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ABSTRACT

In this paper, techniques of statistical computing were applied to data logs to investigate the patterns 
in students’ play of The Fuzzy Chronicles, and how these patterns relate to learning outcomes with 
regards to Newtonian kinematics. This paper has two goals. The first goal is to investigate the basic 
claims of the proposed Two-System Framework for Game-Based Learning (or 2SM) (Martinez-
Garza & Clark, 2016) that may serve as part of a general-use explanatory framework for educational 
gaming. The second goal is to explore and demonstrate the use of automatically collected log files of 
student play as evidence through educational data mining techniques. These techniques could also find 
general use, and this paper offers a demonstration of plausible methods and processes that are suited 
for game play data. These goals were pursued via two research questions. The first research question 
examines whether students playing The Fuzzy Chronicles showed evidence of dichotomous fast/slow 
modes of solution. The 2SM theorizes that slow modes of solution will correlate to higher learning 
gains. Congruent with the 2SM, students who use mainly fast iterative solution strategies achieved 
lower learning gains than students who preferred slow, elaborate solutions, or a more balanced mix 
of the two. A second research question investigates the connection between conceptual understanding 
and student performance in conceptually-laden challenges. The finding was that students generally 
improve their performance in these challenges as gameplay progresses, but that this improvement is 
strongly moderated by their prior knowledge of physics. Implications of these findings in terms of 
educational game design, analysis of gameplay logs, and further refinement of the 2SM are discussed.
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INTRoDUCTIoN

Digital games are potentially powerful vehicles for learning (Gee, 2007; Prensky, 2006; Mayo, 2009; 
Shaffer, Squire, Halverson, & Gee, 2005; Rieber, 1996; Squire et al., 2003), and numerous empirical 
studies have linked classroom use of educational games to increased learning outcomes in science 
(e.g., Annetta, Minogue, Holmes, & Cheng, 2009; Dieterle, 2009; Neulight, Kafai, Kao, Foley, 
& Galas, 2007; Squire, Barnett, Grant, & Higginbotham, 2004). Several reviews have concluded 
that game-based learning offers numerous theoretical and practical affordances that can help foster 
students’ conceptual understanding, engagement, and self-efficacy (Aldrich, 2003; Cassell & Jenkins, 
1998; Kafai, Heeter, Denner, & Sun, 2008; Kirriemuir & Mcfarlane, 2004; Martinez-Garza, Clark, & 
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Nelson, 2012, Munz, Schumm, Wiesebrock, & Allgower, 2007). That said, not all games effectively 
support learning for all learners (Young et al., 2012). Clark, Tanner-Smith, and Killingsworth (2015) 
find favorable support for the use of educational games overall, but particularly in cases where games 
are augmented through the application of sound learning theory.

While the general question of whether games can provide productive contexts for learning 
is approaching consensus, how and why and when games work are more open questions. A large 
number of constructs receive attention as potentially important for game-based learning (Linehan, 
Kirman, Lawson, & Chan, 2011; Dondlinger, 2007), including constructs as varied as fun, feedback, 
engagement, flow, problem-solving, narrative, etc. Several scholars have proposed design principles 
to optimally leverage some or all of these constructs (e.g. Annetta, 2010; Kelle, Klempke, & Specht, 
2011; Tobias & Fletcher, 2007; Plass, Homer, & Kinzer, 2014). Also, educational games claim a 
broad spectrum of possible learning outcomes (Martinez-Garza, Clark, & Nelson, 2013b) which, 
when combined with the wide range of gaming genres, gaming populations, and technology platforms 
educational researchers have available, creates a vast and constantly changing space of inquiry that 
resists generalized claims. Furthermore, digital games also present unique assessment challenges. 
Since games often incorporate novel student activities for which there are no well-established existing 
measurement methods, measures often need to be developed along with the game in an iterative fashion 
(Harpstead, Myers, & Aleven, 2013). Thus, some scholars have called for increased methodological 
rigor and emphasis on usable (i.e. generalizable) knowledge in educational games research (Dede, 
2011; Foster & Mishra, 2008).

Regardless of the variations in theoretical framing, methods, or learning outcomes, the common 
denominator of all game-based learning research is the act of students’ play. Thus, a general claim 
of game-based learning research can be phrased as “if a student plays this particular game, he or 
she will learn this particular thing.” Much inquiry into game-based learning is directed towards 
explicating other issues that influence and structure educational gaming (e.g. design considerations, 
materials and curricula to support educational games, and detection of learning outcomes), although 
not so much play itself, i.e. what choices the student has available, what informs those choices, and 
what feedback the game offers in response. Generally speaking, the act of play as the central driver 
of learning is somewhat under-examined in the educational gaming literature. Among the possible 
reasons for this lack of focus are (1) the general difficulty of observing, encoding, and analyzing play 
systematically, and (2) the limitations of general theoretical frameworks that might help operationalize 
play in meaningful actionable ways.

Previous educational research efforts that analyzed digital game play at the individual level 
have relied primarily on observational methods (e.g., Annetta, Minogue, Holmes, & Chang, 2009; 
Hou, 2012; Sengupta, Krinks, & Clark, 2015). Observational studies that aim for thick description 
(Geertz, 1973) of gamers at play explicate this richness and often succeed in building strong cases for 
learning (e.g. Squire, DeVane, & Durga, 2008). However, investigations of play that use a student’s in 
situ performance as an indicator of the learning are generally limited in scope and scale by the costs 
and demands of observation and coding. A possible way to address this limitation involves the use 
of log file data. Students’ actions within the game environment, when recorded and compiled, can 
potentially produce a rich and detailed account that can be productively analyzed using methods of 
statistical computing (Martinez-Garza, Clark, & Nelson, 2012). These statistical computing methods, 
variously known as learning analytics (LA), or educational data mining (EDM), could be used 
not only for assessment of learning (as we proposed in Clark, Martinez-Garza, Biswas, Luecht & 
Sengupta, 2012) but also to find underlying structure and regularity in students’ play that may inform 
meaningful generalizations about what constitutes learning through play in a game environment. Using 
a combination of log file data and learning analytics, educational games scholarship could potentially 
transcend the limitation of cost, time, and human effort without abandoning deep qualitative analysis 
(Berland, Baker, & Blikstein, 2014).
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GoAL AND STRUCTURE oF THIS PAPER

This paper has two goals. The first goal is to investigate the basic claims of the proposed Two-System 
Framework of Game-Based Learning (Martinez-Garza & Clark, 2016), a cognitive perspective that 
may serve as part of a general-use explanatory framework for educational gaming. The second goal is 
to explore and demonstrate the use of automatically collected log files of student play as evidenced by 
educational data mining techniques. These techniques have drawn interest from researchers seeking a 
more nuanced understanding of student action within digital environments. The data mining techniques 
featured in this paper could potentially find general use, and this paper aims at offering a demonstration 
of plausible methods and processes that are suited for the specific challenges of game play data.

The context for this research is an educational game intended to help middle school students 
develop a better understanding of Newtonian kinematics. Among its other functionalities, this 
particular game stores all student actions and collects them in a central database. The Conceptual 
Framework section describes this game, titled The Fuzzy Chronicles, in some detail. Then, a 
summary of the Two-System Framework (or 2SM) is presented, followed by specific discussion of 
the implications of the 2SM in the context of The Fuzzy Chronicles. A brief overview of current 
research that makes use of log files from digital educational environments as evidence rounds out 
the Conceptual Framework section.

Plan of work
After laying out the necessary groundwork, we articulate goal of investigating the central claims of 
the 2SM more specifically as two research questions. Research Question 1 (RQ1) asks, “can the two 
epistemic stances theorized in the 2SM be observed through the study of log files gathered from 
student play?” The epistemic stances described in the 2SM are best suited as general descriptions of 
styles or strategies of play, and thus, a more targeted approach is warranted to investigate the effects 
of these styles on specific conceptual understandings that gameplay intends to promote. Research 
Question 2 (RQ2) provides this specificity by asking, “Do differences in gameplay in the specific 
game situations correlate with differences in performance on a conceptual knowledge test?” Each 
question is investigated in its own section, with separate Results and Discussion subsections. In the 
Conclusions, we outline some of the opportunities and difficulties of using educational data mining 
on digital game play logs, future directions for this kind of research, and also propose improved 
design factors for educational games that might better promote students’ behaviors during play to 
more closely align with those behaviors found linked to positive learning outcomes.

CoNCEPTUAL FRAMEwoRK

overview of the Game Environment: The Fuzzy Chronicles
For this study, we used the educational game titled The Fuzzy Chronicles, codenamed EPIGAME 
(Clark, 2012; Clark, Sengupta, Brady, Martinez, & Killingsworth, 2015). The Fuzzy Chronicles 
is the third iteration of the SURGE line of digital games intended to help students advance their 
understanding of Newtonian kinematics. The Fuzzy Chronicles (hereafter, EPIGAME) takes the form 
of a series of puzzles presented as a science fiction adventure. Students play as the space navigator 
Surge, who must find and rescue space capsules piloted by Fuzzies, adorable but somewhat hapless 
creatures who are stranded in space. In order to accomplish these rescues, the student must navigate 
Surge’s spaceship through a two-dimensional spatial grid (see Figure 1 and Figure 2) by tracing a 
Trajectory to the stationary Fuzzy, then placing Actions at Waypoints along that Trajectory. Most 
Actions take the form of Boosts that propel Surge’s ship in one the four cardinal directions with an 
amount of force that the student chooses. Gameplay is divided into Levels, each comprising a separate 
navigational and/or rescue challenge. All Levels have a Start Point and an End Gate, and may also 
optionally contain obstacles, such as impenetrable Nebulas and Radiation, as well as Velocity Gates 
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and Mass Gates that impede Surge’s progress. These Gates signal an attribute of Surge’s capsule 
(i.e., a specific velocity or mass) that the student is required to match before the Gate will open. 
Colliding with a Nebula, a Radiation field, or a Gate causes the destruction of the Surge capsule and 
any rescued Fuzzies, and failure of the Level.

The interactive structure of EPIGAME has two phases - a planning phase and an action phase. In 
the planning phase, students decide their trajectory and place their actions appropriately. The student 
signals the end of the planning phase by hitting the run lever, thus starting the action phase. In this 
phase, Surge’s capsule follows the student’s plan, which may result either in a successful navigation to 
the end gate and the rescue of any stranded Fuzzies or the destruction of Surge’s capsule. If successful, 
the student moves on to the next level. If the student is not successful and Surge’s capsule is destroyed, 
he or she is returned to the planning phase in order to change the planned trajectory and/or add or 
remove actions before triggering a new action phase. Together, a planning phase and its resultant 
action phase are called an attempt (which may be successful or unsuccessful).

