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ABSTRACT

Digital image smoothing filtering operations, including the average filtering, Gaussian filtering and 
median filtering are always used to beautify the forged images. The detection of these smoothing 
operations is important in the image forensics field. In this article, the authors propose a universal 
detection algorithm which can simultaneously detect the average filtering, Gaussian low-pass filtering 
and median filtering. Firstly, the high-frequency residuals are used as being the feature extraction 
domain, and then the feature extraction is established on the local binary pattern (LBP) and the 
autoregressive model (AR). For the LBP model, the authors exploit that both of the relationships 
between the central pixel and its neighboring pixels and the relationships among the neighboring 
pixels are differentiated for the original images and smoothing filtered images. A method is further 
developed to reduce the high dimensionality of LBP-based features. Experimental results show that 
the proposed detector is effective in the smoothing forensics, and achieves better performance than 
the previous works, especially on the JPEG images.
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1. INTRODUCTION

The increase of forged images on the Internet has attracted much concern from researchers on 
multimedia security. When a forger creates a forged image, he often conducts smoothing filtering 
operations to beautify the forged image and make it look like an ordinary one. Thus, the forensics of 
smoothing filtering is able to provide auxiliary clues to identify the forged images. Furthermore, the 
smoothing filtering history of an image is an essential element for stegography (Kodovský & Fridrich, 
2014; Pevný, Bas, & Fridrich, 2010) and steganalysis (Barni, Cancelli, &Esposito, 2010). Kodovský 
et al. pointed out thatit is not secure to embed a message into a smoothing filtered image (Kodovský 
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& Fridrich, 2014). Therefore, the forensics of smoothing filtering is of particular significance in 
multimedia security.

There are some excellent works about the median filtering forensics (Yuan, 2011; Zhang, Li, 
Wang, & Shi, 2014; Chen, Ni, & Huang, 2013; Cao, Zhao, Ni, Yu, & Tian, 2010; Niu, Zhao, & 
Ni, 2017; Kang, Stamm, Peng, & Liu, 2012; Yang, Ren, Zhu, Huang, & Shi, 2017). Relatively, 
only a few universal forensic methods are devoted to detecting commonly used smoothing filtering 
operations, such as the average filtering, Gaussian low-pass filtering and median filtering. Yu 
(Yu &Chang, 2005) proposed to detect smooth regions via DCT coefficients, which was heavily 
dependent on high-frequency coefficients and was not robust against JPEG compression. Bayram 
(Bayram, Avcibas, Sankur, & Memon, 2006) employed a 188-D joint feature set composed of 
three types of steganalysis features to detect the smoothing operations. Their methods can achieve 
high detection accuracy; however, they are semi-blind and are not suitable to be used in the blind 
scenario. Recently, with the rapid development of computation equipment, it is preferable for the 
forensic task to use large dimensional feature or powerful deep learning model, such as rich model 
steganalysis feature with 34671-D (Qiu, Li, Luo, & Huang, 2014; Li, Luo, Qiu, & Huang, 2016) and 
deep learning automatically learned features (Bayar & Stamm, 2016). The rich model based feature 
and deep learning model really have achieved great improvements. However, the classification using 
large dimensional feature set and complicated learning model needs higher computation resources, 
larger number of images for training, longer time for training and testing, thus it is not applicable to 
the limited computation and storage resources (such as sensors, mobile phone). More importantly, 
the classification using a large dimension feature set may bear greater risk of over-fitting than that 
which using small dimensional feature set.

In this paper, we propose a universal smoothing filtering detector with the following goals: 
(1) it can simultaneously detect the commonly used smoothing filtering operations including the 
average filtering, Gaussian lowpass filtering and median filtering; (2) it can be robust against the 
commonly post operation- JPEG compression; (3) it should have a feature set with low dimension. 
We hope the proposed detector can satisfy the requirement of low computational resource. To this 
end, we firstly select high-frequency residuals elaborately to analyze the fingerprints left behind by 
the smoothing filtering operations, and then construct a composite feature set with small dimension 
for the forensic task.

