Symbols
3D graphical user interface (GUI) ANN CAD system 162

A
abiotic interactions 80
adaptability measure 84, 88, 91, 93
agent-based plants 69
agent-based simulations 3
AGE-P abolishes 183
AGE-P framework scales 196
AGE-P physically 186, 196
algorithmic configuration 68
algorithmic effect 247
analog-to-digital converters 194
animal habitat modelling 68
ANN architecture 154
ANN toolbox 231
ant-based approach 331, 332
ant colony optimisation algorithms 3, 12, 13
ant colony optimization 324, 325, 367, 369
ant colony optimization (ACO) 166, 167, 299, 325
Ant Colony Optimization (ACO) algorithms 299
Ant Colony System (ACS) 12
Ant System (AS) 12, 304
appliances-go-evolution platform 182, 183, 186
appliances-go-evolution platform (AGE-P) 182, 183
arity 271, 272
Arthropoda 110
artificial ant 298, 303, 304, 309, 312
artificial intelligence methods 1
Artificial Life 68, 69, 70, 72, 377, 75, 77, 78, 391, 91, 92, 399, 403, 112, 117, 110, 112, 115, 116
Artificial Life approach 72
Artificial Life-based models 70
Artificial Life-based models of vegetation 70
Artificial Life-based vegetation 68, 69, 110
Artificial Life-based vegetation modelling 69
artificial life simulations 243, 244, 248
artificial neural network 3, 10, 11
artificial neural networks (ANN) 144, 162
artificial organism 204, 233
ASV systems 260, 268, 271, 278
Asynchronous Transfer Mode (ATM) 325
AUD/USD foreign exchange rate 40
authoritarian society 243
automated programming technique 262
Automatic detection 144
automatic invention machine 263
automatic segmentation 7
Automatic Speaker Identification (ASI) problem 260
Automatic Speaker Verification (ASV) 259
autonomy 74, 78, 110, 111
autopoiesis 78
autopoietic system 78
auto-regression (AR) model 30

B
backbone location 324, 325, 347, 351, 360
bacteria-rich agar 245
bankruptcy prediction 8, 18, 382
baselines 119
basic economic model 26
basic genetic algorithm 119
computer graphics 122, 123
Computer graphics models 73
computer model 204
computer programs 28
computer science 4
computer science and communications theory 209
conditional probability distribution model (CPD) 283
Context Dependent Crossover (CDC) 330
conventional architectures 204
convolutive noise 259, 268
coronary artery disease 144
Corylus Avellana 81, 100, 101, 103
cranial anthropometric 120
Craniofacial superimposition 119, 135, 140, 141
craniofacial superimposition stage 122
craniofacial superimposition 122
craniofacial superimposition 122
crossover operations 266
 crossover probabilities 44
crowd tolerance 90
cyclical graphs 249

D
Danger Model 232
Darwinian concepts of evolution 262
data dependency models 282
data index 42
detect chemicals 299
diabetes mellitus 144, 165
diagnosis method 147
differential evolution 4, 8, 9, 16, 19, 20, 22, 23, 377, 388, 393, 399, 404, 406
digital facial photograph 123, 143
digital signal 270
Dijkstra’s algorithm 331
diminishing genetic diversity 265
directed acyclic graph (DAG) 285, 286
discrete location 72
dislocation crossover operator 332
diverse philosophical texts 242
DNA Computing 207
DNA sequence 166, 168
dormancy period 83, 84
Dryopteris filix-mas 98, 99, 100, 101
DyFor GP model 32, 44
DyFor model 31, 39, 45
dynamic generations 43
dynamic nature 185
dynamic probabilities 44