In theory, a student may complete the game having needed only one attempt, (i.e. one planning 
phase and one action phase) per level. In reality, students often require multiple attempts before they 

Figure 1. Anatomy of an EPIGAME level. (1) Start Point (2) Velocity Gate (3) Laser Deactivator (or “Button”) (4) Nebula (5) Matching 
Button and Laser (note green color of both) (6) End Gate (7) available Actions.
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successfully advance. In a given level, the student is free to construct a plan for the entire trajectory 
for the entire level and place all necessary actions before first activating of the run lever. Alternatively, 
students may choose to segment the trajectory and place only a few actions at a time, thereby solving 
the level incrementally (i.e., draw part of a trajectory, place a few actions, activate the Run Lever, see 
what happens, and adjust and extend the trajectory and actions iteratively through multiple cycles 
of attempts). The game neither suggests nor encourages either approach, so a student may select 
whichever method he or she finds more suitable.

A full game of EPIGAME as designed for this study consists of 32 levels of generally increasing 
complexity. Each subsequent level more often than not requires more actions than the previous ones, 
contains more challenges and obstacles, and demands more effort by the player to plan and strategize 
for success. Because of this, it is likely that any students of EPIGAME will find at least one level that 
requires multiple attempts in order to succeed. Some levels, particularly near the end of the game, 
allow only a very limited margin of error. Therefore, progress in the game requires the student to 
be persistent at times, take several different approaches when faced with apparently insurmountable 
levels of difficulty, and explore and experiment with different combinations of actions to find a 
correct solution for each level.

Figure 2. An attempt in process. The student is setting direction (8) and force (9) parameters on an action. The student has set a 
trajectory (10) through several waypoints (a-e). To begin the attempt, the student presses the launch lever (11).
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The Two-System Framework of Game-based Learning
A goal of this paper is to investigate a theory of game-based learning called the Two-Stance Model 
framework, or 2SM (Martinez-Garza & Clark, 2016). The 2SM framework seeks to support a more 
sophisticated understanding of how and what people learn from digital games. It was motivated by the 
contrast between recent scholarship that finds uneven evidence that people learn much from digital 
games (Young et al., 2012) and the observation that students inhabit rich ecologies of knowledge 
about the games they play (Gee, 2007) that include often-impressive feats of cognition.

Many digital games can be accurately described as software models of scientific phenomena 
encased within game-like structures that are intended to increase student engagement. In the case 
of educational games, the intention is that students develop an understanding of the principles that 
underlie these phenomena through the thoughtful and purposeful exploration of their scientific models. 
The premise of the 2SM framework is that students of educational games do not necessarily form 
accurate mental analogues of the software models that drive the phenomena they experience in-game 
(i.e. the encased “simulation”); rather, they create a second-order model (as in, a model of a model 
of a phenomenon) that is oriented towards explaining the functioning of the encased simulation, 
predicting its future states, and allowing the student to feel that he or she understands the simulation 
or game, and has some measure of control over it.

These two stances can be conceptualized further using features from the two-system model of 
cognition (Evans, 2008). Two-system models of cognition distinguish between effortless thought, or 
“intuition”, and deliberate purposeful “reasoning”. These modes of cognition are neutrally labeled as 
System 1 and System 2, respectively. The former is described as fast, automatic, associative, emotional, 
and opaque; the latter as slower, controlled, serial and self-aware. In the 2SM framework, System 1 
is associated with the “player” stance and System 2 with the “learner” stance.

Students might have two distinct goals when interacting with a game’s encased simulation. The 
first involves develop their second-order model to better understand the simulation and use it as a 
laboratory the objects and relationships within the simulation can be investigated. The second goal 
involves executing various game actions to manipulate the simulation to create the desired state 
(i.e., success). These two sets of goals imply different forms of thinking about the information being 
presented by the digital game. Our hypotheses are that (a) the first goal prioritizes or incentivizes 
an inquiry stance oriented towards the purposeful and systematic investigation of the operating 
principles of the encased simulation and that (b) the second goal prioritizes or incentivizes a heuristic-
driven problem-solving stance oriented towards efficiently achieving the player’s goals. A student 
in the inquiry (or “learner”) stance might probe the simulation for information that confirms their 
understanding. A student in the problem-solving (or “player”) stance might only engage in exploratory 
actions and observe whether these actions lead to positive results.

Starting from the two-system model of cognition, we proposed the following mechanistic 
explanation for how people play and learn from digital games. A person begins play, and a goal will be 
suggested to the player’s thinking, immediately triggering a self-query, “how do I achieve this goal?” 
The self-query shifts the person towards the learning stance, and in response to the query a second-
order model is constructed. This model’s functional requirement is that it suggest actions that would 
bring the state of the game closer to what the person has identified as a goal state. These actions are 
rendered as execution steps (“Do that”) and enacted in the simulation through the game’s interface. 
Actions that prove effective are reinforced and actions that have a negative effect are rephrased as 
avoidance steps (“Don’t do that”). With repeated reinforcement, effective rules are matched to the 
context cues from the environment and stored as conditionals, i.e. “If this, do that.” These conditionals 
are easy to remember, quick to access, and require nearly no cognitive effort to execute: they fit the 
functional definition of heuristics.

Whenever the student finds herself in a situation that is covered by a stored rule, she will in most 
cases default to doing what that rule stipulates. In other cases, the student must shift to a learner 
stance, reinstate the second-order model, and use it to find new possible actions. If the student always 
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knows the rule to apply, the model is most likely deactivated and the student will default to System 
1-style processing, or fast, effortless, intuitive heuristics. Thus, through play, a person gathers three 
forms of knowledge about the game: (a) the conditions that the game presents, (b) a set of heuristics, 
or rules of action with activation criteria that match these conditions, and (c) a second-order mental 
model i.e., an idiosyncratic explanation of how the game produces the observed conditions. In the 
case of educational gaming, these three forms of knowledge combine to form part of the learning 
benefit that students may develop from playing the game.

The 2SM is a novel application of the two-system theory of reasoning to educational games. 
There are suggestive findings from adjacent programs of research have examined forms of reasoning 
within and around digital learning environments that hint at its validity (e.g. Parnafes & Disessa, 2004; 
Gijlers & de Jong, 2013). One of the goals of this paper is to explore the fundamental claims of the 
2SM, namely that traces of students’ System 1 and System 2 reasoning can be observed during play, 
and that preference for one stance over another has a significant effect on learning. These possible 
effects are explored in more detail in the following section.

Implications of the 2SM for Learning
In the 2SM, stances are defined as collections of resources (Hammer & Elby, 2003). The framework 
stipulates that the two stances can be associated with cognitive processes described in the two-system 
theory of cognition (Sloman, 1996; Stanovich, 1999; Kahneman, 2003; Evans, 2008). Thus, a stance 
or collection of resources organized around System 1 would be optimized for processing speed and 
effortless thought, while a stance organized around System 2 would be primed for information use 
and deliberative reasoning. Stances, like resources, are cued around task demands; certain tasks, 
e.g. driving a car, are structured in a way that they discourage analytic reasoning, while others, like 
academic writing, are less amenable to quick, associative thinking. That said, human beings are 
biased in general towards System 1 reasoning as an effort-saving and time-saving strategy (Reyna 
& Ellis, 1994).

The question then becomes, which of the two stances is most conducive to learning? Intuitively, 
it would seem that the effortful, analytic processes described as System 2 that drive the learner 
stance would be preferred over faster, less deliberate thinking. This would be particularly true in the 
case of games that are conceptually integrated (Clark & Martinez-Garza, 2012) because such games 
are designed in such a way that thinking about game rules and challenges closely parallels thinking 
about science concepts and relationships. However, it is unlikely that an educational game can sustain 
System 2-type processing over long periods. First, students will tend to find ways to save time and 
effort when negotiating cognitively-demanding challenges, i.e. the “cognitive miser” of Fiske and 
Taylor (1991). Secondly, players facing a game they consider too challenging may simply disengage, 
thus negating any educational benefit the game might offer. Thus, a “happy medium” may be more 
desirable in which players both (a) reflect deeply about concepts and ideas represented in the game 
and (b) put their understanding into practice in motivating and interesting ways.

As many educational games, EPIGAME is intended to invite learners to think and reason about 
the concepts and relationships the game portrays and not to merely passively experience them. Players 
of EPIGAME encounter obstacles and situations of increasing difficulty that are designed not only to 
provide opportunities for learning but also to adapt to players’ increasing knowledge and proficiency 
over the course of the game. Ideally, students encounter game levels whose difficulty matches but 
does not significantly exceed their own skill - this alignment keeps interest and engagement high 
even in the face of ostensibly higher cognitive demands (cf. “flow” in Csikszentmihalyi, 1991). This 
adaptation is not perfect: students may encounter game levels that are too difficult or too easy. The 
goal is ultimately not to shield students from difficulty but to provide enough scaffolding and feedback 
so that the perceived difficulty remains manageable.

We propose that a student’s response to perceived difficulty cues the stances. Which stance is 
cued may depend largely on each student’s developing understanding of the concepts and relationships 
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underlying the game. Early in the game, the perceived difficulty may be influenced by the student’s 
prior experience with similar games or familiarity with the game’s targeted concepts and relationships. 
Thus, the student’s prior knowledge of the game or the principles behind the game’s encased simulation 
may also be a significant factor that cues and organizes the stances. For instance, students with low prior 
knowledge might prefer a slower, more methodical approach, while students who feel confident in their 
understanding might play faster, and with less tentativeness, because they may have a more detailed 
and functional internal model. Later in the game, once all students have had similar opportunities to 
engage with the game’s challenges, these differences might not be so stark, or they may disappear 
altogether. Therefore, it becomes important to examine the students’ gameplay to ascertain how the 
game’s varying set of structures and experiences influence students’ learning.

Learning Analytics in Educational Gaming
Digital environments that promote learning should prompt a change in student behavior within that 
environment. If an educational game is designed in such a way that students are able to apply what 
they learn in the context of the game, then these changes in behavior should be reflected not only in 
external measures of learning but in play itself. If so, then these changes are potentially recoverable and 
traceable from log data post hoc. However, even comparatively simple games allow for a broad range 
of student interactions, all of which leave their varied and distinct traces. Changes in student behaviors 
that signal learning can, therefore, be easily lost in the vastness and complexity of the available data. 
Methods based on learning analytics (LA) can provide researchers with tools to classify, predict, and 
discover latent structural regularities even in data sets as voluminous and idiosyncratic as game play 
logs (Berland et al., 2014). LA techniques not only can help us characterize and describe learning 
behavior, but they can also deploy Markov-type approaches, such as Bayesian knowledge tracing and 
performance factors analysis, to provide some insight into latent student knowledge. Interestingly, 
these Markov-type models could be used for prediction, and not just description; for example, they 
could be used to guide adaptive scaffolding and feedback. That said, while more research is required 
for these applications to achieve their full promise, significant ongoing work is already exploring and 
refining the use of learning analytics on data logs from educational environments.

