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ABSTRACT

Phase measurements obtained by high-coherence interferometry are restricted by the 
2π ambiguity to height differences smaller than λ/2. A further restriction considers 
linear and nonlinear aberrations evolving in most interferometric systems due to the 
CCD-type array detectors. The authors present a new method to overcome the 2π 
ambiguity in interferometry when using a stereoscopic approach. In this method, a 
reconstructed wavefront reflected from an object was propagated into two different 
angles to obtain two different images of the object. These two different images were 
subsequently processed by stereo algorithms to resolve the 2π ambiguity. Such a 
method of wavefront propagation may enable several applications such as focusing 
and resolving the 2π ambiguity, as described in the article.
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1. INTRODUCTION

1.1. Coupling Techniques
In the past decades, the world of measurements and instrumentation is rapidly 
growing, adapting itself to existing needs, and enabling the application domains, 
such as nanotechnology, space and remote sensing, chemistry and applied physics, 
metrology and more, to progress in parallel. Combining measurement techniques 
is a smart way to improve the specifications of such instrumentation. One domain, 
which is constantly progressing, is the interferometry technique when mixing it 
with other components and methods. The interferometer’s architecture is usually 
dependent on the expected target to be measured, and on the final application. For 
example, improved accuracy and resolution could be obtained when mixing a Laser 
Diode (Norgia, 2007) to the interferometer system (Donati, 1996). On the other hand, 
amplitude fading phenomenon could be solved by self-mixing interferometry with 
piezo actuators, phase-sensing loop and liquid crystal attenuator (Norgia and Donati, 
2003). More recently, displacement error phenomenon could be significantly decreased 
in displacement measuring interferometry by mixing FPGA Hardware-In-the-Loop 
(HIL) simulation (Wang, 2016). Another example is the coupling of laser Doppler 
sensors with interferometry enabling the study of the dynamic behaviour of a rotor 
(Dreier, 2013). Using existing proven techniques, and with the purpose of improving 
accuracy, we present a new approach to solve the 2π ambiguity in interferometry by 
coupling stereoscopy.

1.2. Interferometry’s Achilles Heel
The well-known 2π ambiguity concern in interferometry has been addressed and solved 
in various ways over the last two decades. Many techniques have been developed to 
resolve or prevent the 2π ambiguities in the interferometric measurements, such as 
multiple wavelength measurements (Lofdahl, 2001), phase unwrapping method (Yang, 
2002), low-coherence interferometric differential phase measurements (Hitzenberger, 
2001), phase-crossing technique (Yang, 2002), multiwavelength digital holography 
(Gass, 2003), terahertz phase imaging method with multiwavelengths (Zhang, 2006), 
and continuous-wave terahertz interferometry with multiwavelength phase unwrapping 
(Wang, 2010).

1.3. The Motivation
In this article, a new combined approach to overcome the 2π ambiguity is presented, 
as shown in Figure 1. Highly accurate phase measurements are very important in 
applications of surface measurements, as presented in the last decades. Greivenkamp 
(1992) mentioned the need for Phase shifting interferometry in Optical Shop Testing 
(OST), Creath (1988) referred to the interferometry multiple techniques, and Arieli 
(2004) addressed the method for 3D measurement of MEMS structures. Nevertheless, 
phase measurements obtained by high coherence interferometry are restricted by the 
2π ambiguity to height differences smaller than λ /2. In order to increase the dynamic 
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range of 3D measurements for continuous objects, known unwrapping algorithms can 
be used, as presented by Fornaro (1996) and Collaro (1998). However, for step-like 
objects, several different measurements, each consisting of a different wavelength, must 
be applied (Cheng, 1984). By comparing the phases obtained by these measurements 
at each point of the object, the 2π ambiguity is resolved and a considerably larger 
dynamic range can be measured. In this article, we suggest to overcome this restriction 
by using a step-like object to digitally propagate the measured wavefront reflected 
by the object and refocusing it. By focusing each segment locally and by retaining 
the distances by which each part of the wavefront was propagated and focused, the 
information as to resolve the 2π ambiguity is provided.

2. METHODS AND RESULTS

2.1. Wavefront Propagation
It is well-known that the reconstruction of a wavefront of an object directly from a 
hologram suffers from the 2π ambiguity. However, the viewer can still see a clear, 

Figure 1. Wavefront Propagation (WFP) diagram using stereoscopy
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stereoscopic image of the object via the hologram. This fact suggests that the use of 
stereoscopic imaging may help to overcome the 2π ambiguity. Thus, the stereoscopic 
information related to the depth of an object obtained from the reconstructed 
wavefront can be used to solve and overcome the 2π ambiguity in a highly simple 
way. In this approach, one can create two separate virtual images of an object from 
its reconstructed wavefront, thereby presenting the object from two different angles, 
and one can subsequently use stereo algorithms to reconstruct its depth information 
without the 2π ambiguity.