E
eccolines 106, 107, 111
ecological simulation 248
ecological simulation component 248
economic collaboration 49
economic rationale 28, 32
ecosystem 68, 74, 75, 79, 99
ecosystems 72, 79, 109, 110, 113, 381
etcoton 93, 95, 106, 107
ectocanthion 123
efficient algorithms 3
electromagnetism 14
electronic hardware 208
emergence phenomenon 68, 110
eminent colleague 2
employing neural networks 144
endoscopic retrograde cholangiopancreatography (ERCP) 145
endoscopic ultrasound (EUS) 145
energy consumption 244, 245
energy regeneration 245
environmental signals 83, 88
enzymatic performance 7, 18, 386
epigenesis 207
epistasis 166, 168, 175, 176, 178, 179
epistatic interactions 167, 169, 177
Estimation of Distribution Algorithms 281, 282, 283, 297
Estimation of Distribution Algorithms (EDAs) 282
evapotranspiration 84
evolutionary algorithms 1, 2, 4, 6, 7, 21, 204, 206, 281, 282, 395
Evolutionary algorithms 182
evolutionary algorithms (EAs) 27
Evolutionary Computation (EC) 120
evolutionary framework 182, 183
evolutionary methods 282
evolutionary process 263, 265, 267, 271, 278
evolutionary programming 4, 5, 6, 7, 18, 20, 22, 24, 382, 391, 392, 402, 410
Index