The use of in-game performance data as evidence of learning outcomes has been proposed by 
Shute (Shute & Ventura, 2013) and others. Shute and colleagues propose that a learner’s actions within 
the game environment can be used as a form of assessment when evaluated against an evidence model, 
as per the evidence-centered design (ECD) assessment framework (Mislevy, Almond, & Lukas, 2003). 
Under this framework, evidence models are preceded by activity models, which are contextualized and 
tailored to the particular affordances and constraints of the learning environment. One implementation 
of EDC which seems particularly suited to educational games, “stealth assessment”, aims to collect 
model data directly from the learning environment, bypassing the need for overt knowledge testing 
that may detract from the play experience. Using this methodology, Shute and Ventura have measured 
both learning of specific knowledge, e.g. as qualitative physics (Ventura, Shute, & Small, 2014), and 
also broad cognitive skills and traits, such as persistence (Ventura, Shute, & Zhao, 2013) and 21st-
century skills (Shute, 2011).

Activity models can become highly complex, especially in the case of games in which many 
different interactions are possible. This complexity often leads to a large number of observable 
variables, which in turn complicates the task of formalizing them into an evidence model. For 
this reason, researchers have found value in machine-learning (ML) techniques of computational 
statistics that can make finding patterns and relationships between large numbers of variables more 
tractable. Examples of educational games where researchers have used ML techniques to analyze 
student performance data along an EDC paradigm are the investigation of systems thinking in 
SimCityEDU (Mislevy et al., 2014) and inquiry skills in Mission Biotech (Lamb, Annetta, Vallett, & 
Sadler, 2014). ECD models that are focused on content-specific outcomes that apply ML techniques 
are also feasible, such as the investigation of student learning of biological processes of stem cells 
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in Progenitor X (Halverson & Owen, 2014); of fraction arithmetic in Save Patch (Kerr & Chung, 
2012) and of Newtonian mechanics in Impulse (Rowe, Asbell-Clarke, & Baker, 2015). There are 
several more exemplars of ML techniques that are used to characterize students’ performance in 
digital environments, although these focus either on learning environments that are simulation-based 
(rather than game-like) or do not align exactly with an EDG paradigm. Researchers have successfully 
applied ML techniques, for example, to describe (a) students’ science inquiry activity in Science 
Assessments (Gobert, Sao Pedro, Baker, Toto, & Montalvo, 2012) and in Virtual Performance 
Assessments (Baker & Clarke-Midura, 2013; Clarke-Midura & Dede, 2010); (b) students’ developing 
engineering thinking in Nephrotex (Chesler et al., 2015); and (c) students’ understanding of genetics 
in BioLogica (Buckley et al., 2004).

RESEARCH QUESTIoNS

The groundwork laid thus far has discussed the 2SM as a theoretical perspective for examining 
gameplay and discussed learning analytics as an approach for analyzing game play through data logs. 
The next step is to articulate the specific hypotheses and the kinds of evidence that might support 
them. As mentioned in the Goals section, this paper has two research questions, which we expand 
upon in greater detail in the following paragraphs.

Question 1: Can the Two Stances of the 2SM, as Specified 
by the Framework, be detected in Game Play Data?
The first question is intended to test a cornerstone claim of the 2SM, while also evaluating whether 
the 2SM is a useful lens for interpreting game play data as recorded in The Fuzzy Chronicles. The 
hypothesis is that game play logs exhibit an underlying interpretable structure when features relevant 
to the 2SM are selected and analyzed. Alternatively, in the case of the null hypothesis, there will be 
no such structure, or it will not be easily interpretable, or the structures revealed do will not correlate 
significantly with learning outcomes. Such a result would indicate that gameplay is more like a 
stochastic process, or idiosyncratic, or that players are using purely reactive or irrational processes 
rather than those grounded in cognitive models of performance.

Question 2: How Do Changes in Students’ Functional Understanding of the 
Game Relate to Performance on a Test of Conceptual Understanding?
The second question refers to the feasibility of directly assessing students’ emergent understanding of 
the concepts of Newtonian kinematics represented in The Fuzzy Chronicles based on their solutions 
to small, localized challenges. Each maneuver the students are asked to make in EPIGAME (starting 
and stopping, changing directions, keeping to a set velocity, picking up or throwing an object, etc.) 
is designed to reify a relevant concept or cognitive resource. By identifying and analyzing students’ 
actions with regard to challenges of the same type, both within a student and over time, or between 
students, we can better understand how these challenges focus thought and learning for individual 
students. Since EPIGAME is intended to be a conceptually-integrated game (Clark & Martinez-Garza, 
2012), the hypothesis is that improved performance in these conceptually-laden challenges indicates 
a greater understanding of the underlying principles of Newtonian kinematics. If the null hypothesis 
is true, variations in student performance will not correlate significantly with learning outcomes.

METHoDS

Studies and Participants
To investigate the research questions, we performed two experimental runs using EPIGAME in the 
months of March and April 2015. The first run was used to address possible confounds as well as 
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pilot the gameplay data “pipeline,” or the entire process of collecting, collating, testing, and analyzing 
EPIGAME logs. We report on study 1, the pilot study, only briefly as foundation and comparison 
for study 2. The second study, which is the focus of the current manuscript, deployed the full data 
analytic process to investigate both research questions. The two studies used the same EPIGAME 
version, the same assessments, and had roughly the same duration.

Study 1 (Pilot Study)
The participants were 86 9th grade students from a public high school in Middle Tennessee. In this 
study, the students were divided into four groups, each randomly assigned into a Solomon four-group 
design (Solomon, 1949) (Figure 3). The two non-treatment groups participated in their normal 
classroom curriculum on the topic of force and motion, while the treatment groups only played the 
game for three 90-minute sessions. Approximately 20 minutes were reserved at the beginning and 
end of the entire study for a 21-item multiple-choice test intended to assess the students’ conceptual 
and qualitative understanding of Newton’s First and Second Law. Two of the groups, one treatment 
and one non-treatment, completed pre-tests; all four groups completed post-tests 5 days after the 
experiment began.

The 4-group Solomon experimental design was used in order to obtain a test of the internal validity 
of the posthoc effect sizes and test for interactions between the pre-test and the intervention. Our 
initial conjecture, in line with the 2SM, was that high pre-test score indicating high prior conceptual 
understanding of physics would enable students to form more advanced play strategies. The use of 
these strategies would then be reflected in post-test gains. However, students might also be primed 
by the relationships and situations that appear in the pre-test, and post-test gains might correspond 
not to differences in gameplay or in prior knowledge, but in a testing effect. Thus, the goal of Study 
1 was (1) to determine whether the version of EPIGAME was effective as a learning experience, 
(2) to investigate any possible testing effects, and (3) to prototype the data collection protocol and 
some of the analytical techniques. The statistical treatment of the four-group design that allows this 
disentanglement can be found in Braver and Braver (1988):

Two-way within-subjects ANOVA (Table 1) performed on the assessment data showed that 
students in Study 1 made significant pre-post gains (F = 10.61, df = 104, p < 0.01), with no strong 
evidence in favor of testing effects (F = 1.11, df = 104, p = 0.29) or interactions between pre-test 
scores and treatment (F = 0.36, df = 104, p = 0.55). This represents strong evidence that whatever 

Figure 3. The Solomon 4-group design. Graphic from Braver & Braver (1988).
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knowledge students are bringing into gameplay was not gleaned from the pre-test, nor did the pre-test 
prime students as to which relationships or interactions were important and thus biasing performance 
in the post-test.

Study 2 (Research Study)
Study 1 helped to discard two competing hypotheses: that EPIGAME is not effective as a learning tool, 
so any patterns or changes in gameplay cannot affect learning, and that pre-testing rather than gameplay 
is the source of any observed pre- to post-test gains. The remaining hypothesis, that differences in 
gameplay are the source of pre- to post-test gains, is the focus of Study 2. In this second study, 123 
7th grade students from a public middle school in Middle Tennessee used the EPIGAME software as 
part of their normal classroom instruction for five consecutive class periods lasting 45 minutes each.

As in the prior study, each student had his or her own computer and was specifically instructed 
to avoid sharing information. The blanket policy was to provide encouragement or hints in lieu of 
direct assistance, but help was provided to students who appeared intractably stuck, were having 
technical issues, or had urgent questions about the game interface. As in study 1, approximately 20 
minutes were reserved at the beginning and end of the intervention for a 21-item test of conceptual 
understanding of force in motion. In this study, all students who were present at the first and last day 
of the intervention were asked to complete the assessment.

Thus, students who participated in each of the two studies generated two forms of data: pre-post 
assessment data and game play data. The pre-post assessment data was anonymized and students with 
missing pre- or post-test scores were dropped from the study. In the case of students with complete 
pre- and post-test scores, a unique ID was generated for each; that unique ID was used to link the 
assessment data with the game play data.

Of the 123 students who participated in the study, 104 provided both pre- and post-tests. A 
matched-pairs t-test showed a statistically significant increase in test performance (t = 11.702, df = 
103, p < 0.0001) (Figure 4). The value of Cohen’s d suggests a large effect size (d = 1.62).

Emulating the Evidence-Centered Design Approach
In the Learning Analytics in Educational Gaming section (above), a significant portion of the research 
reviewed that used learning analytics to make sense of students’ process or log data used an evidence-
centered design (ECD) framework for assessment as well. ECD offers several notable advantages 
for this form of research, viz.:

1.  The Student Model serves to constrain the number of latent variables that the ML algorithm 
must infer, aiding in model fit.

2.  The Evidence Model provides identification rules and ready-made coding schemes, boosting the 
interpretability of the final model.

3.  The Task Model pre-selects observed variables that are likely to be significant, obviating the 
need for dimensionality-reducing steps, such as a Principal Components Analysis to help reduce 
the number of observed variables to a tractable number.

