
Editorial

INTRODUCTION

As the population is rising, natural resources are being depleted continuously to cater to the needs of 
the vastly growing population. At the same time, Industrialisation and urbanization are also advancing 
at a rapid pace. However, industrial growth over the years has led to the release and accumulation of 
pollutants and hazardous chemicals in the air, water, and land, thereby contaminating them. Rapid 
urbanization is also contributing extensively to the production of wastewater, which mostly ends up 
untreated in water bodies, leading to water pollution (See Figure 1). Currently, water pollution is 
a global environmental concern and concentration of toxic pollutants in the water bodies are well 
above the limits defined by the World Health Organization and environmental protection agencies. 
Wastewater is quite dangerous because polluted water is harmful to human health and poses a severe 
threat to aquatic animals. It has been reported that nearly 10–20 million people die each year due 
to waterborne diseases (Leonard et al., 2003). People require pure freshwater for various domestic 
purposes (cooking, drinking, washing, etc.), so a system of adequate wastewater treatment is the 
need for everyone because the amount of freshwater on the planet is reducing steadily. Purification of 
wastewater could be a promising approach to mitigating this challenge. Therefore, the development 
of advanced technologies for the treatment of wastewater and supply of potable water from water 
bodies is essential.

Generally, various chemicals and microorganisms contaminated wastewater is more risk to human 
life. That is why there are several stages of water treatment: chemical, physical, and biological. The 
more significant part of the wastewater is treatment is treated in the unique wastewater treatment 
plants that purify water with the help of the various treatment methods. The water is filtered, treated 
by chemical and physical processes; there are supplied to the consumers all the time. Unfortunately, 
only a satisfied percent of wastewater is treated somehow, because the more significant part is 
discharged into the rivers, lake, or mixes with underwater, and as a result, the image of global water 
pollution is terrible.

The conventional wastewater purification techniques, including chemical coagulation, 
photodegradation, precipitation, flocculation, activated sludge, membrane separation, reverse osmosis, 
ion exchange, electrodialysis, electrolysis, and adsorption. According to the type of contamination 
in the wastewater, various forms of its treatment are practiced. Among these, reverse osmosis, ion 
exchange, electrodialysis, and electrolysis are costly technologies with a 10–450 US$ per million-liter 
cost for treated water. The cost of treated water by adsorption varies from 10 to 200 US$ per million 
liters. Adsorption is a fast, inexpensive, and widely applicable technique. Moreover, it is widely 
used, as it can be applied for the removal of soluble and insoluble contaminants as well as biological 
pollutants with a removal efficiency of 90–99%. At an industrial level, pollutants are removed from 
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water by using columns and contractors filled with suitable adsorbents — adsorption used for source 
reduction, reclamation for potable, industrial, and other purposes. Hence, the adsorption technique 
has been used widely for water treatment by adsorption.

However, the greatest hindrance in adapting this technique in the process industries was the 
highest cost of adsorbents available in the market, despite various available adsorbent regeneration 
techniques. The applications of adsorption processes can be increased by reducing the cost of 
adsorption. Therefore, there is a massive demand from the market to explore quickly and low-cost 
available adsorbents, especially from oil refineries, petrochemical, and pharmaceutical industries 
that produce major chromium contaminated effluents, besides other small/medium scale industries. 
These adsorbents can be from biomass and agricultural waste products (Sahu et al., 2009; Toor et 
al., 2015; Hamed et al., 2014; Karri et al., 2017). Many studies devoted to production of activated 
carbon from agricultural waste products were mostly focused on the preparation of high-quality 
activated carbon (Karri et al., 2017; Karri et al., 2017; Karri & Sahu 2018; Karri & Sahu 2018). 
Moreover, the use of activated carbon in the adsorption process is effective, but its applications 
are limited due to the complicated installation process, along with high operating costs. Hence, 
these drawbacks have necessitated the search for an alternative material that can be renewable and 
economical for water purification. Hence, recently activated carbons are impregnated with iron 
oxide nanoparticles have been widely used for removal of organic and inorganic pollutants and 
showed an excellent efficiency and enhanced removal capacity for pollutants (Park et al., 2015; 
Lingamdinne et al., 2019; Mishra et al., 2019).
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Figure 1. Various sources of water pollution



Graphene and graphene oxide (GO) are widely used in various applications because they offer 
unique physical-chemical properties, including high specific surface area, electrical and thermal 
conductivity, and high potential adsorption capacity (Lingamdinne et al., 2018; Lingamdinne et al., 
2018). Due to its imperishable hydrophilicity, GO has found to be a better material for use in many 
wastewater treatment applications. However, GO having high dispersibility, which leads to difficulty 
in separating GO from aqueous solution even after adsorption of pollutants. The magnetization of 
GO is the best solution to avoid the above problem, whereby using the external magnetic field, 
magnetized GO can be easily separated. Besides, magnetic materials not only have the advantage 
to easy and rapid separate from aqueous solution but also shows high adsorption capability towards 
pollutant (Lingamdinne et al., 2019; Koduru et al., 2019).

Magnetic nanoparticles (NPs) are fascinating due to their multiple properties, such as significant 
surface-to-volume ratio, interaction, magnetic separation, specificity, and surface chemistry. Magnetic 
NPs, in particular, nano zero-valent iron, magnetite, and maghemite have sparked the application 
in medicine, molecular biology, and remediation of polluted water (Ashraf et al., 2019; Bhateria 
& Singh 2019; Lingamdinne et al., 2017). In most circumstances, magnetite or maghemite is used 
to form the core of magnetic iron oxide nanoparticles. Magnetic iron oxide nanoparticles may be 
broadly divided into three main classes: paramagnetic, ferromagnetic and superparamagnetic behavior, 
Paramagnetic behavior denotes that the magnetic dipoles are oriented in random directions at average 
temperatures due to unpaired electrons, which causes a low positive susceptibility (weak interaction) 
in a magnetic field. Ferromagnetic materials depend on their domain structure to remain magnetized 
even in the absence of an applied magnetic field, but size decreases to less than the domain size when 
they undergo a significant change. Superparamagnetism tends to have more substantial magnetic 
susceptibility than paramagnets since the magnetic moment of the entire nanoparticle aligns in the 
direction of the magnetic field (Lingamdinne et al., 2017; Devi et al., 2019).

Generally, magnetic NPs are surface modified with carboxyl, hydroxyl, and amino groups for 
their specific interactions. For example, magnetic NPs can be capped with either a positive or negative 
charge material through surface chemistry in order to increase their stability. Recent studies revealed 
that microemulsion prepared magnetic iron oxide nanoparticles with protein binding resulted in a 
reduction of suspended particles and microbes (Lakshmanan et al., 2013; Okoli et al., 2012; Seifan et 
al., 2018). Adsorption of heavy metals such as copper, cadmium, nickel, zinc, arsenic, and lead from 
aqueous solution using carboxyl, amino, and thiol functionalized magnetic NPs (Guo et al., 2014; 
Xu et al., 2018). Therefore, functionalized magnetic NPs have a high degree of interaction and the 
ability to remove specific contaminant wastewater.

To this end, magnetic nanoparticles can be an excellent remedy for the treatment of polluted 
water to obtain clean and safe potable water.
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