<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>evolutionary robotics</td>
<td>183</td>
</tr>
<tr>
<td>evolutionary theories</td>
<td>4</td>
</tr>
<tr>
<td>evolution strategy variants</td>
<td>6</td>
</tr>
<tr>
<td>executable product model (EPM)</td>
<td>50, 55</td>
</tr>
<tr>
<td>executable product model (EPM) approach</td>
<td>55</td>
</tr>
<tr>
<td>Extended Symmetry Perceiving Adaptive Neuron (ESPAN)</td>
<td>123</td>
</tr>
<tr>
<td>Extensible Markup Language (XML) structure</td>
<td>81</td>
</tr>
<tr>
<td>Facial pain syndromes</td>
<td>144</td>
</tr>
<tr>
<td>fitness function</td>
<td>125, 126, 128, 131</td>
</tr>
<tr>
<td>fitness landscape</td>
<td>263</td>
</tr>
<tr>
<td>fitness level</td>
<td>90, 91, 92</td>
</tr>
<tr>
<td>Floyd-Warshall algorithm</td>
<td>328</td>
</tr>
<tr>
<td>forensic anthropologists</td>
<td>119, 131, 133, 138</td>
</tr>
<tr>
<td>Formicidae</td>
<td>299, 319</td>
</tr>
<tr>
<td>frequency histogram</td>
<td>150</td>
</tr>
<tr>
<td>Frustum Base</td>
<td>125</td>
</tr>
<tr>
<td>fuzzy logic control</td>
<td>329, 339</td>
</tr>
<tr>
<td>fuzzy systems</td>
<td>154</td>
</tr>
<tr>
<td>GA behavior</td>
<td>128</td>
</tr>
<tr>
<td>Gap Search (GS)</td>
<td>49, 50, 53</td>
</tr>
<tr>
<td>Gap Search (GS) method</td>
<td>49, 50</td>
</tr>
<tr>
<td>GA solutions</td>
<td>333</td>
</tr>
<tr>
<td>Gaussian distribution</td>
<td>271</td>
</tr>
<tr>
<td>Gaussian Mixture Models (GMM)</td>
<td>261</td>
</tr>
<tr>
<td>gene-gene interactions</td>
<td>166, 179</td>
</tr>
<tr>
<td>Generalised Additive Models (GAMs)</td>
<td>70</td>
</tr>
<tr>
<td>Generalised Linear Models (GLMs)</td>
<td>70</td>
</tr>
<tr>
<td>generic hardware</td>
<td>207</td>
</tr>
<tr>
<td>genetic algorithm (GA)</td>
<td>4, 6, 7, 8, 9, 28, 30, 38, 49, 50, 65, 206, 387, 377, 386, 387</td>
</tr>
<tr>
<td>genetic algorithm selection method</td>
<td>6</td>
</tr>
<tr>
<td>Genetic Algorithms (GAs)</td>
<td>50</td>
</tr>
<tr>
<td>genetic drift</td>
<td>126</td>
</tr>
<tr>
<td>genetic fusion</td>
<td>30</td>
</tr>
<tr>
<td>genetic material</td>
<td>266</td>
</tr>
<tr>
<td>genetic operators</td>
<td>120, 126</td>
</tr>
<tr>
<td>genetic preferences</td>
<td>91</td>
</tr>
<tr>
<td>genetic program (GP)</td>
<td>26, 28, 48, 408</td>
</tr>
<tr>
<td>genetic programming</td>
<td>4, 378, 7, 8, 380, 17, 18, 19, 20, 21, 382, 383, 389, 391, 393, 23, 406, 409</td>
</tr>
<tr>
<td>Genetic Programming (GP)</td>
<td>166, 167, 262, 259, 262, 263, 278, 279</td>
</tr>
<tr>
<td>geographical distribution</td>
<td>118, 70, 409</td>
</tr>
<tr>
<td>Geographical Information Systems (GIS)</td>
<td>70</td>
</tr>
<tr>
<td>germinate</td>
<td>81, 83, 84, 105</td>
</tr>
<tr>
<td>glabella</td>
<td>123</td>
</tr>
<tr>
<td>global level</td>
<td>77</td>
</tr>
<tr>
<td>global patterns</td>
<td>73, 78</td>
</tr>
<tr>
<td>global search algorithms</td>
<td>120</td>
</tr>
<tr>
<td>global system error</td>
<td>191</td>
</tr>
<tr>
<td>GP approach</td>
<td>170</td>
</tr>
<tr>
<td>GP method</td>
<td>173, 263, 266</td>
</tr>
<tr>
<td>GP mutation operator</td>
<td>29</td>
</tr>
<tr>
<td>GP program</td>
<td>264</td>
</tr>
<tr>
<td>GP system</td>
<td>27, 31, 38, 39</td>
</tr>
<tr>
<td>graphical user interface (GUI)</td>
<td>162</td>
</tr>
<tr>
<td>graphics processing units (GPU)</td>
<td>162</td>
</tr>
<tr>
<td>gray-scale images</td>
<td>74</td>
</tr>
<tr>
<td>gross domestic product (GDP)</td>
<td>32</td>
</tr>
<tr>
<td>growth-seed ratio</td>
<td>83</td>
</tr>
<tr>
<td>GS method</td>
<td>49, 50, 53, 54, 60, 61, 62, 63</td>
</tr>
<tr>
<td>habitat based</td>
<td>95</td>
</tr>
<tr>
<td>habitat management</td>
<td>68</td>
</tr>
<tr>
<td>habitat modelling</td>
<td>68</td>
</tr>
<tr>
<td>Hamming distance</td>
<td>127</td>
</tr>
<tr>
<td>hardware components</td>
<td>184, 193, 200</td>
</tr>
<tr>
<td>herbivore</td>
<td>248</td>
</tr>
<tr>
<td>heuristic methods</td>
<td>4</td>
</tr>
<tr>
<td>hierarchical organisations</td>
<td>205, 207</td>
</tr>
<tr>
<td>holarchy</td>
<td>209</td>
</tr>
<tr>
<td>homeostatic</td>
<td>205, 223, 238</td>
</tr>
<tr>
<td>human designers</td>
<td>281</td>
</tr>
<tr>
<td>human genetics</td>
<td>166, 167, 168, 169, 173, 175, 176, 179, 180</td>
</tr>
<tr>
<td>human immunodeficiency virus</td>
<td>10</td>
</tr>
<tr>
<td>human intelligence</td>
<td>1</td>
</tr>
<tr>
<td>human researchers</td>
<td>263</td>
</tr>
<tr>
<td>human thinking</td>
<td>1</td>
</tr>
<tr>
<td>hybrid grouping</td>
<td>85</td>
</tr>
<tr>
<td>hybrid model</td>
<td>30</td>
</tr>
<tr>
<td>hydrology</td>
<td>75, 82, 89, 99</td>
</tr>
<tr>
<td>Hymenoptera</td>
<td>299, 317, 319</td>
</tr>
</tbody>
</table>
Index

I
image registration (IR) 120
image registration (IR) techniques 120
input-output relations 11
intelligent business logic engineering 8
intelligent control flow mechanism 50, 57
island 267, 268, 269, 277

K
kappa 127
key performance indicators (KPI) 58
Klatskin’s disease 159
k-Nearest Neighbours 11
K non-overlapping clusters 262

