
58 Journal of Database Management, 24(1), 58-61, January-March 2013

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Migrating Legacy Applications:
Challenges in Service Oriented Architecture

and Cloud Computing Environments
Reviewed by Pethuru Raj, Infrastructure Architecture, SmartCloud Enterprise+, IBM Global

Cloud Center of Excellence (CoE), IBM-India, Bangalore, India

Migrating Legacy Applications: Challenges
in Service Oriented Architecture and Cloud
Computing Environments
Anca Daniela Ionita, Marin Litoiu, and Grace
Lewis
©2013 by IGI-Global
419 pp.
$195.00
ISBN 9781466624887

It is an unassailable truth that the dynamic
and decisive discipline of information tech-
nology (IT) has been the precise and perfect
business-enabler for the past five decades.
Newer and nimbler technologies (information,
communication, sensing, perception, integra-
tion, etc.) have been consistently emanating
and evolving in order to catch up with the
rapidly changing business expectations. Once
upon a time, a variety of business tasks got
automated and accelerated with the available
technologies and tools. It was succinctly touted
as the technology-driven business era. Today
the prevailing scenario is altogether different.
There are several business-driven technolo-

gies gaining overwhelming market and mind
shares. Service oriented architecture (SOA)
and Cloud computing are the leading para-
digms captivating both academicians as well
as industry professionals these days. Both are
not competing but coexisting, complementary
and collaborative in order to bring in all kinds
of desired transformation, optimization, and
simplification on geographically distributed
and globally diversified business enterprises
in the increasingly connected world.

SOA is typically for enterprise application
design, integration and composition whereas
clouds are being positioned as the next-gen-
eration IT infrastructures for deploying, deliv-
ering, and managing all kinds of IT services
and solutions. Correctly speaking, clouds are
consolidated, centralised / federated, virtual-
ized, programmable, extensible, automated and
shared IT environments in order to comprehen-
sively establish the goal of providing “IT as a
Service”. In this scintillating scene, it is very
much logical for business entrepreneurs and
executives to strategically embark on the long
and arduous journey of legacy IT modernization

BOOK REVIEW

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 24(1), 58-61, January-March 2013 59

and migration to SOA and Cloud environments
in order to proactively reap all the envisaged
benefits (business and technical) with the cool
convergence of SOA and Cloud themes.

Legacy systems are business-critical
and high-performing systems but are tightly
coupled, inflexible, closed, hard-to-maintain,
and monolithic. As IT complexity is on the
climb, complexity-mitigation techniques (For
example, modularity) are being given prime
importance. Service-enablement, being the
key modularity principle, is being prescribed
as the best course of action for these massive
systems, which are written and being faithfully
maintained over the last four decades. SOA
is being favoured because of various advan-
tages including well-established sets of open
standards, platform and language independent
interfaces, clear separation of service interface
and implementation, and loose-coupling among
services .Off course, the prescribed movement
is not a simple affair as it requires business re-
analysis, code reengineering, model-driven au-
tomatic transformations, architectural changes
and the economic viability.

The first chapter presents the fundamental
ideas related to migrating legacy applications
to service-oriented systems, and provides an
overview of the available approaches that are
presented in the book. The idea is to provide a
“big picture” while also analysing each chapter
and indicating the essential concerns, such as
state-of-the- methods, standards, tools, business
perspective, practical experiments, strategies,
and roadmaps.

The second chapter is for extracting and
exposing the a few untold challenges of service
orientation. There are a few inflated expecta-
tions on SOA, which has a few unfocused
areas. Based on a synthesis of two leading
efforts, this chapter presents a framework of
research challenges for service orientation and
focuses on the topics related to the migration
and evolution of service-oriented systems. The
chapter reviews current progress as well as gaps
in addressing those challenges that are derived
from the framework.

The third chapter provides a historic over-
view, focusing on the methods and techniques
used in legacy to SOA evolution. The authors
have conducted a systematic literature review
to collect legacy-to-SOA evolution approaches
reported from 2000 to August 2011. To that end,
121 primary studies were found and evaluated
using an evaluation framework, which was
developed from three evolution and moderniza-
tion methods widely used in the software re-
engineering domain. The evaluation constitutes
the inventory of current research approaches and
methods and techniques used in legacy to SOA
evolution. The result of the SLR also identifies
current research issues in legacy-to-SOA evolu-
tion and provides future research directions to
address those research issues.

The fourth chapter talks about how code
refactoring and reengineering can be accom-
plished. The migration costs are prohibitive.
The high costs could be easily avoided if the
development team were able to reuse the legacy
software. Most of the elementary business func-
tions required by the new business processes
already exist inside the old legacy modules.
They need to be identified, extracted and reused
to offset the spiralling cost. But that is not easy
as they are intertwined and hence the modules
have to be reengineered before being reused.
This chapter deals with how this reengineer-
ing can be done. The goal is to make modular,
flexible, and independent Web services from
the monolithic, rigid, and dependent legacy
modules. The methods used to achieve this goal
are static analysis, code restructuring, code strip-
ping, code transformation, and code wrapping.

The fifth chapter focuses on the identifi-
cation and specification of services based on
prior modelled business processes and legacy
systems. The resulting service interfaces and
service components formalized by using
the SOA Modelling Language (SoaML) de-
scribe the integration of legacy systems into
a service-oriented application landscape. The
legacy systems provide services for integration
purposes and represent the implementations of
service components. Additionally, the result-
ing architecture allows functionality of legacy

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

60 Journal of Database Management, 24(1), 58-61, January-March 2013

systems to be replaced with functionality pro-
vided by external cloud services. Leveraging
model driven architecture (MDA) concepts,
the formalized service interfaces and service
components as part of the service designs can
be used to automatically derive service interface
descriptions using the Web Services Description
Language (WSDL). These descriptions enable
the technical integration of legacy systems. If
needed, service implementations based on the
Service Component Architecture (SCA) and the
Business Process Execution Language (BPEL)
can be generated.