The creation of two virtual images of an object from its reconstructed wavefront 
requires a simulation of two imaging lens systems at different angles. This simulation 
may be achieved in three complementary steps:

•	 The first step is to propagate the reconstructed wavefront from the object plane 
to two identical imaging lenses of identical virtual imaging systems. This can 
be achieved using the Angular Spectrum Wave Front Propagation (ASWFP) as 
demonstrated by Arieli (2012) and Wolfling (2006);

•	 The second step is to multiply the propagated wavefront by a complex transmission 
function simulating two apertures shifted away from the optical axis, each 
associated with a virtual lens with a certain focal length (Stamnes, 1986);

•	 The third step is to propagate the modified wavefront to an image plane. This step 
may also be performed separately for each aperture. The best location of an image 
plane may be determined using the Gauss equation or by autofocus algorithms.

The two different images of an object obtained in the image plane may be processed 
by a stereoscopic algorithm to resolve the 2π ambiguity.

2.2. Step-by-Step Process
To demonstrate the feasibility of this new method, we performed a complete simulation 
of the entire process. The aim of this simulation was to ensure that two different images 
of an object are obtained in the image plane, using this stereoscopic information to 
solve the 2π ambiguity.

Figure 2 shows the two infinite long bars (top view) used for the simulation, 
which were laterally separated and located at different distances from the interference 
plane. The longitudinal distance between the two bars and the interference plane were 
chosen so that the phase shift between the two original wavefronts (U1 and U2) from 
the bars would be an integer multiple of 2π for the simulation wavelength. In such 
cases, the two bars could not be differentiated using fixed wavelength interferometry 
due to the 2π ambiguity. Therefore, the simulation wavelength was set to 0.5 μm, and 
the plane z = 0 was chosen as the interference plane. The two bars were considered 
as the simulation object, in which one bar had a width of 50 μm in the X dimension 
with its center located at the point (-250, 0, 250) – respectively referring to (x, y, z) 
– and the other bar had a width of 100 μm in the X dimension with its center located 
at the point (-500, 0, 500). Note that all dimensions were in microns.
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Thus, the original wavefront O(x, y, z) from the object can be expressed as:
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where:

•	 O is the wavefront originated from the object that consists of two bars
•	 U1 is the wavefront originated from the bar located at p1
•	 U2 is the wavefront originated from the bar located at p2
•	 rect is the rectangular function (Yang, 2002)
•	 δ(p) is the Delta function located at the coordinates p = (x, y, z)
•	 Δ1 = 50.10-6

•	 Δ2 = 100.10-6

•	 p1 = (250.10-6, 0, -250.10-6)
•	 p2 = (500.10-6, 0, -500.10-6)

The two parts U1 and U2 of the wavefront O were propagated separately to the 
interference plane at z = 0 using the ASWFP algorithm, i.e., the Fourier transform 
(Goodman, 2005) of each part of the wavefront:

A f f z A U x y z i xx y1 2 1 2 1 2 1 2 1 2
2

, , , , ,
, : , , : exp� � � �

�
�

�
�
� � � � � �

�
�

�
�

�
�
�

��
�
y dxdy�

�
�

�
�
�

�

�
�




�
�



		 	 (2)

Figure 2. The simulated object
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Multiplying the two functions A1,2 (fx, fy) by the phase factors would yield:
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where z1 = 250 μm and z2 = 500 μm, and the inverse Fourier transformation of the 
functions A1,2 (fx, fy: 0) to obtain the two propagated parts of the wavefront U1,2 (x, 
y:0) at the plane z = 0.

At the interference plane, the two propagated parts of the wavefronts U1,2 (x,y:0) 
were combined to present a reconstructed wavefront. In the second step, the combined 
wavefront was propagated through two virtual apertures, with each being associated 
with a virtual lens. The apertures were located in the interference plane and their 
sizes were chosen such that the two bars were visible from the right aperture, but the 
frontal bar covered the rear bar from the left aperture. This arrangement is presented in 
Figure 3. Results of the Fraunhofer diffraction through the aperture will be presented 
in Figure 4 and 5.