L
land based plants 82
layer 108, 110
lethal 145
lifecycles 80, 81
linear networks 154
Linear prediction 270
living organisms 81
local network (LN) 328
logical operators 271
Lotka-Volterra equations 248
Lotka-Volterra mathematics 248

M
machine learning 259
machine learning strategies 259
magnetic resonance cholangiopancreatography (MRCP) 144
Magnetic resonance cholangiopancreatography (MRCP) 146
magnetic resonance imaging (MRI) 145, 146
magnetic resonance imaging (MRI) scans 145
master-slave parallel GA (PGA) 335
mathematical mapping 249
MAX-MIN Ant System (MMAS) 12
mean absolute error (MAE) 40
mean absolute percentage error (MAPE) 40
Mel-Frequency Cepstral coefficients (MFCCs) 261
memetic algorithms (MA) 9, 10, 15, 16, 19, 20,
333, 373, 388, 390, 393, 395, 398, 403
memory traversal 253
meta-agar 245, 246, 247
metaheuristic algorithms 298, 299
metaheuristic computational methods 323
metaheuristic computing algorithms 299
methodological objection 242
minimum spanning tree (MST) 326
morphological 151
MRCP images 146, 147, 148, 149, 150,
152, 153, 154, 155, 156, 158, 159,
160, 162
multi-agent environments 74
Multi-agent systems (MAS) 56
multi-layered architectures 154
multi-layer perceptron (MLP) 144, 154
multi-layer perceptron (MLP) network 154
Multi-layer Perceptrons (MLP) 11
multi-objective problems 324
multiple neuromagnetic 7, 18, 382
Multivariate Adaptive Regression Splines (MARS) 70
mutation rule 7, 9

N
naïve Bayes classifier 170
naïve measures 30
nasion 123
natural characteristics 204, 205, 206, 227,
230, 238, 239, 240
natural computation 204, 205, 207
natural computing 1, 2, 14, 15, 17, 19, 380, 388
natural evolution 205, 208
natural features 206
natural methodology 147
natural properties 206, 226
natural selection 80, 83, 110, 111, 113, 380
natural systems 69, 74, 76, 77, 78, 110
Natural systems 204
nature-inspired algorithmic systems 4
nature-inspired algorithms 166, 177
nature-inspired approaches 1
nature-inspired computational methods 324
Index

nature-inspired informatics tool 161
nature-inspired solutions 1
nature-inspired techniques 323, 324, 325, 32
7, 336, 357, 360, 361
nature-inspired technology 145
nature’s intrinsic problem-solving approach 68
network topology design
324, 325, 350, 351, 364
neural network 183
neural network model of intelligence 243
neural network models 256, 257
neural networks 1, 2, 10, 11, 12, 17, 18,
23, 24, 204, 206, 208, 226, 231,
240, 277, 283, 384, 404, 409
neural networks (NNs) 27
neural network training 5, 14
Noble Ape 242, 243, 244, 245, 246, 247, 2
48, 249, 250, 251, 252, 253, 255, 25
6, 257
Noble Ape development 244, 248, 257
Noble Ape Simulation 242,
243, 244, 245, 247,
248, 249, 251, 255, 256, 257
node-link biased 328, 329
No Free Lunch Theorem 3, 9, 14, 15
non-ANN model 146
non-destructive evaluation 12
non-intuitive method 209
non-linear functions 271
notions of homeostasis 206
NP-hard combinatorial optimization problems
298, 299, 303, 304

O
One-Max-Tree problem 331
ontogenesis 207
oral antennae 299
Origin of Species 80
orthogonal primitives 247