Table 1. Two-way within-subjects analysis of variance for Study 1

Effect DFn DFd F p ges

pretest 1 104 1.1161 0.29 0.01061

treatment 1 104 10.614 0.002 ** 0.09260

pretest:treatment 1 104 0.3552 0.55 0.00340
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Considering these advantages, it is clear that learning analytics and ECD processes are well-suited 
for each other. Unfortunately, it is likely unworkable to apply the ECD framework retrospectively, 
as the products of ECD are intended to address the specific purposes of that particular assessment 
(Mislevy, Almond, & Lukas, 2003). Thus, the goal would be to emulate some useful features of ECD, 
such as the student model and the evidence model. The student model can be operationalized in terms 
of the hypothesized dynamics of the 2SM. The evidence model would then map these dynamics into 
the observable variables. The end result would not be nearly as robust as the full ECD evidentiary 
argument, but would at least qualify as a cognitive model of task performance, or an illustration 
of the thinking processes underlying the knowledge and skills students apply in vivo when solving 
educational tasks in a specific domain (Leighton & Gierl, 2007, p. 10).

An important feature of learning analytics and machine learning methods is that they generally 
do not aim to produce results that have inherent meaning. Unlike statistical treatments of parametric 
data, such as pre- and post-test results, in which a statistically-significant result indicates a change in 
the participants’ behavior along a measured construct, machine learning and data-mining algorithms 
generate, at most, descriptions of likely patterns and structures present in the data. It is up to the 
analyst to interpret what those patterns and structures mean, and evaluate whether or not they support 
the proposition being researched (Vellido, Martin-Guerroro, & Lisboa, 2012).

Ideally, the interpretation of patterns and structures revealed by learning analytics are supported 
by robust theory. That is, features discovered in the data align with existing constructs and relevant 
explanations for the learning phenomena being studied. In this case, the proposed interpretive lens is 

Figure 4. Boxplot of pre- and post-test results for Study 2
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provided by the 2SM. Under the 2SM framework, students use collections of resources, or stances, 
that organize around the cognitive processes that are optimized for fast (“player”) or slow (“learner”) 
processing. Thus, the first task is to theorize how these stances would manifest as students play 
EPIGAME; in other words, we needed to determine how the “fast” and “slow” resources would affect 
gameplay. Evoking the evidence centered design paradigm, we will call this operationalization the 
“student model”. The second task is then to create an “evidence model,” that is, to deduce how the 
actions and strategies defined in the student model will appear in the gameplay data logs. The goal 
of the evidence model is to select, from all the information contained in the logs, which pieces of 
data are most likely to characterize the operations defined in the student model.

The Student Model
The trial-based dichotomous pass/fail task structure of EPIGAME suggests two general strategies 
for arriving at a solution, one mainly using “fast” processing, and the other using “slow” processing. 
These strategies, or modes, are:

1.  Additive-Iterative Mode, in which a student solves a level through a step-by-step iterative 
accumulation of actions, each checked for efficacy in a separate attempt.

2.  Solve-and-Debug Mode, in which an entire solution is drafted whole-cloth, then corrected only 
if and as necessary.

While both of these approaches imply that the learner is thinking, they differ in what students are 
thinking with, and what they are thinking toward. A student using the Additive-Iterative Mode does 
not necessarily have to have a working knowledge of the game’s concepts and relationships in mind; 
all he or she requires is that EPIGAME provide an unambiguous signal that each added action is a 
step towards a solution (which EPIGAME provides, in the way of visually-clear animations, e.g., of 
Surge’s capsule exploding or of the Exit Gate being activated). The Additive-Iterative Mode can be 
thought of as related to Parnafes and diSessa’s (2004) “constraint-based thinking.” On the other hand, 
a Solve-and-Debug approach necessitates that the student has a vision of a solution. Armed with a 
good working knowledge of the rules of operation, a student might feel more capable of taking more 
actions within each trial because he or she has a reasonable expectation that those actions will be 
effective. The Solve-and-Debug Mode can be thought of as related to Parnafes and diSessa’s (2004) 
“model-based thinking.”

Evidence Model
The two strategies described above represent the best estimate of the forms of play that students are 
most likely to use. While these forms of play sound very different mechanistically, it is useful to think 
of them as opposite ends along a continuum. On one end of this continuum, the Solve-and-Debug 
Mode is slow to plan, is more likely to be correct, and if it is not, it may require only small, effective 
fixes. On the other end, the Additive-Iterative Mode is fast, less likely to be correct since a student 
using this mode may not always define a full solution, and the iterative fixes are more error-prone. 
Thus, the differences between these two approaches may be captured with only a few contrasting 
parameters (Table 2).

The first and third parameters, Response time and Actions per attempt, are straightforward and 
directly observable in the data. A longer Response Time indicates slower, more deliberate processing; 
shorter Response Time corresponds to quick decision-making. Similarly, the number of Actions 
per attempt is likely specific to each Mode: more Actions taken in the same attempt implies a more 
elaborate, thought-out plan, while fewer Actions might indicate iterations or corrections.

The second parameter, Error rate, will have to be computed from other variables. Broadly 
speaking, the difference in Error rate between the two Modes represents the willingness of students 
to accept failed Attempts. Failure during an Attempt is more or less required in the Additive-Iterative 
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Mode, since a student may consider failure as a “partial success” if it creates a baseline upon which 
he or she can iterate. A student using this Mode may also create a partial solution with some set of 
parameters he or she knows, and guess at the remaining parameters, counting on the fact that the 
game will provide actionable feedback. On the other hand, failed Attempts when using the Solve-
and-Debug mode are more likely to be unintentional or unforeseen mistakes, rather than intentional 
probes or guesses. Students using the Solve-and-Debug mode seek to avoid error rather than accept 
it as inevitable. Thus, the Error rate parameter should incorporate information on how often students 
fail a level repeatedly, as this continued error would indicate unsuccessful guessing and/or low-
information processes such as exhaustive testing of all the available actions.

Treatment of the EPIGAME logs
The data analysis of EPIGAME logs from Study 2 proceeded in four phases:

1.  data normalization and integrity checks
2.  variable selection and dimensionality reduction
3.  clustering of student gameplay data and sequence mining, for Question 1
4.  contextual feature mapping, for Question 2

Phase 1
The initial corpus of gameplay, recovered directly from the classroom WISE server, was composed of 
16,239 records. Each record was comprised of one particular student’s attempt to solve one particular 
level. The particular build of The Fuzzy Chronicles used in this study had 32 levels; thus, each student 
produced an average of 132 attempts, approximately 4 attempts per level. Each record comprised a 
JSON object detailing the specific parameters of the attempt the student performed, such as where 
on the map an action was placed, how much time the student took to plan their actions, and which 
values the student chose for each parameter of each action. The dataset contained approximately 1.1 
million of these gameplay parameters.

We then extracted a set of variables to help characterize each attempt. Broadly speaking, we 
extracted two kinds of variables: observed and derived variables. Observed variables are characteristics 
of gameplay directly recorded by the EPIGAME software, such as planning time. Derived variables 
are those discovered through logical tests or comparisons performed on observed variables, akin to a 
coding scheme. A total of 23 observed and derived variables were defined, each capturing an element 
or aspect of gameplay (see Table 7 in Appendix A for a complete description of these variables). 
These 23 variables were selected on the basis of their ability to describe differentially the parameters 
for the forms of solution described in Table 2.

Phase 2
Generally, when using LA techniques, it is most desirable to have a data set with the smallest, most 
meaningful set of variables possible. Datasets with large numbers of variables are computationally 
very expensive to process, and such data is vulnerable to a variety of phenomena that distort results 

Table 2. Forms of solution and their likely parameters

Parameters Additive-Iterative Solve-and-Debug

Response time Low High

Error rate High Low

Actions per attempt Low High
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and complicate these types of analyses. In order to select only the most meaningful variables, we 
performed a Principal Components Analysis (PCA) on the dataset (16,239 attempts x 23 variables) 
using the FactoMineR software for R (Husson, Josse, Le, and Mazet, 2007). The PCA returned 3 
components with eigenvalues greater than 1, with a total of 72.1% variance explained by those three 
components. The full results of the PCA are included in Table 3 (below). The variables associated 
with the components were:

1.  Component 1:
a.  tl.Modifys, a count of how many modifications a student made to the parameters of placed 

Actions, e.g. changing a Boost from 10N to 20N increases tl.Modify by 1.
b.  tj.Adds, a count of how many Waypoints were added to the Trajectory.
c.  planningTime.log, the observed time students spend planning and placing elements, in 

seconds, logarithmically transformed to amplify the difference between planning times of 
lower times, such as 5 and 8 seconds, but de-emphasize the difference between higher times, 
such as 47 and 50 seconds.

d.  eff.actions.added, a derived variable counting how many new Actions were executed 
effectively on a given attempt compared to the previous attempt.

2.  Component 2:
a.  par. A model-based effectiveness score derived from a Markov-chain model of the combined 

series of outcomes of all the students’ plays of each level. Each student generated a chain of 
Attempts for each level, and each attempt had a particular outcome, e.g. one Attempt ends 
in a navigation error, then two Attempts ended at Velocity Gates, then the next Attempt 
ended at the Success Gate. This chain of Attempts captures each student’s transversal of a 
level. When all students’ chains of Attempts for a given level are taken together, we can use 
a Markov-chain model to calculate the probability that a student will transition from one 
outcome to another on a per-attempt basis. The model is then used to calculate par, which 
is the posterior probability of a Success state occurring randomly at the end of an Attempt 
given the state at the end of the previous Attempt. These probabilities can range from [0,1], 
with 0, or no chance of success on the next attempt, being indicative of random play, and 1, or 
certainty of success in 1 more attempt, indicating expert play. In other words, the par metric 
asks, “if this student were playing totally randomly – that is, following only the transitions 
observed for all students as a whole - given that his or her last attempt ended in a certain 
outcome, what is the probability that he or she will find the Success Gate through sheer 

Table 3. Results of the principal components analysis

Component

1 2 3 4 5

Modifications to Timeline 0.4746 0.0015 0.0000 0.0001 0.0014

Additions to Trajectory 0.4173 0.0078 0.0000 0.0001 0.0000

Effective Actions added 0.1787 0.0000 0.0014 0.2471 0.0000

Par metric (square root transformed) 0.0345 0.4694 0.0000 0.0000 0.0005

Change in Par metric from previous Attempt 0.0001 0.7498 0.0000 0.0002 0.0005

Planning time (log transformed) 0.3297 0.0028 0.0000 0.0274 0.0000

Test of consecutive similar failure 0.0854 0.0048 0.1082 0.0000 0.0890

Test whether Level was aborted 0.0000 0.0014 0.6434 0.0000 0.0220

Note: values are given as squared cosines
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chance in one more attempt?”1 An important property of this metric is that it penalizes very 
long chains of Attempts and rewards navigating to the Success Gate on the first Attempt. 
The par score was later transformed into par.sqrt via a square-root transformation to make 
the probabilities more legible.

b.  par.delta.sqrt. The change in the value of the par.sqrt metric from attempt n-1 to n for the 
current level and student.