2. THE PROPOSED METHOD

In this section, we first analyze the statistical differences between original images and smoothing 
filtered images in the high frequency residual domain. Then we employ autoregressive model and 
local binary patterns to extract the fingerprints left behind by the smoothing filtering operations in 
the residual domain. We finally introduce how to ensemble LBP and AR feature set for smoothing 
filtering forensics.

2.1. The High Frequency Residual
How to select an appropriate domain to analyze the fingerprints of smoothing filtering is the first 
critical factor for the smoothing filtering forensics. Generally, the diversity of natural image contents 
and post manipulations (such as the commonly used JPEG compression) always interferes with the 
performance of the forensic detector. The high frequency components, such as image differences or 
filtered residuals, contain very few image contents, so that they are always employed as being the 
analyzed domain to reduce the interference from image contents (Chen, Ni, & Huang, 2013; Cao, 
Zhao, Ni, Yu, & Tian, 2010; Kang, Stamm, Peng, & Liu, 2012, Yang, Ren, Zhu, Huang, & Shi, 2017). 
Inspired by our prior work (Kang, Stamm, Peng, & Liu, 2012), the median filtered residual (MFR) 
defined in (1) is employed as being the analyzed domain. Compared with the horizontal or vertical 
image differences, MFR is able to reveal the statistical information in various directions.



International Journal of Digital Crime and Forensics
Volume 11 • Issue 1 • January-March 2019

20

r (i, j) = medw(x (i, j))- x (i, j) r i j med x i j x i jw, , ,� � � � �� � � � � = z(i, j) -x(i, j)	 (1)

In the formula (1), x (i, j), z (i, j) and r (i, j) are the original pixel, median filtered pixel and MFR 
residual pixel, respectively.

An original image, the corresponding MFR, and MFR of its 3×3average filtered version are 
shown in Figure 1 respectively. For the display purpose, the absolute value of MFR pixel is truncated 
within [0, 50], where the residual pixels (MFR=0) are shown by the black color, the residual pixels 
(|MFR|>= 50) are shown by the white color. From the Figure 1, it can be observed that: (1) Most of 
the MFR pixels as shown in Figure 1(b) and Figure 1(c) are equal or close to be 0, which indicates 
that MFR contains only a few image contents. (2) MFR of the average filtered image is blacker than 
MFR of the original image. It means that the MFR of the average filtered image has more residual 
pixels with small values. This phenomenon is caused by the blurring effect of the average filtering. 
(3) Figure 1(b) and Fib. 1(c) display obvious statistical differences in the texture and the edge region. 
That’s because the smoothing filter makes the filtered images smoother and less noisy. For the average 
filtered image, the following median filtering operation in the formula (1) keeps more pixels in the 
texture or edge region, so MFR of the original image and MFR of its average filtered image behave 
statistical differences in the texture and edge regions. These properties indicate that MFR is helpful 
to construct an effective and robust smoothing filtering detector.

2.2. The Composite Feature
2 2.1. AR feature
The outputs of smoothing filtering are determined by the neighborhood pixels and the filter kernel. 
Accordingly, it can be supposed that the smoothing filtering operation changes the relationships 
among neighboring pixels. To capture such relationships, we fit the MFR into an AR model, and 
extract AR coefficients as being a feature subset FAR.

The AR coefficients are extracted from both of the vertical and horizontal directions. Extracting 
AR coefficients in the horizontal direction is as follows. First, concatenate all rows of MFR matrix 
r to generate a 1-D sequence z= [r (1,:), r (LR) (2,:), r (3,:), r (LR) (4,:), …], where

r(LR) (m,:) (m is the row index) is a left-right flipped version of the mth row. Then, input z into an 
AR model as (2) to calculate AR coefficients.

z t a k z t k t
k

p

( ) ( ) ( ) ( )� � � �
�
� �

1

	 (2)

Figure 1. An original image: (a), the corresponding MFR (b) and MFR of its 3×3 average filtered version
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In the formula (2), p a k t, ( ), ( )ε  represent the order, the coefficient and prediction error, 
respectively. Transposing the MFR matrix r, we can extract AR coefficients in the vertical 
direction in the same way. The average values of horizontal and vertical AR coefficients are 
represented as FAR.

