshold 
a viral infection can take on an epidemic 
proportion (Chakrabarti, 2005). It is well 
known from protein-protein interaction 
networks that proteins that have high 
levels of interactions are also involved in 
the same cellular processes, and mutations 
in causative genes may result in the same 
disease phenotypes (Barabási et al., 2011, 
Oti et al., 2006). Thus, highly interlinked 
local regions in a biological network may 
suggest the existence of topological mod-
ules that might be correlated with disease 
networks (Albert 2005);

• Scale Free Networks: The degree distri-
bution of scale free networks follows the 
power law shown in equation (1). The term 
“scale free” refers to the fact the functional 
form does not change with network size. 
Many biological networks are scale free 
networks. For example, the flux distribution 
in the central metabolism of Escherichia 
coli follows the power law, which implies 
that most reactions have small metabolic 
fluxes while a few reactions with high 
fluxes carry most of the metabolic activi-
ties. Jeong et al (2000) studied the meta-
bolic networks of 43 different organisms 
from all three domains of life: eukaryotes, 
prokaryotes, and archaea, and found that 
all of the metabolic networks they studied 
are scale free networks. Other biological 
networks such as gene regulatory networks 
where the nodes represent genes and the 
edges represent expression correlations 
also exhibit scale free properties (Vogel-
stein et al., 2000). Transcription factors 
are molecules that control the activities 
of genes, and the number of number of 
genes that are controlled by a transcrip-
tion factor also exhibit scale free behavior: 
most transcription factors regulate a few 
genes whereas a few transcription factors 
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regulate a large number of genes. However, 
only a few transcription factors regulate a 
given gene;

• Small World Property: The small world 
property of a network refers to the fact that 
most nodes in the network can be connected 
via a small number of links. Random net-
works exhibit small world property, while 
scale free networks exhibit ultra small 
world effects. In metabolic networks most 
metabolites are within 3-4 links from each 
other, which implies that local perturbation 
can affect the whole network very rapidly. 
The diameter of the metabolic networks 
of simple organisms such as the parasitic 
bacterium have been found to be similar 
to that of larger and more complex multi-
cellular organisms, which is an interesting 
fact from the evolutionary standpoint;

• Disassortativity: an interesting network 
property, assortativity, is the correlation of 
nodes that are directly connected with each 
other. A highly assortative network is one 
in which directly connected nodes have a 
high correlation, which is often measured 
in terms of their degrees. Biological net-
works such as protein-protein interaction 
networks are disassortative, which implies 
that hubs, or nodes with larger degrees, are 
less likely to be directly connected. On the 
other hand, nodes with smaller degrees are 
more likely to be directly connected with 
hubs. Social networks, on the other hand, 
tend to be assortative where individuals 
with many “friends” also tend to connect 
with each other. While the reasons behind 
the disassortative nature of biological 
networks remain unclear, some interesting 
inferences are possible. For example, such 
networks are more vulnerable to selective 
perturbation such as removal of the hubs. At 
the same time, such networks are resilient 
to random perturbations since most of the 
nodes are non-hubs and hence removal of 
such nodes will not impact the connectivity 
of the entire network;

• Hierarchy: It has been shown that cellular 
networks exhibit hierarchical topologies. 
However, the topologies of biological 
networks are not tree structures because 
they contain hubs with very high degrees. 
Structurally, cellular networks consist of 
highly connected sub-graphs or modules 
that are associated with specific tasks or 
functions. Individual nodes are connected 
to one or more modules. A node at the lowest 
level of a hierarchy is part of one module 
and such a node participates in a single 
functional task. Bridge nodes connecting 
several modules are at a higher level of 
the hierarchy. These nodes are part of two 
or more modules and hence participate in 
multiple functions. Nodes at the highest 
level of the hierarchy act as hubs that do 
not belong to any specific module but are 
the sole connections between sub-graphs. 
The hierarchy of a node can be determined 
by its clustering coefficient, as explained in 
Equation (2). Nodes at higher levels have 
lower clustering coefficients that those at 
lower levels in the hierarchy;

• Motifs: Motifs are significant patterns 
or sub-graphs that occur much more 
frequently than are expected to occur in 
randomized networks (Milo et al., 2002). 
Given the topological hierarchy and the 
correspondence between modules and 
their biological functions, it is important 
to identify the important motifs in cellular 
networks. A motif is deemed important if 
it is over-represented in the network, be-
cause natural selection will result in more 
abundance of Motifs that carry important 
biological functions rather than those 
occurring randomly. The first systematic 
study of network motifs was done Esch-
erichia coli, and the same motifs were 
found in subsequent studies in bacteria, 
yeast, plants, and animals (Aron, 2007). 
Milo et al (2002) described 13 types of 
3-node sub-graphs for networks in general. 
Three and four node motifs with special 
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significance include bi-fan, feed-forward 
loop, bi-parallel, and feedback loops. Alon 
(2007) provides a functional interpretation 
of motifs that are characterized as simple 
regulation, feed-forward loops (FFL), 
single input modules (SIM) and dense 
overlapping regulons (DOR). Motifs can 
help in understanding biological interac-
tions such as transcriptional regulations 
of genes, co-expressions of genes, and 
protein-protein interactions. Motifs, in turn, 
can form clusters in the integrated network 
or genes, proteins, and other macromecules.

The algorithm for detecting motifs in a 
network can be loosely described as follows: 
(1) identify all n  node sub-graphs in the net-
work, (2) randomize the network while keeping 
the same number of nodes, edges, and degree 
distribution as the original network, (3) repeat 
step (1) for the randomized network created in 
step (2), and (4) identify the sub-graphs that 
occur with significantly higher frequency in 
the original network as compared to the random-
ized network as motifs.

CHALLENGEs

In spite of the advances made in recent years 
to understand the structure and function of bio-
logical networks, this area is still in its infancy. 
For example Pržulj et al (2004) challenged one 
of the basic characterizations of biological net-
works by demonstrating that the protein-protein 
interaction networks of yeast S. Cerevisiae and 
fruitfly D. Melanogaster resemble random 
geometric networks more closely than scale-
free networks both in terms of global network 
properties such as clustering coefficient as 
well as local measures such as motifs (the 
term graphlets was used in Pržulj et al 2004). 
Another limitation of current state of the art is 
that network motifs have been experimentally 
studied only in bacteria. Experimental studies 
of network motifs are needed to understand the 

functions in eukaryotic organisms. Such stud-
ies may discover new motifs and help explain 
the dynamics of large networks based on the 
interactions at the motif level.

At a more basic level, biological networks 
such as protein-protein interaction networks 
are incomplete and tissue specific as opposed 
to universal and multi-cellular organism based. 
Interactions in biological networks have spatial 
and temporal properties. However, most biologi-
cal networks have been derived from samples 
that do not capture the dynamic nature of the 
interactions.

Perhaps the biggest challenge that is yet 
unaddressed in biological networks is the 
analysis of interactome as a whole. While 
such networks have been studied individually, 
including protein-protein interaction networks, 
genetic networks, metabolic networks and 
disease networks, there is a need to study these 
multi-modal networks as a whole. Hence it is 
necessary to develop methods for multi-modal 
network analysis to get a complete understand-
ing of the entire interactome of the complex, 
eukaryotic organisms.

Aryya Gangopadhyay
Editor-in-Chief
IJCMAM
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