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ABSTRACT

Advanced in the present article is a Two-step procedure designed on the methods of the least squares 
(LS) and instrumental variable (IV) techniques for simultaneous estimation of the three unknown 
parameters L∞, K and t0, which represent the individual growth of fish in the von Bertalanffy growth 
equation. For the purposes of the present analysis, specific MATLAB-based software has been 
developed through simulated data sets to test the operational workability of the proposed procedure 
and pinpoint areas of improvement. The resulting parameter estimates have been analyzed on the 
basis of consecutive comparison (the initial conditions being the same) between the results delivered 
by the two-step procedure for simultaneous estimation of L∞, K and t0 and the results obtained via 
the most commonly employed methods for estimating growth parameters; first, use has been made of 
the Gulland-and-Holt method for estimating the asymptotic length L∞and the curvature parameter 
K, followed by the von Bertalanffy method for estimation of t0.

Keywords
Asymptotic Length, Biological Objects, Fish, Gulland-Holt Plot, Individual Growth, MATLAB, Modeling, 
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INTRODUCTION

Determining the fish growth parameters plays a fundamental role not only in the correct detection of 
the fish stock age and size structure, but also in the process of stock assessment procedure, studies 
of the population dynamics and sustainable stock management in terms of fish stock exploitation 
restrictions or specific recommendations for minimum limits on the size (length) of species to be 
caught legally, selectivity of the fishing gears and equipment, etc. Historic data on growth parameters 
estimates has been successfully used as a basis for analysis of the stock biological development over 
time in addition to the analysis of the impact of environmental factors – food availability, variability in 
specific environmental conditions, such as water temperature, the concentration of dissolved oxygen, 
the types of species interactions and others. Several functions have been developed to model the growth 
of fish (Gompertz growth model, Schnute-Richards, logistic, etc.), however the von Bertalanffy model 
is the most popular and is in the scope of the present material.

The von Bertalanffy mathematical model of individual-based approach to predicting fish growth 
expresses the length L( )  as a function of the age of the fish t( ) :
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L t L K t t( ) = − − −( )( )



∞ 1 0

exp 	 (1)

where: t  is the age of the respective fish, L∞  - is the asymptotic length (or mean length of the cohort 
at age equal to infinity when the study refers to population dynamics), K  is a curvature parameter 
which shows how fast a given individual approaches its asymptotic (finite) length, t

0
 – is the initial 

condition parameter (determining the point in which the length of the fish is =0) (Cadima, 2003, 
Sparre & Venema, 1998).

Equation (1) has three unknown coefficients K , L∞  and t
0

, to be determined analytically on 
the basis of given experimental data (i.e. the length and age measurements of the species under 
analysis). A great number of methods for estimating von Bertalanffy growth parameters have been 
successfully implemented in practice, with their main disadvantage being the requirement for regularity 
of the corresponding measurements. Failure to collect and process the data on a regular basis distorts 
the results of the methods discussed so far except for the Gulland-and-Holt plot, and what is more, 
they usually provide estimates for only 2 of the 3 unknown parameters (Sparre & Venema, 1998), 
with the exception of (Melnikova, 2009).

Norbert Winner and Ludwig von Brtalanffy conclusively proved in their works the existence of 
close similarities in the operation and control of the machines and the living organisms. It follows, 
therefore, that the common principles, methods and approaches developed for the analysis and control 
of large technical systems can be successfully modified or adapted in the research and modeling of 
biological objects and systems. The System theory and more specifically the development of the System 
identification scientific area appear to be very suitable theoretical basis for further improvement and 
elaboration of the object/system modeling methods and principles (Eykhoff, 1974; Genov, 2004; 
Hoffman & Frankel, 2001; Soderstrom & Stoica, 1989).