The dimension of FAR is equal to the order p, which is usually small, e.g., less than 10. Hence the 
feature set FAR is able to reveal the neighborhood relations with a low dimension. However, we also 
find that the AR model is not suitable for expressing other directional neighborhood relationships 
except the horizontal and the vertical ones. We will employ LBP to reveal neighborhood relationships 
in the other directions.

2.2.2. LBP-based Feature
Because of the lowpass filtering property, the smoothing filter causes obvious statistical differences 
between original images and smoothing images in texture regions as shown in Figure 1(b) and Figure 
1(c). We suppose that some fingerprints of smoothing filtering operation may hide in the texture region. 
To capture the fingerprints in the texture region, we employ the LBP calculator (Ojala, Pietikainen, 
& Maenpaa, 2002), which is a popular useful tool to classify image textures to construct a feature set 
FLBP. LBP has already been used in the image sharpening detection (Ding, Zhu, & Shi, 2013; Ding, 
Zhu, Yang, Xie, & Shi, 2014).

LBP exploits the neighborhood relationships through comparing a central MFR element rc 
with its neighboring elements ri (i∈Z). For l neighboring elements, the LBP calculator calculates a 
binary sequence Sl = s0s1s2 … sl, where si= f (rc, ri). If ri>= rc,f (rc,ri) is assigned with a binary bit 1; 
otherwise, f (rc,ri) is assigned with a binary bit 0. For a fixed order sequence Sl as shown in Figure 2, 
its decimal number D is obtained as (3).

D f r r where f r r
if r r
otherwisec i

i

l
i

c i
c i

=
 

( , ) , ( , )
,

,�
� � �

��
�
�0

2
1

0
	 (3)

Figure 2. The neighborhoodR8 = r0 r1… r7 (pale green color), R16 = r8r9…r23 (golden color) and R24 = r24r25… r47 (gray color) using for 
calculating of LBP8, LBP16 and LBP24respectively
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The initial LBP feature set (Ojala, Pietikainen, & Maenpaa, 2002) is not suitable to be taken 
directly as the feature. That’s because: (1) the histogram of D is sparse; (2) the dimensions of 
original LBP grow exponentially with the number of neighborhood elements. For example, LBP 
of 3×3 neighborhood (LBP8), 5×5 neighborhood (LBP16) and 7 ×7 neighborhood (LBP24) has 28= 
256, 216= 65532 and 224= 16776192 elements respectively. Inspired by the method proposed by 
Ojala (Ojala, Pietikainen, & Maenpaa, 2002), we first divide LBP patterns into uniform patterns and 
non-uniform patterns, and then construct the feature from both two patterns. For a LBP sequence 
Sl = s0s1s2 … sl, if the number of binary transitions (0→1 or 1→0) is no more than 2, it is taken as 
a uniform pattern; otherwise, it is taken as a non-uniform pattern. The following four patterns: Sl 
= 000 …0(all “0”), Sl = 111 …1(all “1”), Sl = 001 …0(only one “1”) and Sl = 110 …1(only one 
“0”) are typical uniform patterns.