3.  Component 3:
a.  is.abort, an observed variable that tests whether or not the student manually aborted the 

attempt using the Abort button.
b.  fail.same, a derived variable that tests, if an Attempt was failed, whether or not a student 

failed that Attempt at the same place on the map as the immediately-previous Attempt and 
whether both Attempts failed for the same reason. A TRUE value indicates a consecutive 
unsuccessful attempt by a student to navigate past a specific obstacle on the map.

Further analysis revealed that since par.sqrt and par.delta.sqrt were linear combinations of each 
other, par.sqrt could be discarded in favor of par.delta.sqrt, which has the higher squared cosine for 
Component 2. At this point, further treatment of the data followed the line of inquiry specific to each 
research question. Relevant details can be found in their respective sections below.

RESULTS RQ1: CAN THE Two STANCES oF THE 
2SM BE DETECTED IN GAMEPLAy DATA?

The main claim of the 2SM is that the stances organize around fast- and slow-processing mechanisms. 
Therefore, it is reasonable to look for play strategies that embody fast and slow play. After the 
dimensionality reduction process above, we are left with a manageable number of variables which 
are nonetheless theoretically significant and useful in describing these strategies. To explore Research 
Question 1, we apply LA techniques exploring the variables in terms of clustering and then in terms 
of sequence mining. We then discuss the implications of the findings in terms Research Question 1 
and the proposed 2SM framework.

Clustering
The next step in the analysis is to examine the dataset to determine whether students’ play has some 
latent order or structure that can be brought into focus using our theoretically-relevant variables. To 
find this possible structure, we will use clustering, an unsupervised classification method. The goal 
of a clustering algorithm is to find the groups of observations whose features are more similar within-
group than with regard to the data at large. Since this technique is unsupervised, we do not provide a 
pre-determined classification scheme for the software to “learn”; the rationale for this choice is that 
if a clustering algorithm returns a reasonably-interpretable set of clusters and these clusters were 
created by interactions between theoretically-significant variables, then that is a solid indication that 
the theory describes latent structures of the data.

With the final list of seven variables already selected, we proceeded to create a similarity matrix 
using Gower’s coefficient to account for the mixed data types. Then, we performed affinity propagation 
clustering with the resulting similarity matrix. Affinity propagation (AP) is a clustering method that 
takes as input measures of similarity between pairs of data points and simultaneously considers all 
data points as potential exemplars. Real-valued messages are exchanged between data points until a 
high-quality set of exemplars and corresponding clusters gradually emerges (Frey & Dueck, 2007). 
This method was selected as preferable to the more conventional k-means/k-medoids method because 
of its ability to produce a set of meaningful exemplars for each cluster – a vital consideration given 
the need to later interpret the characteristics of each cluster.
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The AP clustering algorithm converged on a set of 145 “proto-clusters” after 260 iterations. These 
“proto-clusters” were then collapsed using an agglomerative method akin to hierarchical clustering. 
The resulting cluster dendrogram is given in Figure 5. The lower segment of each line indicates a 
separate proto-cluster, and the height of the joint between two proto-clusters indicates how similar 
they are, with greater height indicating more similarity between the clusters being joined.

Visual inspection of the cluster dendrogram suggested that a “cut” at 0.905 altitude would 
reduce the number of clusters to a manageable six. This clustering solution was codenamed part.6. 
The “goodness of fit” of an AP clustering solution is difficult to ascertain via standard methods such 
as Rand coefficients because AP clustering does not necessarily aim to produce compact clusters. 
Rather, it seeks to maximize the “representativeness” of the chosen exemplars. In order to determine 
the adequacy of the part.6 solution, we created a heat map from the similarity matrix (Figure 6).

The heat map revealed 3 well-delimited and cohesive clusters along the diagonal, as well as one 
large cluster with some internal structure, and two additional smaller clusters. We iterated on the 
part.6 solution several times in an attempt to resolve Cluster 2 (corresponding to the yellow region) 
into 3+ smaller clusters as suggested by the heat map, but no satisfactory solution was found that 
preserved the other clusters, and thus the part.6 solution prevailed. The distribution of Attempts 
across the six clusters of the part.6 solution are given in Figure 7.

Before proceeding to the sequence mining, we studied the properties of the part.6 clustering. 
As noted above, the preliminary variable reduction through PCA left us with only 7 theoretically-
significant variables out of the original 26. The part.6 solution represents a mathematical arrangement 
of students’ attempts that have some similar structure in terms of these 7 variables. Figure 8, below, 
shows a generalized pairs plot (Emerson et al., 2012) that helps visualize how the structure of each 
cluster responds to each of the featured variables.

From each of the clusters, we visually examined the exemplar chosen by the AP clustering 
algorithm, the two nearest neighbors to the exemplar, and two random members of that cluster. The 
5 members of each cluster were interpreted, both by themselves and in the context of the sequence 
of level attempts in which they occurred. Based on this analysis, we labeled the clusters qualitatively 
according to a general description of the students’ actions therein:

• Cluster 1 (in Red): ABORTS. Students recognize that the level is going to fail and press the 
“Abort the Mission” button to preserve the momentum of play rather than allow the simulation 
to end on its own.

Figure 5. Cluster dendrogram of the AP clustering result
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Figure 6. Heat map of the similarity matrix, along with the dendrogram of the part.6 clustering solution. According to the dendrogram, 
Clusters 2 (yellow) and 5 (blue) are most similar, while Cluster 4 (cyan) is the most distinct.

Figure 7. Histogram of the distribution of Attempts across part.6 clusters
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• Cluster 2 (in Yellow): TINKER. Students add a few actions, advance a little further along in 
the level, and fail, but not in the same place on the map as the previous Attempt

• Cluster 3 (in Green): LONG ABORTS. Very long planning episodes (> 100 seconds) that 
end in Abort. A very sparse cluster, barely distinguishable from Cluster 1. Possibly indicates a 
deletion and restart of the solved level in progress.

• Cluster 4 (in Cyan): FUTILITY. Students make a few changes but fail exactly in the same place 
in the map against the same obstacle as their previous attempt.

• Cluster 5 (in dark Blue): WINNING. Students make one or more changes or additions that 
result in a successful attempt, thus completing the level.

• Cluster 6 (in Pink): PLANNING. Students spend a long time and add actions as well as 
trajectory elements (i.e., added both categories of elements). These attempts are occasionally 
successful, but not always.

Further investigation revealed that cluster assignments have some structure both in terms of when 
they occur in the order of play (i.e. early levels vs. later levels in Figure 9) and in terms of learning 
outcomes of the student that produced them (i.e., in terms of pre-post learning gains in Figure 10).

As we can see, the relative distribution of the cluster assignments may be sensitive to the learning 
outcome of the student (Figure 10). In other words, the levels played by students at a given level of 
pre-post test performance may have a different ratio of cluster assignments than those of students at a 
different level of performance. The different frequency profiles in Figures 5 and 6 suggest, furthermore, 
that the differences are not entirely due to how far students progress into the game. It is clear, then, 

Figure 8. Generalized pairs plot (Emerson, et al., 2012) of the 7 theoretically-significant variables with the highest eigenvalues, 
plotted against each other, and classified according to the part. 6 solution (rightmost column).



International Journal of Gaming and Computer-Mediated Simulations
Volume 9 • Issue 3 • July-September 2017

20

that the part.6 cluster solution provides not only a set of meaningful code assignments that describe 
students’ play, but also that these assignments are related somehow to learning outcomes. Figure 10 
further suggests that cluster patterns evolve as students progress through the game.

Sequence Mining
Sequence mining is a methodology intended to find patterns in sequence data, such as words in 
a sample of natural language or genes in a protein. The main requirement is that the order of the 
components is as significant, or more significant, than their frequencies. The question sequence mining 
asks is, “given a set of items that form sequences, what are the most common smaller sequences to 
be found within and across those sequences?” In the case of EPIGAME data, the components to be 
sequenced are cluster membership codes; in other words, our goal is to investigate how students’ 
actions, described individually in general terms by the clustering procedure, appear in succession as 
a part of a chain of actions intended to solve a level.

The dataset contained 2730 such sequences, meaning that the students’ combined attempts to 
solve any level totaled 2730, or an average of 22.2 levels attempted per student. Each sequence was 
comprised of the series of each student’s attempts to solve a single level; thus, the length of these 
sequences ranged from 1 to 140, the minimum and maximum number of consecutive attempts recorded 
in a single level. To perform the sequence mining, we used the TraMineR package for R (Gabadinho, 
Ritschard, Muller, & Studer, 2011). This package has the capability to calculate the relative importance 
of subsequences of elements within the element chains of sequence data. The relative importance of 
subsequences is measured not in terms of their frequency but in terms of “support”, or the proportion 
of sequences in the overall sample that can claim a given subsequence as a subsequence of itself. The 
mining algorithm was configured to seek only first-order subsequences, meaning that only events that 

Figure 9. Frequency of part.6 cluster assignment by level. Graph shown is smoothed via local least-squares regression fitting 
(⍺ = 0.65).
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happen exactly consecutively are considered to be in sequence, and the minimum support level was 
set at 0.01. Thus to qualify for analysis, a subsequence had to be supported by at least 27 sequences. 
An additional parameter was set so that the support of subsequences of n identical codes would be 
consolidated across all sequences found of one or more identical codes. The algorithm returned 47 
candidate subsequences, which were then ordered by support. The results of the sequence mining 
are given in Figure 11, below:

The height of the bars in the graph indicate the support for that subsequence, and they are ordered 
by decreasing support. Support for the unitary subsequences, e.g. (2), the most common one, are quite 
high since, for example, a sequence of (2) - (2) - (2) can claim the subsequence (2) a total of 6 times. 
Recalling that Cluster 2 stands for TINKER, thus, there is a high proportion of sequences containing 
long chains of TINKER, and similarly high proportions of chains of FUTILITY. The high support 
value of WINNING is to be expected since 97% of all sequences end with WINNING, which is how 
students advance in the game after all.

To investigate the relationship between play sequences and learning, we then classified students 
according to their pre-post test performance. Since the group of students as a whole gained significantly 
in their pre- to post- test scores, we chose a classification strategy that would qualify their gains relative 
to the group. The resulting classification scheme is summarized in Table 4 (below). The “High Prior” 
group consisted of students who scored in the upper quartile in both pre- and post-tests. The “Low 
Prior” group is likewise formed of students who scored in the bottom quartile of the pre- and post- test. 
A third group, “Learned” contains students whose pre-test scores were in the lower three quartiles but 
who improved their score by at least one quartile. A fourth group, “Null”, collected students whose 
pre-test was in the higher three quartiles but did not show a significant increase in their scores. The 
number of students in each classification was 14, 13, 23, and 54, respectively.