P
pancreato-biliary system 145
parallel computation 207
parallel stochastic learning 206
parametric method 262
Particle Swarm Optimization (PSO)
49, 50, 51, 325
percutaneous transhepatic cholangiography
(PTC) 145
Perturbable Numerical Value (PNV) 271
pharmaceutical industry 8, 20, 391
phenotype 265
pheromone model 12
philosophical methodology 249
Photographic supra-projection 119
photosynthesis 80, 84
phylogenesis 207
pigmentation patterns 77
Pinus 81, 100, 101, 103
Pinus Sylvestris 100, 101, 103
Plain Old Telephone System (POTS) 268
plant ecology 79
polytree 282, 283, 284, 285, 286, 287,
288, 290, 291, 292, 293, 294, 295,
296
polytree learning algorithm 285, 286, 287
PolyWorld 243, 244, 245, 256, 258
post-hoc analysis 175
POTS system 268
power generation 5
predictive accuracy 31, 45
predictive modelling methods 70
primitive components 73
Prim’s algorithm 328, 329, 330
probabilistic networks 154
probability model 281, 282, 283, 284
problem-specific parameters 182
procedural agents 74, 75, 112, 374
protein-protein interaction 5
pseudo-randomly 7, 8, 13
psychiatric diagnosis 144, 164

Q
Quality of Service (QoS) 324
quantum mechanics 247, 248
quasi-optimal solutions 324

R
Radial Basis Function (RBF) 11
radial basis functions 154
radiant energy 73
radiological diagnosis 153
Index

random initializer 171
Randomized Primal Method (RPM) 330
Reaction-diffusion Computing 207, 208
real-time graphical feedback 249, 253
real-time graphics 244, 245
real-world applications 8
real-world case studies 182
receiver operating characteristic (ROC) 155
receiver operating characteristic (ROC) curve 155
recurrent networks 154
region of interest (ROI) 149
regression networks 154
Reinforcement learning (RL) 58
reliable networks category 325
replicate biological viruses 245
Robust Automatic Speaker Verification 259
ROI identification 149
root input node 37
root mean squared error (RMSE) 40

S
Salix Babylonica 100, 101, 104
sea level 89, 94, 95
search space 263, 271
seasonal global temperature 89
seedling mortality rates 83
self-adaptive genetic algorithm 204
self-assembly 78
self-organisation 69, 76, 78, 204, 205
self-organizing maps (SOM) 154
Self-producing 78
self-repair 204, 205, 206, 219, 223, 237
self-replicating machines 206
Self-replication 78
signal to noise ratio (SNR) 146
Simulated Annealing (SA) 331
simulated telephone network 259
single nucleotide polymorphisms (SNPs) 168
skin 145
solution algorithms 3
Steiner tree problem (STP) 334
stigmergy 299, 303
Stochastic PI-Calculus 209, 210
structures 159
structural plant models 73
subnasal 123
sub-optimal solution 265
superimposition solution 119, 120, 122, 123, 124, 125, 128, 131, 133, 134, 135, 137, 138, 140, 141, 142
swarm algorithm 14, 19, 387
swarm-based networked sensor systems 14, 19, 388
swarm intelligence 206
Syntactic features 260
systemic computation (SC) 205, 206, 208, 210, 211, 215, 217, 218, 225, 226, 231, 233, 237, 238, 240
Systemics 207
T
telecommunication network design 323, 324, 325, 335, 336, 371
telecommunication networks 324, 325, 344, 370
temperature-altitudinal ratio 89
Theil inequality coefficient 40
three-dimensional skull model 119
thyroid 145
topology 51, 52, 60, 61, 63, 183
Traveling Salesman Problem (TSP) 299, 305
tree-like network topology 326
Tuned ReliefF (TuRF) 169
U
UIP equation 28, 30, 32, 33, 34, 38, 40, 41, 42, 45
Unbiased Interest rate Parity (UIP) 27, 32, 33
Univariate Marginal Distribution Algorithm (UMDA) 283
Universal Turing Machine (UTM) 205
V
vascular structure 73, 79
vector error correction model (VECM) 30
Vector Quantisation (VQ) 261
vegetation biology 79
vegetation life-cycle 72
Vegetation modelling 68
velocity vector 51, 62

426
Index

Virola surinamensis 83
virtual environment 75, 85, 88, 89
virtual machine
204, 205, 211, 212, 213, 238
virtual machine (VM) 211
virtual plant’s genotype 82
Virtual Reality Modelling Language (VRML) 75
von Neumann architecture 205, 237

W
water logging 84, 89
weight-mapping crossover 329
wireless network design 324, 325, 351, 352, 353, 357, 359, 360, 361
wireless sensor networks 207

Y
yearly cycle 88