The Least Squares Method (LSM) techniques are well-known and widely applied in various 
scientific areas for experimental data processing and its subsequent fitting to a model (Stigler, 1981; 
Walter & Pronzato, 1997). The LSM is a standard approach in regression analysis to approximate 
the solution of overdetermined systems, i.e., sets of equations in which the number of equations is 
much higher than the parameters unknown. “Least squares” means that the overall solution minimizes 
the sum of the squares of the residuals made in the results of every single equation. It is widely 
practiced in engineering for solving regulator synthesis problems and system modeling, where a 
variety of LSM modifications have been developed aiming at obtaining general improvement of the 
accuracy in parameter estimates. The LSM also takes place in modeling and parameter estimation 
of biological objects. Its wide applicability is generally assumed to be associated with normal 
distribution of input data used for analysis provided that the number of data should exceed the number 
of the unknown (estimated) parameters. The present article proposes a two-step procedure designed 
on the methods of least squares and instrumental variables for simultaneous estimation of the three 
unknown parameters in von Bertalanffy growth model equation - L∞ , K  and t

0
.

BACKGROUND

For the purposes of the present analysis and development of the method proposed and the corresponding 
algorithm, the von Bertalanffy growth equation will be re-stated as follows: 

L t L L e
K t t( ) = −∞ ∞

− −( )0 	 (2)
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In terms of the General Theory of Automatic Control and System Identification, equation (2) is 
considered transition (step) function of the object/system under consideration.

Numerous methods have been developed to determine the system parameters by its step response, 
which prove to be ineffective in offering a solution to the von Bertalanffy growth equation. Thus, 
despite having the same model, the methods for determining the parameters of the transition (step) 
function based on experimental data valid for the technical systems are not applicable for biological 
objects. Hence, a new approach to solving the Growth equation was considered necessary.

In the case of fish, the growth rate measured in length is represented as:

dL t

dt
L e K

K t t( )
= ∞

− −( )0 	 (3)

Equation (2) can be then rewritten:

L e L L t
k t t

∞

− −( )
∞= − ( )0

�	 (4)

If (4) is substituted in (3), the following shall be obtained:

dL t

dt
k L k L t

( )
= − ( )∞. . 	 (5)

Since L∞  is constant, the relationship between the growth rate 
dL t

dt

( )
 and the length L t( )  is a 

linear function. Accordingly, it makes it possible for the unknown parameters L∞  and K  to be easily 
estimated by a linear regression analysis (provided that length-at-age data (measurements) is available). 
It should be emphasized, however, that the accuracy of the parameter estimates is strongly dependent 
on the input data quality. Great accuracy of estimates can only be expected if the length and age are 
determined precisely. Experimental data collection and sampling are normally accompanied by added 
noise of different types and levels, for example as a result of inaccurate measurements. The present 
analysis takes into consideration random error occurrence, rather than systematic measurement error, 
and thereupon it is reasonable to assume that those random errors have zero mean or expectation 
M = 0 , dispersion σ  and are normally distributed. The a priori analysis of the problem is of major 
significance for further selection of mathematical (instruments) solution (procedure) to the growth 
equation. Given the above listed considerations and assumptions, the present paper introduces Two-
step LS and IV- method based procedure for simultaneous estimation of the individual growth 
parameters L∞ , K  and t

0
.

Growth Parameters Estimation
Length-at-age samples in general present discrete data in relation to the parameters measured and 
the values L i t∆( )  are accordingly discrete, which is to mean that the continuous derivative (5) can 

be duly expressed as the finite difference ∆
∆
L

t
. The theory of finite difference approximations of 

derivatives is covered in most numerical analysis textbooks and has been widely used in scientific 
and engineering computations. It is generally recognized, however, that the quality of the approximation 
greatly depends on the regularity of the function. If the initial data is sampled from a sufficiently 
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smooth function, or if the data is ‘dirty’ because of measurement errors, simple one-sided finite 
difference appears the most appropriate solution. Interpolation of data is usually related to selection 
of sampling time ∆ =t const . Moreover, in numerical differentiation even small variations of the 
function can lead to major changes in its derivative. Provisions are made in the analysis under 
discussion for non-regular measurements of the parameters (L t( )   and t ) and respectively 
∆ ≠t const . In accordance with the mean values theorem (finite increments) (Bradistilov, 1961; 
Bretscher, 1995), which is to be applied hereinafter for derivation of the procedure proposed:

L x t L x t t L x
i i

+( )− +( ) = ∆ +( )′
+1 . ξ , where: ¾is numerical value in the interval:	

t t
i i
< < +ξ

1
. here: ξ ξ= ∆( )x t, .	

The calculations further are based on the following assumption: 

t t t t t L t i N
si i i i i i si
= + = + −( ) ( ) = −′

+ξ 0 5 1 1
1

. , , , .	