Figure 10. Frequency of part.6 cluster assignment by pre-post test score gain
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These assignments were used as discriminant groups so that each detected subsequence’s support 
could be tested for correlation with learning outcomes via a Chi-square test. Table 5 contains the 
18 subsequences with the highest Chi-square statistic. Support for these subsequences thus varies 
by discriminant group in a statistically significant way. The graph of the resulting support values 
for each subsequence according to the student classification group is provided in Figure 12 (below).

In Figure 12, red bars indicate subsequences with significantly less support than under the 
assumption of independence. Conversely, blue-colored bars indicate significantly more support. 
Sequences in white show no statistical significance across all four groups. These significances are 
computed at the 0.01 level; light-blue and light-red bars indicate significance at the p = 0.05 level. 
For significance testing, the p-values were Bonferroni-corrected for the multiple comparison. This 
correction increases the probability of false negatives is compared to the probability of false positives 
but protects against incorrectly rejecting the null hypothesis, i.e., that the support values for the 
subsequences do not vary across discriminant groups.

This group-discriminant sequencing analysis suggests that students in the High Prior knowledge 
group have sharply fewer FUTILITY subsequences, fewer TINKER-FUTILITY and FUTILITY-
TINKER, ABORT-TINKER, TINKER-FUTILITY-TINKER, and FUTILITY-TINKER-FUTILITY 
cycles, and substantially more PLANNING chains. Conversely, students with Low Prior knowledge 
are more likely to present longer FUTILITY chains, and more TINKER-FUTILITY cycles. These 
students are also more likely to follow FUTILITY with ABORT, ostensibly because they recognize 

Table 4. Classification of Students by relative pre-post gains

Post-test score (quartile)

Pre-test score (quartile) 1st 2nd – 3rd 4th

1st Low Prior Learned Learned

2nd – 3rd Null Null Learned

4th Null Null High Prior

Figure 11. The 25 highest-supported subsequences. Numbers in parenthesis indicate cluster assignment of the sequenced items, 
following the part.6 solution (above).
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the probable outcome of that attempt would also have been FUTILITY. Students in the middle two 
quartiles who do demonstrate a relative increase in their conceptual understanding also show more 
FUTILITY chains and slightly more TINKER-FUTILITY chains.

RQ1 Discussion
The sequence analysis reveals that students with High or Low Prior knowledge play very differently 
than their peers. Students who have High Prior knowledge plan more and exhibit very few sequences of 
attempts in which they are stuck. They are not as likely to attempt small iterative fixes, preferring more 
complex and thought-out solutions. On the other hand, if students consistently demonstrate repeated 
failure on the same obstacle over large numbers of attempts, such as in a FUTILITY sequence, it is 
less likely that they improved their learning, regardless of their level of prior knowledge. No particular 
way of playing, or subsequence exhibited by students in the Learned group, seems to correlate with 
relative learning gains independently of prior knowledge.

This finding suggests that students’ gameplay choices are strongly influenced by their prior 
knowledge. It may be fairly argued that High Prior knowledge students played a very different game 
than their Low Prior peers. The former group approaches the game as a “planning game,” preferring the 
creation of complete solutions that require only small adjustments, making full use of the Solve-and-
Debug strategy hypothesized in the Student Model. The latter group likely sees the game as a “guess 
and check game” or “tweaking game”, where a solution emerges gradually out of extended iterating 
cycles of more-or-less purposeful trial-and-error, described earlier as an Additive-Iterative strategy.

Table 5. Sequence analysis by discriminant group

Support by Group

Subsequence p Chi-Sq High 
Prior Learned Low 

Prior Null

(WINNING) 0.0000 115.71 0.42 0.60 0.81 0.69

(FUTILITY) 0.0000 113.28 0.17 0.32 0.54 0.43

(TINKER) – (FUTILITY) 0.0000 98.56 0.11 0.24 0.45 0.34

(FUTILITY) – (TINKER) 0.0000 33.92 0.06 0.13 0.22 0.17

(TINKER) – (FUTILITY) – (TINKER) 0.0000 32.16 0.03 0.09 0.15 0.12

(PLANNING) – (WINNING) 0.0001 29.05 0.04 0.01 0.00 0.01

(PLANNING) 0.0003 26.88 0.19 0.12 0.08 0.10

(FUTILITY) – (TINKER) – (FUTILITY) 0.0006 25.28 0.01 0.05 0.10 0.07

(FUTILITY) – (ABORT) – (TINKER) 0.0006 25.28 0.02 0.04 0.10 0.04

(ABORT) – (TINKER) 0.0013 23.77 0.09 0.15 0.23 0.17

(ABORT) – (TINKER) – (FUTILITY) 0.0021 22.78 0.02 0.06 0.12 0.08

(FUTILITY) – (ABORT) 0.0051 20.89 0.04 0.06 0.14 0.07

(ABORT) 0.0178 18.25 0.22 0.28 0.36 0.32

(TINKER) – (ABORT) – (TINKER) – (FUTILITY) 0.0560 15.79 0.01 0.02 0.06 0.03

(TINKER) – (WINNING) 0.0983 14.55 0.15 0.23 0.28 0.22

(LONG ABORT) 0.1368 13.80 0.03 0.02 0.01 0.01

(FUTILITY) – (WINNING) 0.1510 13.57 0.03 0.07 0.08 0.09

(TINKER) 0.1528 13.54 0.86 0.90 0.94 0.92
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Why are students in the Low Prior group more likely to use the Additive-Iterative strategy? From 
the 2SM perspective, these students could be said to prefer low-effort, low-information, control-
oriented processing strategies. The 2SM conceptualizes these as being closer to the Player Stance, 
which privileges feedback from the game environment to evaluate success. Students who play in the 
Additive-Iterative mode are more reliant on feedback from the game, since such feedback, rather 
than evaluation of internalized models, represents their main source of information about how the 
game operates. On the other hand, students who play the “planning game” can rely more on their own 
ability to visualize and predict how the game will respond to their input, and thus probably require less 
feedback from “tweaking” or “guessing and checking.” This distinction correlates well with the general 
descriptions in the Two-System Framework of the Player Stance and Learner Stance, respectively.

RESULTS RQ2: GAME/TEST PERFoRMANCE RELATIoNSHIPS

The main learning goal of EPIGAME is to help students build a deeper understanding of Newtonian 
kinematics. Thus, the game’s rules and systems deal with inertia and the relationship between force 
and velocity. Ideally, as students improve their ability to solve inertial challenges, their conceptual 
understanding, per an external measure, should likewise improve. From the previous analysis (see 
Question 1 section, above), we know that students with different degrees of prior knowledge approach 
the game differently and play in sharply different ways. In terms of Question 2, we investigated 
whether these differences in performance on the tests correlate with differences in gameplay in the 
specific game situations intended to help students develop concepts of inertia.

The first step in this analysis was coding the conceptual challenges. Each challenge is a situation 
on the game map where a student has to apply one or two maneuvers to advance past that situation. 

Figure 12. Sequencing analysis by group
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The selected challenges all deal with inertia and/or Newton’s second law of motion. These concepts 
can be portrayed in EPIGAME in one of four ways:

1.  The student must navigate Surge from rest up to a certain velocity by applying an unbalanced 
force (Figure 13). There are 46 such challenges, and they were coded as fromStop.

2.  The student must bring Surge from a constant velocity to a stop by applying one or more forces 
opposed to the direction of motion (35 challenges, coded as toStop). (Figure 14)

3.  The student must increase the velocity of Surge to a certain level while Surge is in motion by applying 
an unbalanced force in the direction of motion (4 challenges, coded as speedUp). (Figure 15)

4.  The student must decrease the velocity of Surge to a certain level while Surge is in motion 
by applying an unbalanced force opposite the direction of motion (5 challenges, coded as 
slowDown). (Figure 15)

Each challenge was identified through visual inspection of the levels, its location and type 
recorded (fromStop, toStop, speedUp, or slowDown), and a consecutive serial number assigned. Only 
the first 90 challenges students encounter while playing EPIGAME were coded. The rationale for this 
limit is that the conceptual nature of these challenges changes in the latter levels, first when changes 
in mass are introduced, and then when students have to deal with forces applied in action-reaction 
pairs. Thus, the first 90 challenges students encounter before these increases in complexity are the 
most conceptually similar and can be safely compared. Furthermore, these first 90 challenges are 
where we might be most likely to see trajectories of improvement because it tracks students from the 
beginning of the game where the learning curve may prove the clearest.

Figure 13. A fromStop challenge. Students begin motion from rest at point B and navigate toward C.

Figure 14. A toStop challenge. Students must completely stop at B before proceeding to C.
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To analyze these first 90 challenges, the overall gameplay dataset was filtered through a conditional 
join in order to identify which attempts ended at one of the coded challenges. A total of 2175 attempts 
were identified. Later, we decided to reduce the sample to 1282 attempts corresponding to the first 
15 challenges of each type, under the rationale that the unbalanced number of challenges per type 
(e.g. 46 fromStop vs. 4 slowDown) would likely lead to problems with the model fit if we used the 
challenge type as a covariate.

Next, we proceeded to fit a generalized linear model to the data. Since the dependent 
variable is a count comprised of positive whole numbers only, a Poisson regression would be 
most appropriate. However, the data showed considerable overdispersion, and thus a negative 
binomial regression was chosen.

Generalized Linear Model
The statistics of the generalized linear model are provided in Table 6. In this model, the High Prior 
classification and fromStop challenge type are the model references. The statistically significant 
predictors of student errors per Conceptual challenge are Challenge instance, and as noted, the type 
of challenge is not a statistically significant predictor. Furthermore, a previous iteration of the model 

Figure 15. A slowDown (left) and a speedUp challenge (right). In both cases, the student must apply an unbalanced force at B.
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showed that the interaction terms of the predictors were also not statistically significant. Thus, the 
variables best suited to predict the number of errors students commit are the number of similar 
challenges already faced and the students’ prior knowledge.

RQ2 Discussion
The generalized linear model fit to the challenge data confirms the hypothesis that students tend to 
make fewer errors on a challenge each successive time they encounter a challenge of the same type. 
More surprising is that the mean number of errors can also be predicted on the basis of a student’s 
prior knowledge grouping. In other words, the first 15 times students face challenges of a given 
type, students who score highly on the pre-test are likely to commit as few as half as many errors as 
students who did not score highly.