Because the smoothing filter can be taken as an isotropic filter, we suppose that the uniform 
patterns containing the same number of binary bit “1” play nearly the same role when differentiating 
the original image from the smoothing filtered image. To this end, the uniform patterns with the same 
number of binary “1” are taken as the same pattern class. This property can be used to reduce the 
high dimensions of the traditional LBP. For example, “01100000” and “00000011” are taken as the 
same pattern class. For LBP8, LBP16, and LBP24, there are 9, 17 and 25 pattern classes respectively. 
The frequency of each pattern class is calculated as a feature element. Although the non-uniform 
patterns are very sparse, we find that they are also useful in the smoothing filtering forensics as shown 
in Figure 3(c). Similarly, the non-uniform patterns with the same number of binary 1 are taken as one 
pattern class. The frequency of each non-uniform pattern class is also calculated as a feature element. 
Except the 4 typical uniform patterns, there are 9-4=5, 17-4=13 and 25-4=21 non-uniform patterns 
in LBP8, LBP16, and LBP24 respectively. In the following sections, the feature set constructed by the 
uniform patterns and the non-uniform patterns in LBP8, LBP16 and LBP24 are denoted by F8U (9-D), 
F8NU (5-D), F16U (17-D), F16NU (13-D), F24U (25-D), F24NU (21-D), respectively.

Figure 3 shows the statistical differentiated properties of the uniform patterns (left plot) and non-
uniform patterns (right plot). For the uniform pattern feature F8U, it can be seen that the frequencies 
of original images and3×3 averaged filtered images are significantly different at x = 1, 2, 8, 9. These 
indexes are corresponded to the aforementioned four typical patterns. The right plot in Figure 3 
shows that all non-uniform pattern classes can also be used to differentiate the original images from 
the smoothing filtered images.

Figure 3. The statistical properties of F8U (left) and F8NU (right) on original images and 3×3 average filtered images. The x axis is 
the number of binary bit “1”, while y axis is the average frequency of 1338 images of UCID database
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Besides extracting the features from LBP8, LBP16 and LBP24, the relationships among 3×3 
neighborhood (R8=r0r1… r7), 5×5 neighborhood (R16 = r8r9…r23) and 7 ×7 neighborhood (R24 = r24r25… 
r47) are also used to construct the features. We have found that the probability of neighboring MFR 
elements being equal in the smoothing filtered image is higher than that in the original image. So, we 
construct a feature set Fjoint= [F8joint16, F8joint24, F16joint24] from the relationships among R8, R16 and R24.

Before constructing the proposed feature set FLBP, the whole MFR image is divided into 7×7 
overlapping blocks from top left corner to the bottom right corner with increment 1 pixel. For a MFR 
image with resolution M × N, there are totally (M-6) × (N-6) blocks. For each block, the procedure 
of calculating feature elements is as follows:

1. 	 Constructing the feature sets F8U and F8NU in LBP8. For the 8-bit binary sequenceS8=s0s1… s7 
with k binary “1” bits (0 ≤ k ≤ 8), if S8 is a uniform pattern, we add 1 to F8U (k); otherwise, we 
add 1 to F8NU (k). The feature sets F16U, F16NU in LBP16, F24U and F24NU in LBP24 are constructed 
in the same way.

2. 	 Constructing the feature set F8joint16, F8joint24, F16joint24 based on the adjacent relationships between R8 
and R16, R8 and R24, R16 and R24 respectively. For calculating F8joint16, we give 8 neighboring pixel 
groups for all elements in R8: r0 {r8},r1 {r9,r10,r11},r2 {r12},r3 {r13,r14,r15},r4 {r16},r5 {r17,r18,r19},r6 
{r20},r7 {r21,r22,r23}. For calculating F8joint24, we also give 8 neighboring pixel groups for all elements 
in R8: r0 {r24},r1 {r25,r26,r27,r28,r29},r2 {r30},r3 {r31,r32,r33,r34,r35},r4 {r36},r5 {r37,r38,r39,r40,r41},r6 
{r42},r7 {r43,r44,r45,r46,r47}. For calculating F16joint24, we give16 neighboring pixel groups for all 
elements in R16: r8{r24},r9{r25},r10{r26,r27,r28}, r11{r29}, r12{r30}, r13{r31},r14{r32, r33,r34}, r15{r35}, 
r16{r36}, r17{r37}, r18{r38r39,r40}, r19{r41}, r20{r42}, r21{r43}, r22{r44, r45,r46}, r23{r47}.Then we calculate 
the absolute difference between the neighboring pixels set and the residual pixel ri. Taken the r1 
{r9, r10, r11} group for example, |r1-r9|, |r1-r10|, |r1-r11| will be calculated. If all absolute values are 
less than T, we will take the group r1 {r9, r10, r11}as a valid element. If there are k valid elements, 
we will add 1 to F8joint16 (k). The same procedure is executed for F8joint24 and F16joint24. We set T =3 
in practice. For each block, the extraction procedure of Fjoint is executed only if S8, S16and S24 are 
all uniform patterns.