Step 1: Estimation of the Asymptotic Length L∞  and the Parameter K

It is assumed that N numberof lengthmeasurements=     of fish – i.e. L t
1( ) , L t

2( ) , L t3( ) , …, 
L t

N( ) , which correspond to ages: t
1
, t

2
, …, t

N
, the linear equation (5) then can be expressed by 

the following system of equations: 

′ ( ) = − ( ) = −∞L t k L k L t i N
si si

. . , ,1 1 	 (6)

or in matrix-vector form as:

′ = −∞L k L k Ls. . .1 	 (7)

where:

′ ′ ′ ′ ′= ( ) ( ) ( ) … ( )



−L L t L t L t L t

s s s s N

T

1 2 3 1
, , ,

,
;	

Ls L t L t L t L t
s s s s N

T

= ( ) ( ) ( ) … ( )



−1 2 3 1

, , , ,
,

;	

1 – is a vector of ones with size N −1 .	 (8)

Equation (7) can also be conveyed as:

′ = −

















=∞L Ls

KL

K
X b1� . . 	 (9)
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Where the elements of the vector b  are the unknown von Bertalanffy growth parameters K  
and L∞ .

Supposing that b̂  is the estimation of vector b , the error vector e  should be defined and 
respectively taken into account when b̂  is additionally substituted in (9) to obtain the following 
equation:

e L X b= −′� .ˆ 	 (10)

The elements of the error vector e  can also contain measurement errors.
The unknown vector b̂  will be determined in accordance with the minimum norm least squares 

solution requirement, i.e.:

J e e minT

b

= =�
ˆ
� 	 (11)

In compliance with the requirement for minimization of the norm (11), it follows that:

ˆ � . � .b X X X LT T= 

 =′ ′
−1

CX� LT 	 (12)

As a result, the elements of vector b̂  shall determine L∞  and K : 

L
b

b∞ =
( )
( )
1

2
, �K b= ( )2 	 (13)

Step 2: Estimation of t
0

Once the 2 growth parameters L∞  and K  have been calculated in the first step of the procedure 
being described - equation (2) can be re-stated as follows: 

e
L t

L
l t

K t t− −( )

∞

= −
( )
= − ( )0

1 1 	 (14)

After taking a logarithm on both sides and carrying out some simple transformations we have:

K t K t ln l t. .
0

1= + − ( ) 	 (15)

If y t ln l t K( ) = − ( )( )1 / is substituted in (15):	 (16)

It proceeds from (16) that:
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y t t t( ) = −
0

	 (17)

(17) is also a linear equation and for t i N
i
, ,= 1  a system of linear algebraic equations will take 

place and may be hereby presented in a matrix-vector form as:

Y t T= −
0
1. 	 (18)

where:

Y y t y t y t
N

T
= ( ) ( ) … ( )



1 2

, , ., , T t t t t
N

T
= …



1 2 3

, , , .., , and 1 - is a vector of ones with size N .	

(18) is an overdetermined system of linear equations. The unknown parameter t
0

 will be 
established in accordance with the minimum norm least squares solution requirement, analogously 
to (11), once the estimation t̂

0
 is substituted in (18).

µ� T Y t �� ��Z� t= +( )− = −ˆ ˆ. .
0 0
1 1 	 (19)

The unknown parameter t̂
0

 is to be determined through compliance with the requirement for 
minimization of the norm:

G minT

t

= =�
ˆ

ε ε
0

	 (20)

=> = 

 =
−

=∑ˆ . .t Z
Z

N
T T i

N

i

0

1
11 1 1 	 (21)