The complex transmission function that simulated the two shifted lens apertures 
can be described as:
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where:

Figure 3. Positioning of the apertures (circles) vs. the eyes
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Figure 5. 2D simulation of the Fraunhofer diffraction through the aperture

Figure 4. 3D simulation of the Fraunhofer diffraction through the aperture
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R = 250·10-6	
f = 125·10-6	
p1 = (0, 0, 0)	
p2 = (500·10-6, 0, 0)	

After multiplying by the complex transmission function, the two parts of the 
wavefront were propagated again to the image plane. In this simulation, the wavefront 
was propagated separately from each aperture to the image plane, for which the location 
at z = 250 μm was determined using the Gauss equation:

1 1 1

1 2
f z z
� � 	 (5)

where z1 = 250 μm and f = 125 μm. The simulation results are shown in Figure 6 and 
Figure 7, in which the image of the bars is rotated by 90°. Figure 6 shows the result 
of the wavefront propagation simulation via the right aperture, and Figure 7 shows 
the result of the wavefront propagation simulation via the left aperture.

Two rectangles were observed for the right aperture because both bars were visible 
as shown in Figure 6. However, for the left aperture, only one rectangle was observed 
(Figure 7) because the frontal bar covered the rear bar. In addition, it can be observed 
from Figure 7 that the image of the frontal bar had 1X magnification, whereas the 
rear bar appeared much wider in the image compared to its actual width. This effect 

Figure 6. The result of the wavefront propagation simulation via the right aperture in which the frontal bar does not 
conceal the second
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was observed because the best location of the image plane was calculated based on 
the frontal bar, while the rear bar had a different image plane that was considerably 
closer to the interference plane and was out of focus. These results show that by 
reconstructing the stereoscopic information about the depth of the object obtained 
from the reconstructed wavefront, the two bars can be differentiated despite the fact 
that the phase shift between the two original wavefronts from the bars is an integer 
multiple of 2π.

Thus, these results confirm that the reconstruction of the stereoscopic information 
about the depth of the object obtained from the reconstructed wavefront can overcome 
the 2π ambiguity in spite of using fixed wavelength interferometry.

3. DISCUSSION

This new method is preferable over other existing solutions because it does not require 
any special equipment, such as multiwavelength lasers. In addition, the stereoscopic 
approach is more accurate when compared to other techniques using physical 
assumptions regarding the measurement period, such as unwrapping algorithms.

In order to emphasize the clear advantages of this new method, we present a table 
of the main published techniques solving the 2π ambiguity. From Table 1, it appears 
that most of the well-known techniques use complex experiments made of several 
hardware components. As a direct consequence of the required specific hardware, 
such methods are much more expensive and require accurate calibration of the setup, 
meaning more effort and time invested.

Figure 7. The result of the wavefront propagation simulation via the left aperture in which the frontal bar 
conceals the second bar
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In comparison with existing complex solutions, the stereoscopic approach is 
considerably simpler and preferable because it does not require any special equipment, 
such as multiwavelength lasers. Moreover, this approach is more accurate than the 
other existing techniques that apply physical assumptions concerning the constraints 
of the measurement period, similar to temporal unwrapping methods.

4. CONCLUSION

We introduced a new method in order to solve the 2π ambiguity and the nonlinearities 
due to detectors occurring in interferometric measurements. In this approach, two 
separated virtual images that introduce the object from two different angles using 
the reconstructed wavefront were obtained. Using stereoscopic algorithms for the 
two images obtained at different angles, the 2π ambiguity could be overcome. To 
validate this approach, a simulation was performed in which two bars that cannot be 
differentiated in regular wavefront reconstruction were differentiated by reconstructing 
the stereoscopic information regarding the depth of the object obtained from the 
reconstructed wavefront.

We demonstrated and implemented the stereoscopic method, proving its promising 
usefulness. This article proves the efficiency of this technique in presence of 2π 
ambiguities and other noise artifacts.
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Table 1. Selection of representative techniques solving the 2π ambiguity

Technique and Year Hardware and Software Advantages and 
Disadvantages

Stereoscopy Mixing presented in this 
article, (Karsenty, 2017)

Any standard interferometer. Using Wavefront 
Propagation Matlab program

Low cost, no 
additional HW, on-line 
measurement

MPU (Multiwavelength Phase 
Unwrapping), (Wang, 2010)

4 HDPE lenses L1, L2, L3, L4, 2 Beam Splitters 
BS1, BS2, M1, M2, metallic mirrors; Stage1, 
Stage2, Stage3, computer-controlled linear stages

Requires specific and 
complex HW

MWDH (Multi Wavelength Digital 
Holography), (Gass, 2003)

CCD Camera, HeNe laser 633 nm, doubled 
Nd:YAG laser 532 nm, 3 BS (Beam Splitters)

Requires specific and 
complex HW

LCPC (Low coherence 
Phase Crossing), (Yang, 2002)

Modified Michelson interferometer, Ti Sapphire 
laser 775nm, CW 1550nm light semiconductor 
laser.

Requires specific and 
complex HW

CSRA (Candidate Solution Rejection 
Algorithm), (Lofdahl 2001) Complex algorithm code Requires post-measure 

Data Processing
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