After finishing the procedures for all (M-6) × (N-6) blocks, we unite all feature sets to get the 
normalized FLBP= [F8U, F8NU, F16U, F16NU, F24U, F24NU, F8joint16, F8joint24, F16joint24]/(M-6) × (N-6). There are 9, 
5, 17, 13, 25, 21, 9, 9, and 17 elements in F8U, F8NU, F16U, F16NU, F24U, F24NU, F8joint16, F8joint24 and F16joint24 
respectively. The dimensionality of FLBP is 9+5+17+13+25+21+9+17 =125. The final feature set 
F is a composition of FLBP and FAR: F= [FLBP, FAR]. In practice, we empirically set the AR order to be 
10. So, the dimension of F is 125+10=135.

3. EXPERIMENTAL RESULTS

A composite database with 2676 images is used in the experiment. The composite database is composed 
of1338 images from the UCID database (Schaefer, &Stich, 2004) and randomly selected 1338images 
from the BOWS2 database (Bas, &Furon, 2006). The resolution of image is 512×512 or 512×384. 
All images are converted into 8-bit grayscale images at the first step. Taken the original composite 
database as the mother source database, three categories of image sources are created: 3×3average 
filtered images (AVE3), 3×3 median filtered images (MF3) and 3×3 Gaussian lowpass (σ =0 5. ) 
filtered images (GAU3). In order to test the robustness against lossy post-compression, three image 
sources are processed by JPEG compression with quality factor (QF = 70) and are denoted by: “AVE3 
+JPEG 70,” “MF3+JPEG 70,” and “GAU3+JPEG 70,” respectively.

We feed the proposed feature F and the GLF feature proposed by Chen (Chen, Ni, & Huang, 
2013) into 3 popular machine learning tools: SVM with RBF kernel (Chang, & Lin, 2011), neural 
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network (NN) (Rasmus Berg Palm, 2013), and random forest (RF) (Chen, Liaw, & Breiman, 2004) 
to train the smoothing filtering detector. Cross-validations are used to find the best parameters for 
all machine learning tools. Half of original images (1338 original images) and smoothing filtered 
images (446 AVE3 images + 446 MF3 images + 446 GAU3 images) are used to train, the rest half 
is used for testing. The detection accuracy (ACC= (TPR+TPN)/2, TPR: true positive rate, TPN: true 
negative rate) and ROC curves are used to evaluate the performance.

At first, we test the detectors for uncompressed images. The detection accuracies are shown 
in Table 1 under without JPEG compression. For three kinds of classifier, our proposed detector 
all achieves nearly perfect performances and outperforms GLF-based detector. Especially on the 
RF classifier test, the proposed detector achieves about 1.8% higher detection accuracy than the 
GLF-based detector does. The ROC curves obtained from SVM in Figure 4(a) verify again that the 
proposed detector is effective for detecting smoothing filtering. For a very FPR = 0.5%, the proposed 
detector achieves TPR = 100%, which indicates that the proposed detector is effective in the harsh 
scenario for low FPR.