Implementation of the Instrumental Variable (IV)
IV is used when an explanatory variable of interest is correlated with the error term, in which case 
ordinary least squares are likely to produce biased results. A valid instrument induces changes in the 
explanatory variable but has no independent effect on the dependent variable, allowing a researcher 
to uncover the causal effect of the explanatory variable on the dependent variable. Instrumental 
variable methods allow for consistent estimation when the explanatory variables (covariates) are 
correlated with the error terms in a regression model. Such correlation may occur when changes in the 
dependent variable change the value of at least one of the covariates, which is subject to measurement 
error. Explanatory variables affected severely by one or more of these issues in a regression-based 
context are commonly referred to as endogenous. In such a situation, ordinary least squares produces 
biased and inconsistent estimates. However, if an instrument is available, consistent estimates may 
still be obtained. An instrument is a variable that does not itself belong to the explanatory equation 
but is correlated with the endogenous explanatory variables, contingent upon the value of the other 
covariates. Using IVs in linear models relates to two main requirements:
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The instrument must be correlated with the endogenous explanatory variables, conditional on the 
other covariates. If this correlation is strong, then the instrument is said to have a strong first step. A 
weak correlation may provide misleading inferences about parameter estimates and standard errors 
(Bound, Jaeger & Baker, 1995).

The instrument cannot be correlated with the error term in the explanatory equation, conditional 
on the other covariates. In other words, the instrument cannot run into the same problem as the 
original predicting variable. If this condition is met, then the instrument is said to satisfy the exclusion 
restriction (Angrist & Krueger, 2001; Bowden & Turkington, 1984; Stock & Trebbi, 2003).

The primary aim of IV implementation (instrumental matrix V ) in the procedure brought forward 
is to ensure improvement in the quality of the estimates (vector b̂ ), more specifically in the presence 
of added noise (measurement error). IV has been selected to have a form identical to the structure of 
and in close correlation with the matrix X  rather than with the added noise (the measurement error). 
It should be regarded as a special supplement to the LSM, completing and enhancing it. In general, 
IV derivation methodology follows the basic algorithm for the LSM.

1. 	 Implementation of the IV for calculation of the vector b̂
ip

In equation (12) used in place of b̂  is the following expression:

ˆ � . �b V X V L
ip

T T= 



′
−1

	 (22)

where the instrumental matrix V T  is in a form identical to the matrix XT , and yet its elements are 
not the measured values L t

si( )  but the ones forecasted by the model calculated with the (previously) 
estimated parameters L K∞,  and t

o
 (as determined in Step 1. and Step 2.)

The IV is implemented in line with the following algorithm (Genov, 2004):

1. 	 Estimate vectors b̂  and t̂
0

 on the basis of the LSM;
2. 	 Use the estimates b̂  and t̂

0
 to forecast the model values L

model
;

3. 	 Use the model values L
model

 to form the instrumental matrices V and V
1
 and obtain the new 

estimates by applying the equations (21) and (22);
4. 	 Go back to step (2);
5. 	 The procedure is iterative and can be executed as many times as needed (usually 2 to 5) to secure 

stabilization of the estimated parameter values.
2. 	 Implementation of the IV for calculation of the parameter t̂

ip0

The instrumental matrix V
1

 should be selected in a form identical to the matrix Z , but in this 
case y  will be formed by implementing the model forecasted values L

model
, that have been calculated 

using the already estimated values b̂  and t̂
0

;
Upon substitution of the vector of ones in (21) with VT

1
, the parameter t̂

ip0
 is to be calculated 

through the following equation:
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ˆ . .
.

t V V Z
v z

v
ip

T T i

N

i i

i

N

i

0 1

1

1
1 1

1 1

1= 

 =
−

=

=

∑
∑

	 (23)

3. 	 Analysis of the model accuracy L
model

The unknown parameters of the model (2) having been estimated, its accuracy should be evaluated, 
i.e. at what extent the model data comes close to the experimental (the measured) data. To that effect, 
it is necessary for the calculated model values to be compared to the experimental data. The smaller 
the difference is, the greater the model accuracy. Higher deviations of the model estimates L

model
 

from the measurement data L t( )  are indications for incorrect model structure and respectively, low 
quality of the parameter estimates or inaccurately defined measurement error impact (incorrect 
measurement in the length or age of fish). As a measure of the model accuracy it is appropriate to 

adopt the error variance (or the standard deviation): S
N

L L
emodel

i

N

i model i
2

1

21

1
=

−
−( )

=
∑ ,

, or the model 

relative error: S S S
otn model emodel L_

/= .

MATLAB Program for the Realization of the Proposed Two-
step LS and IV- Method Based Procedure for Simultaneous 
Estimation of the Individual Growth Parameters L∞, K and t0

For the purposes of the practical implementation of the procedure described and its satisfactory 
performance a MATLAB-environment script has been developed – provided for reference in Appendix 
A.