A possible explanation is suggested by the bar chart matrix on Figure 16. We can see there that 
students in the High Prior column make fewer errors overall, but more importantly, commit nearly no 
errors the first time they face a challenge of a given type. Students in other groups commit at least 3 
errors on average and often more. Unless High Prior students have played EPIGAME before, which 
they have not, one could assume that High Prior students would make at least a few errors when they 
initially encounter a challenge, while they internally navigate how their understanding of physics does 
or does not apply to the situations and rules of the game. However, the near-total absence of errors 
on initial contact with challenge types suggests that High Prior students already know something 
directly relevant to these challenges.

There are at least two other sources of knowledge besides any prior EPIGAME experience that 
students might be drawing on when they face new challenges. First, they may be drawing on inferences 
made from the pre-test. However, we demonstrated in Study 1 that EPIGAME and the EPIGAME 
assessment are free of testing effects (see Methods section), so a “priming” effect is unlikely. The other 
source might be the tutorial animations embedded in EPIGAME. There are two types of tutorials. 
At levels 1, 4, 8, 10 and 11, the tutorial animations are essentially worked examples. Students watch 
as the Mentor character demonstrates skills such as how to apply forces, how to draw Waypoints, 
how to start the trial. These animations are intended to guide students as they learn the game’s 

Table 6. Coefficients of the negative binomial regression model

Dependent variable: number of errors per Challenge

Estimate Std. Error p-value

Challenge instance -0.064*** 0.008 >0.001***

Learned 0.484*** 0.148 0.001***

Low Prior 0.744*** 0.153 >0.001***

Null 0.654*** 0.140 >0.001***

slowDown Challenge 0.112 0.090 0,21

speedUp Challenge 0.008 0.093 0.93

toStop Challenge 0.040 0.067 0.55

Constant 1.117*** 0.150 >0.001***

Observations 1,282

Log Likelihood -3,221.669

theta 1.371*** 0.066

Akaike Inf. Crit. 6,459.338

Note: ***p<0.01
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interfaces, design conventions, etc. On the other hand, the tutorials at levels 2 and 7 are contrasting 
cases (Figure 17). These animations take the form of experiments; a challenge is approached with 
several combinations of parameters, of which only one is correct. The student must deduce from this 
demonstration why that particular maneuver was effective. While the “worked example” tutorials 
show the hows of EPIGAME, the “contrasting case” tutorials show the whys.

Our explanation for the low rate of error of High Prior knowledge students during initial 
trials relative to their lower-prior-knowledge peers is grounded in the 2SM. The 2SM defines 
two broad classes of knowledge regarding “how to play”: heuristics and internal models. 
The “worked example” tutorials, with their emphasis on how to execute specific maneuvers, 
have more “heuristicness” than “modelness”. Conversely, the “contrasting cases” tutorial 
focus strongly on the variables and relationships at play, suggesting more model quality. It 
may be that the main difference between High Prior students and their peers is which form 
of the tutorial they chose to focus on. Since each form of tutorial primes a different form of 
knowledge about “how to play”, students with a strong preference for one form of tutorial over 
the other may approach the game with different kinds of knowledge and thus play in different 
ways. And in fact, these differing styles of play do emerge (see Question 1), with High Prior 
students showing a marked preference for slow, deliberate play and a small tolerance for error. 
In contrast, students in the Low Prior and Null learning groups prefer iterative, “tweaking” 
gameplay that is inherently more fast-paced, yet they tend to accrue errors at each challenge, 
often as many as 10, 20 or more (see Figure 16). In summary, it may be that the tutorials, 
necessary parts of the game experience, can “prime” the 2SM stances according to (a) the 
forms the tutorials take (prescriptive vs. descriptive) and (b) how salient and useful the student 
finds the information presented in the tutorials themselves.

Figure 16. Mean errors per student per Conceptual challenge. Student achievement groups are in columns. Challenge types are 
in rows.
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oVERALL CoNCLUSIoNS

This study was designed to explore to primary questions. First, can the two stances of the 2sm, as 
specified by the framework, be detected in game play data? Second, how do changes in students’ 
functional understanding of the game relate to performance on a test of conceptual understanding? 
Related to these two questions, a third implicit question explored the viability of our approaches to 
data-mining and learning analytics of game-play data to explore the two explicit research questions. In 
the following sections, we analyze the two research questions in terms of the overarching implications 
for the 2SM. Next, we consider the overarching implication for the design of digital games to support 
conceptual learning. Finally, we close with an examination of the third implicit questions about the 
viability and generalizability of our approaches to data-mining and learning analytics of game-play 
data to explore theoretical questions about learning.

what the Findings Say about the 2SM
The 2SM is intended as a general-purpose framework for student cognition during gameplay; it is 
comprehensive and not intended to be specific to any kind of game or any target domain. Because of 
this generality, it requires many constructs and mechanisms to explain phenomena of play. Furthermore, 
most of these constructs and mechanisms are entirely latent, existing only in the student’s mind and 
perhaps only for brief moments of time. For these reasons, it is unlikely that a single study, however 
ambitious, could prove the 2SM as a theory.

The findings in this paper suggest that the basic underpinnings of the 2SM pass muster in terms 
of the existence of the two stances, but the findings do not support the hypothesized swapping back 
and forth between stances. We see the indicia of both fast, low-information play and slow, deliberative 
play. More importantly, these styles of play co-vary strongly with learning outcomes, indicating that 
fast styles of play may not support students in developing knowledge of a form transferable beyond 
to the game, in this case, focusing on Newtonian kinematics. Some students perseverate, however, 
in guess-and-check iteration, relying entirely on the game to provide the necessary feedback, instead 

Figure 17. A “contrasting case” tutorial. The use of 10N and 30N are both incorrect for a 2m/s Velocity Gate.
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of using all available information to infer some generalizable rule they can use to increase their 
effectiveness. We can see from the Contextual Mapping analysis that some students never seem to 
stop making errors in parts of the game relating to a specific concept, even when they’ve already 
cleared a similar challenge 10 times or more. Essentially, these students never switch to a more 
model-oriented thoughtful stance. Conversely, some students begin in a more thoughtful stance and 
remain in that stance throughout play.

Related to this absence of stance switching, the finding that prior knowledge strongly influences 
play, even in the early stages, is problematic in terms of the 2SM. First, because it inverses the 
proposed way that Stances get cued. In the original framing of the 2SM, the Learner Stance is cued 
by a task that is too demanding, where the student has no fast effortless rule to apply. However, the 
results in this paper strongly support the claim that the opposite may be true, or that perceived high 
task demands cue the Player stance as an effort-saving strategy that is ultimately maladaptive in terms 
of learning. The second challenge to the 2SM comes from the necessity of having students “learn to 
play” the game before they actually “play” it. This instructional phase and its consequences were not 
addressed originally in the 2SM. Yet as we have discussed previously, the Tutorial materials and other 
instructional affordances might bias students towards one form of reasoning or another, independently 
of how the student would otherwise organize his or her epistemic Stance.

These findings suggest that revisions of the 2SM are warranted in at least two lines. On one hand, 
(1) the role of prior knowledge as an epistemic resource, largely ignored in the original framing. The 
2SM envisions a student with well-defined goals for play but a “blank slate” in terms of pre-existing 
knowledge about the game. Further research that specifically targets the effect of prior knowledge, and 
of knowledge gleaned early in play from tutorial materials is warranted, and those findings integrated 
into the 2SM. Another possible revision involves (2) the issue of task demands and their possible role 
in cueing other resources, such as mastery or performance orientations (Pintrich, 2000). The 2SM does 
not explicitly consider whether a student finds a given game situation “easy” or “difficult”; rather it 
only considers what epistemic resources the student has at hand, such as heuristics and second-order 
models. Yet the findings in this study highlight that Player Stance related patterns of play may also 
be a coping strategy to deal with game situations students find too difficult. For the 2SM to properly 
account for these coping strategies, a study might be designed where versions of the game of various 
difficulty levels are assigned to students at different levels of achievement, either by pre-test score or 
by an automated adaptive functionality.

Implications for Game Design
The results of the gameplay data analysis from RQ1 generally support the notion that patterns of 
play related to the Player Stance are not optimal for learning. Students who persist in fast strategies 
are not likely to improve their learning relative to their peers, and students who make the highest 
relative gains do not prefer fast strategies overall. The analysis shows that a tolerance or preference for 
Attempt sequences with a high reliance on FUTILITY are associated with lower learning outcomes.

In the 2SM framework, multiple FUTILITY attempts with low average time per attempt can 
be understood as a strategy for obtaining feedback from the game’s model as a way to avoid having 
to use slower, more intensive reasoning processes such as the second-order model. The goal of this 
strategy is to serve the student’s agency and sense of control and preserve the momentum of play. 
It may be argued that use of the Player Stance helps students remain motivated and engaged even 
in the face of failure, and long after the novelty of the game has worn off. Yet, as we have seen, in 
the case of EPIGAME, the Player Stance and its associated play strategies are associated with lower 
learning gains. Then, the immediate question becomes, can the Player Stance be disrupted in order 
to promote learning? Or in the context of EPIGAME, can a student playing the “tweaking game” be 
nudged towards playing the game more as a “planning game?” Can a game be designed in such a 
way that this “nudge” occurs automatically?
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In the case of EPIGAME, the tutorials might provide a clue as to how this “nudge” can occur 
early in play (see Question 2). Whatever the eventual form that this encouragement takes, the 
effectiveness of this feature depends on having a method to detect whether or not a student has settled 
in a Player Stance. This “detector” could be built upon the analysis here described: the game could 
use a similar process of unsupervised clustering we used to arrive at the part.6 solution as a guide to 
classify students’ actions in real time, and then detect the sequences of play which, as we have seen, 
are not strongly associated with learning. This added functionality would allow specific feedback 
to be provided to students early in their play before they commit to playing a “tweaking game” (c.f. 
Clark, Martinez-Garza, Biswas, Leucht, & Sengupta, 2012). Lastly, if the game can be made so that, 
once it has gathered enough student data to predict a student’s play characteristics, the game can 
modulate its difficulty to make sure that the student faces challenges appropriate to the student’s 
level of skill and knowledge, while compensating for the tendency of students to choose low-effort 
strategies if doing so preserves the momentum of play. These three additional functionalities could 
all be potentially very powerful ways to promote student learning with games, and they are all made 
possible by an expanded understanding of how students actually play.