The sixth chapter talks about the prominent
approaches being used to move legacy (writ-
ten using COBOL) systems to SOA systems:
direct and indirect migration. Direct migration
implies wrapping the current COBOL routines
of a system with a software layer developed
under a newer platform that can be used to
offer Services. In contrast, indirect migration
requires re-designing and re-implementing the
COBOL routines’ functionality using a newer
platform as well. In this chapter, the authors have
proposed a novel migration approach, which
takes the best of the two previous approaches.
To assess the advantages and disadvantages of
these approaches, this chapter presents a case
study from a government agency COBOL sys-
tem that has been migrated to a service-based
system using the those approaches. As a result
of having these migration attempts, the authors
have presented the trade-off between direct and
indirect migration, the resulting service inter-
faces quality, and the migration costs.

The seventh chapter details about the SOA
migration project (funded) which was aimed
at developing an adaptable migration process
model with an accompanying tool support based
on MDA technologies. This process model,
which combines reverse and forward engineer-
ing techniques, was applied in two different
case studies on moving a monolithic software
system to SOA and to a transformation-based
language migration from COBOL to Java.

The eighth chapter describes the cloud-
based software delivery model and how legacy
software can be made ready to be hosted and

delivered from online, on-demand, and off-
premise clouds. Software as a Service (SaaS)
is the futuristic software discovery, access,
consumption, subscription, pricing, and man-
agement model. However, this transition from
Software off-the-shelf to SaaS is not trivial as
many issues (business, application, and tech-
nical) come into play. This chapter presents a
stepwise procedure and a method to migrate
non-SaaS applications to SaaS.

In the ninth chapter, the authors have
focused on data migration from various data
stores to cloud and vice versa. They have dis-
cussed various challenges associated with this
reciprocal migration and proposed a simple yet
powerful model whereby data can be migrated
between various data stores, especially cloud
data stores. The results clearly show an efficient
way to move data from conventional relational
databases to Google App Engines and how data
residing in the Google App Engines can be
stored on relational databases and vice versa.
They provide a generalized architecture to store
data in any cloud data store. The authors have
used RDF/RDFS as an intermediate model in
the migration process.

The tenth chapter describes the authors’
experience with a contemporary rendition of
the migration activity migrating a Web-based
system to a SOA application on two different
cloud software platforms, Hadoop and HBase.
Using the case study as a running example,
they have reviewed the information needed
for a successful migration and examined the
trade-offs between development/re-design ef-
fort and performance/scalability improvements.
The two levels of re-design, towards Hadoop
and HBase, have required notably different
levels of effort. The authors have found that
both redesigns led to substantial benefits in
performance-improvement.

There are some uncertainties for web-based
social and collaborative applications. For ex-
ample, many Web-based applications cannot
predict the number of connections that they
may need to handle. As such, applications must
either provision a higher number of servers in
anticipation of more traffic, or be faced with a

Copyright © 2013, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Journal of Database Management, 24(1), 58-61, January-March 2013 61

degradation of the user experience when a large
number of clients connect to the application.
Cloud-based deployments can alleviate these
issues by allowing the application’s server base
to auto scale based on the user-demand. A cloud
deployment can also employ servers in differ-
ent geographic locations in order to offer better
latency and response times to its clients. Moving
a collaborative application from using a single
server to a cloud and then to a distributed cloud
is not a trivial matter, however. The eleventh
chapter describes the authors’ experience with
how such a transition can be performed along
with the architectural changes that had to be
implemented at the server and cloud level in
order to create a distributed execution that
resides in the cloud.

There are two different approaches for
service-oriented systems design. SOAP and
REST are the two leading architectural styles
and this chapter has explained about the com-
parative study between them. SOAP is oriented
towards behaviour whereas the REST is towards
state. This chapter has proposed a new architec-
tural style, based on a combination of the best
characteristics of SOAP and REST, which the
authors have designated as Structural Services.
Unlike REST, resources are able to offer a
variable set of operations, and unlike SOAP,
services are allowed to have structure. This style
uses structural interoperability, which includes
structural compliance and conformance.

In this chapter, the authors have discussed
various issues and challenges related to the
adaptation of existing service-oriented sys-
tems to REST architecture. The authors have

introduced an adaptation framework process
model in the context of enterprise computing
systems and technologies, such as Model Driven
Engineering and SCA. Furthermore, they have
discussed open challenges and considerations
on how such an adaptation process to REST can
be extended, in order to yield systems that best
conform to the REST architectural style and the
corresponding REST constraints.

In the final chapter, the authors have
analysed two concepts: system evolutivity
and adaptability. Both are complex processes
and need tools for simplification and stream-
lining. Therefore the authors have proposed
an execution environment, which provides a
homogeneous service representation used to
integrate: their functionalities, their life-cycle
and management operations, and lifecycle
related concerns, like deployment. Their ap-
proach includes two integration mechanisms:
the technologies integration supported by
wrappers and concerns integration supported
by the run-times.

This book is all about the correct com-
pilation of proven and potential approaches,
tools, techniques and tips for smoothly and
systematically modernizing and moving old
software systems to service systems that can
be easily deployed in and delivered from cloud
environments. This is an informative and inspir-
ing book authored by accomplished professors,
practitioners and professionals for worldwide
software developers, architects, consultants and
experts who are assigned to ponder about the
ways and means of legacy migration.