As images are usually saved as “.jpg” format, we then test the detectors’ robustness against 
JPEG compression with QF=70. Under the JPEG compressed scenario, the JPEG 70 compressed 
images are taken as the negative class, while the images undergone by smooth filtering followed by 
JPEG 70 compression are taken as the positive class. This negative and positive pair is represented as 
“JPEG 70 VS smooth filtering +JPEG 70”. The results in Table 1 demonstrate that our method can 
stably achieve ACC>97% for the JPEG compression, which indicates that it is robust against JPEG 
compression. On the RF classifier test, the proposed detector’s accuracy is about 5.6% higher that 
of the GLF-based detector. In Figure 4(b), it also can be seen that the ROC curve of our proposed 
method is above over that of the GLF-based method. For a low FPR= 0.5%, the proposed method 
and the GLF-based method achieve TPR= 99.9% and TPR= 97.9% respectively. The result from 
uncompressed images and the result from JPEG 70 compressed images are nearly the same, which 
indicates that the proposed method is robust to JPEG compression. The results in Table 1 show that 

Figure 4. ROC curves (obtained from SVM) showing smoothing filtering detection performance on un-compressed images (a) 
and JPEG 70 images (b) in the composite database
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the results obtained from SVM, NN, and RF are nearly the same, which indicates that the proposed 
method is stable and the proposed feature set probably have low risk of over-fitting because of low 
dimension. In the test, we find that SVM classifier achieves the best detection accuracy, while NN 
is the fastest.

In some applications, identifying the type of smoothing filtering is important, we model the 
identification as a multiple classification. The original image, its average filtered version, its median 
filtered version and its Gaussian filtered version are labeled as 0, 1, 2, and 3, respectively. To train 
a four-class classifier, we randomly select 2676/2=1338 original images, and their corresponding 
average filtered images, median filtered images and Gaussian filtered images as the training database. 
The four-class classifier is tested on the rest 2676/2=1338 original images, average filtered images, 
median filtered images and Gaussian filtered images. For the un-compressed scenario, the proposed 
detector and the GLF-based detector achieve ACC= 95.1% and ACC= 98.0% respectively. For the 
JPEG 70 compressed scenario, the proposed detector and the GLF-based detector achieve ACC= 
92.6% and ACC= 89.5% respectively. These results reveal that the proposed detector can effectively 
identify the type of smoothing filtering.

We also test the generalization ability of the proposed detector. In real applications, it is 
probably that the training images and testing images are originated from different image sources. 
To test the detector’s generalization ability, we first train a detector on the UCID/BOWS2 database, 
and then test it on BOWS2/UCID database. The detailed results in Table 2 indicate that the 
mismatch between trained images and tested images has a little interference with the proposed 
detector’s accuracy. Either for the un-compressed images or JPEG 70 compressed images, the 
proposed detector achieves better performance than the GLF-based detector. It is worth noting 
that the generalization ability for the JPEG compressed scenario needs to be further improved, 
which is our further work.

Table 1. The detection accuracy (%) of smoothing filtering detector on the composite database. “Without/QF= 70” means 
uncompressed and JPEG 70 compressed scenario respectively. The better results are shown in bold text

JPEG Classifier Proposed GLF

Without

SVM 99.8 99.7

NN 99.6 99.4

RF 99.6 97.4

QF=70

SVM 97.8 96.2

NN 97.9 95.1

RF 97.4 91.8

Table 2. The generalization ability test accuracy (%) using SVM for the smoothing filtering detector. “Without/QF=70” means 
uncompressed and JPEG 70 compressed scenario respectively. The better results are in bold text

JPEG Test database Proposed GLF

Without UCID
99.0 98.8

97.9 92.8

QF=70 BOWS2
99.6 98.3

94.6 95.5
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4. CONCLUSION

In this paper, a universal detector is developed to detect three categories of smoothing filtering: average 
filtering, Gaussian low-pass filtering and median filtering. In order to obtain a low dimensional, 
effective and robust feature set, we first analyze the statistical characteristics of smoothing operations 
in the median filtered residual domain, and then utilize local binary pattern and autoregressive model 
to construct the forensic features. We develop a method to reduce the dimensions of LBP-based 
features, which can reduce the exponentially growing dimensions to the linearly growing dimensions. 
Experimental results verify that the proposed detector is an effective and robust detector, and it 
outperforms previous method. In the future, we will further improve the smoothing filtering detector’s 
robustness against JPEG compression.
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