These findings should also motivate discussion about how much and what kinds of support 
students should receive during game-based learning opportunities. Lower-performing students’ over-
reliance on fast strategies might be more of an adaptive response to being forced to play a game that 
is too difficult as opposed to an intentional strategy choice in response to their perceptions of what 
the game is about. In this case, automated feedback and adaptation as discussed above would also be 
useful. Students who are facing intractable difficulty could be detected and helped automatically. It 
is also possible that students perseverating in fast strategies are doing so transgressively (see Aarseth, 
2007) as a rejection of the game’s challenge and a personal disinvestment from the game’s outcomes. 
This low-effort position is radically different from the low-ability position described above, but in 
terms of data logs, it would look rather similar. The analytics used in this study are not well-suited 
to detect the difference between low effort and low ability, although some scholars have had success 
with specific detection algorithms for disengagement in the context of science simulations (Gobert, 
Baker, & Wixon, 2015).

In this study, as in much of classroom-based educational game research, we relied on pre-existing 
classroom norms for expectations on student behavior and effort. Also, the presence and expert eye of 
the teacher to help identify and gently correct students who were off-task and offer guidance to those 
few students who may have found the game too demanding were indispensable. We observed and 
respected these practices while fully knowing that their effects would disturb the central assumption 
that the data logs record students’ actions and only students’ actions. This tension points to an inherent 
limitation of the data logging approach. Data logging can only account for what happens within 
the student-computer interaction, and classroom technology use often involves, or even privileges, 
person-to-person interactions. It is during these kinds of interactions that teachers and often peers help 
students make sense of the game when the game itself doesn’t offer the necessary scaffolds, whether 
motivational or content-related. These interactions may have effects on participating students’ play 
that would be captured by data logging but would be difficult for LA techniques to correctly explain 
or attribute. It may be that future work that harnesses data log analytics for adaptive feedback might 
approach, or perhaps even duplicate, the classroom teacher’s ability to identify apathy and helplessness 
in the classroom context, or the knowledgeable peer willingness to dispense timely hints. Until that 
time, however, we accept some imperfection and “mangling” of the record and look for opportunities 
to more deeply integrate log-based analytics with observational and grounded methods.

Regardless, in order to access the potential and intended benefits of an educational game, students 
must first learn to play the game itself. This step, while commonsensical, can easily be glossed over 
during design; when it comes to introducing unfamiliar digital games into the classroom, we might 
hold the notion that young students can simply “pick it up” and “figure it out”, since they may already 
be “gamers”. Thus, materials intended to help students orient themselves in the game environment 
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and learn how to reach gameplay goals may not receive as much design attention as they otherwise 
would. Furthermore, when games are used in an educational setting, these materials compete for 
classroom time with the main game, where the target curricular material is most likely to reside. 
Ideally, we would prefer if students spend only a little time “learning to play” and as much time as 
possible simply “learning.”

Our findings problematize these design assumptions. First, as shown, prior knowledge can 
structure gameplay to a great extent (see RQ1 analyses). Students who enter the game experience 
with a good working knowledge of the concepts and relationships are less reliant on more feedback-
rich and iterative, yet ultimately more laborious, “tweaking” styles of play. Second, the analysis also 
suggests that the way the game teaches students to play, by following a procedure or operationalizing 
a relationship, may also be an important influence on students, even when this learning is focused 
squarely on game-specific knowledge and not on curricular concepts and relationships.

If prior knowledge and differential use of tutorial materials can structure and influence play and, 
thus, learning, then a greater emphasis must be placed on game functionality that supports students 
who do not initially enjoy or leverage these advantages. For example, lack of prior knowledge can be 
addressed with scaffolding, and gameplay difficulty can be adapted to reduce repeated error. These 
and other measures should be considered as means to ensure that all students can access substantially 
similar game experiences and thus, hopefully, more equitable positive learning outcomes.

Data-Mining and Learning Analytics as a Tool
The work described in this paper has followed a methodology that is not limited to investigating 
EPIGAME logs. The general methodology is versatile and feasible for use in other contexts. Starting 
from a robust and detailed record of students’ interactions with a digital environment and a theoretical 
framework that supports conjectures as to why certain patterns of action create opportunities for the 
desired change, researchers can define the important features of those patterns and then use those 
features to investigate the data record using whatever LA techniques are most appropriate for that 
particular type of data.

A more novel focus of this analysis, which is highlighted in Research Question 2, is that it aims 
to track the development of students’ conceptual understanding at the level of particular concepts of 
inertia using finer-grained observations centered on particular gameplay regions. These regions are 
intended to highlight specific content, and thus student performance in these regions is more closely 
tied to conceptual understanding than gross-level summative measures. These summative measures 
have been successfully used in the past and may be appropriate and sufficient for some research 
questions. However, the use of finer-grained contextual data offers the advantage of supporting claims 
of students’ conceptual understanding of individual concepts such as inertia or First Law rather than 
broad performance constructs, such as knowing how to play EPIGAME).

This is not to say that the EPIGAME data structure and focus and the associated analyses 
are universal. The trial-retrial structure of gameplay and the grain size of the data capture are not 
necessarily common to all educational games. The specific combination of play structure and grain 
size warranted the sequence mining and contextual feature mapping. Other digital environments will 
have different interactive structures, and thus algorithms and techniques possibly better suited to the 
questions being asked. Fortunately, the state of the art of learning analytics is increasing both the 
accessibility and variety of statistical computing software, making it suitable for a wider variety of 
data structures, game mechanics, and learning foci.

One thing that will likely remain invariant, however, is the expertise of the analyst and his or 
her familiarity with the context and the data. In this paper, our own long association with EPIGAME 
data and our observations accumulated over multiple opportunities to facilitate students’ play of 
EPIGAME facilitated the creation of the derived variables, the process of interpreting the part.6 
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clustering, and the use of sequencing as a way to add meaning to the cluster assignments. It is unlikely 
that this kind of intimate understanding of the affordances and constraints of particular games and 
data can be substituted by generic software although it can, perhaps, be supplemented. Until that 
time, however, the skill of the analyst, as in all interpretative observational methods of research, will 
be crucial to success.
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APPENDIX A

observed and Derived Variables in the Epigame Log Data

Table 7. Catalog of variables in the Study 2 dataset

Variable name Meaning Type Notes

Student ID Identification Anonymized to a serial number

Experiment ID Identification

Date and Time Identification

Step Visit Number of times student has 
visited that Level (step) Observed

Attempt Observed Only Attempt = 1 was used

attemptTrial Order of this Attempt within a 
series of Attempts (i.e. a Trial) Observed

totalTrials
Combined number of Attempts 
in all Trials of this Level by this 
student

Observed

endState Did the player succeed (=1), fail 
(=0), or abort (=2)? Observed

endScore Score obtained by that student at 
the end of that Trial Observed

scoreImproved Did the student increase their 
Score this Attempt? Derived

trialTime
Length of time a between this 
Attempt and the end of the 
previous Attempt

Observed Incorrectly named in software, should 
be “attemptTime”

actionsUsed
How many Actions were 
placed on Waypoints during the 
Planning Phase

Observed

isExit Did the student leave the Level 
after this Attempt? Observed

timeLine Position of the time cursor on the 
Timeline at level end Observed

More relevant in the Timeline version 
of EPIGAME. Students in the present 
studies did not have access to the time 
cursor.

attemptTrial.max
Maximum value of the variable 
attemptTrial for that student for 
that level

Derived

p.attemptTrial Measure of progress of Attempts 
within the Trial Derived Calculated as (attemptTrial / 

attemptTrial.max)

p.totalTrials
Measure of progress of Attempts 
within the combined chain of 
Attempts over all Trials

Derived
Calculated as [attemptTrial + (sum of 
all attemptTrial.max of all previous 
trials) / totalTrials]

ending.event The state of the game that caused 
the Level to end. Observed

Allowed states: Success Gate, 
Navigation Error, Mass Gate collision, 
Velocity Gate collision, Laser collision, 
Abort.

continued on following page
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Variable name Meaning Type Notes

ended.at.action Number of actions that fired 
successfully Observed

Par Model-derived metric of 
effectiveness. Derived See “Treatment of EPIGAME logs” for 

a complete description.

planningTime Duration of the Planning Phase Observed

tl.Adds Addition of Actions to the 
Timeline Observed

tl.Deletes Deletion of Actions from the 
Timeline Observed Very rare (mean = 0.05 deletions per 

Attempt)

tl.Modifys Modification of parameters of 
Actions already in the Timeline Observed

tl.Moves Actions moved within the 
Timeline Observed Very rare (mean = 0.17 moves per 

Attempt)

added.Tl.Total Sum of Timeline Adds, Deletes, 
Modifys and Moves Derived

tj.Adds Waypoints added to the 
Trajectory Observed

tj.Modifys, tj.Moves, 
tj.Deletes

Analogous to the Timeline 
(prefix: tl.) count variables Observed

These variables exist in the record but 
no instance of these types of events was 
recorded.

locX, locY Coordinates of Surge’s spaceship 
when an event or Action occurred Observed

fail.same Did this Attempt fail at the same 
location, for the same reason? Derived

eff.actions.added

How many Actions fired in this 
Attempt compared to the number 
that fired in the preceding 
Attempt?

Derived Could be negative.

par.delta
Difference in the par metric 
between this Attempt and the 
previous one

Derived

par.sqrt, par.delta.
sqrt

Square-root transformations of 
the par and par.delta variables Derived

is.abort
Did the student press the Abort 
button before the level otherwise 
ended?

Derived The software also registers the Abort 
button press in the endState variable.

ActionLog
Combined variable that registers 
the Actions applied to Surge 
during the Attempt

Observed Includes position, type, and location of 
each Action applied

EventLog
Combined variable that registers 
important moments of gameplay 
not caused by Actions

Observed Not fully functional in this version of 
EPIGAME

Serial Serial number of the Conceptual 
challenge

Derived (from 
ActionLog)

Table 7. Continued

continued on following page
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Variable name Meaning Type Notes

failed.to
In case of failure of a Conceptual 
challenge, the specific action the 
student did not do

Derived (from 
ActionLog)

Possible values: fromStop, toStop, 
speedUp, slowdown

is.colinear
Does this Conceptual challenge 
also require students to execute 
a turn?

Derived (from 
ActionLog)

constant.mass
Do students have to account for 
changes to Surge’s mass during 
the Conceptual challenge?

Derived (from 
ActionLog)

Only Conceptual challenges that pass 
this test were analyzed here

Pre, Post The student’s pre- and post-test 
scores, respectively Observed

bin.1

Classification of students 
according to beginning and 
ending quartile in assessment 
score

Derived
See “Question 1: Sequence Mining” 
for detailed description of this 
classification

Table 7. Continued