MAIN FOCUS OF THE ARTICLE

Performance and Operational Examination of the Two-step Procedure for 
Simultaneous Estimation of the von Bertallanfy Growth Parameters L∞, K and t0

For the objectives of the present research, the subsequent in-depth analysis and concrete proof of the 
workability of the improved Two-step LS and IV- method based procedure for simultaneous estimation 
of the individual growth parameters L∞ , K  and t

0
 put forward by the paper, the results obtained 

will be compared with the results produced by other widely used methods for estimating von 
Bertallanfy growth parameters. Simultaneously with the execution of the procedure under discussion 
and with the provision of equal conditions applied consecutively are two methods for estimating the 
above-mentioned parameters L∞ , K  and t

0
. K  and L∞  are determined first by applying the 

Gulland-and-Holt method and then the calculated asymptotic size value was used to estimate the t
0

 
by the von Bertalanffy method.

Once the goal was set, a specific MATLAB-based program was developed for consecutive 
execution of Gulland-and-Holt method for estimation of K  and L∞  and the von Bertalanffy method 
for estimation of t

0
, which is fed along with the asymptotic length value L∞  previously estimated 

using the former method. The content of the program script is presented for reference in Appendix 
B.
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Simulation Data
Input data used for the simulation series:

t
0
0 087= . ; K = 0 78. ; L cm∞ = 50 00. , the data is simulated to present non-regular 

measurements ∆ ≠( )t const in the interval 0.1-4.35 years, by using the von Bertalanffy model: 

L t L K t t( ) = − − −( )( )



∞ 1 0

exp in MATLAB program environment with the following program 
script:	

clc 
clear 
K=0.78 
t0=0.087 
Lasimpt=50 
load(‘t_sim.mat’) 
L=Lasimpt*(1-exp(-K*(t_sim-t0)))

Along with the study into the accuracy of the growth parameter estimates obtained by the methods 
described so far, another study was carried out into the probable way the measurements might affect 
the estimates and the level of resistance to the added noise of the methods themselves (Fuller, W. A. 
(1987)). Provisions were made for simulated cases of added measurement error through implementation 
of random normally distributed error, which is considered either incorrect measurement of L  or 
incorrect determination of the corresponding ages. The values L L sim= _  and t t sim= _  
simulated by the von Bertalanffy growth model were completed with a normally distributed error, 
generated by using the following script:
R = normrnd(mu,sigma,1,50) 
mu=0 
sigma=0.01 (*0.05, 0.1, 0.15, 0.2, 0.3, 0.5) 
R = normrnd(mu,sigma,1,50) 
R’ 
e01=R’ 
Se01=std(e01) 
S_L=std(L)=14.7815 
S_t=std(t)= 1.2132 
sotnL=(Se01/S_L)*100 
sotnt=(Se01/S_t)*100

R = normrnd(mu,sigma) generates random numbers from the normal distribution with a mean 
parameter mu and standard deviation parameter sigma. Mu and sigma can be vectors, matrices, or 
multidimensional arrays that have the same size, which is also the size of R. A scalar input for mu or 
sigma is expanded to a constant array with the same dimensions as the other input.

In order to address the noise levels to a certain percentage, added measurement error is calculated:

•	 The standard deviation of the input data is to be determined by:

S Std L
L
= ( ) = 14 7815. and: S Std t

t
= ( ) = 1 2132. ;	

•	 Signal-to-noise ratio: S
S

SotnL
e

L

= ( )100 %  and S
S

Sotnt
e

t

= ( )100 % ;
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The generated noise (added measurement errors) has the following characteristics: 

e
01

 - standard deviation S
e01

0 0103= . ; signal-to-noise ratio S
otnL
= 0 0730. %  or measurement error 

≈ 0 07. %  and S
otnt
= 0 8897. � or measurement error ≈ 1%

e
05

 - standard deviation S
e05

0 0557= . ; signal-to-noise ratio S
otnL
= 0 3769.  or measurement error 

≈ 0 4. %  and S
otnt
= 4 5918.  or measurement error ≈ 5%

e
1
 -standard deviation S

e1
0 1036= . ; signal-to-noise ratio S

otnL
= 0 7006.  or measurement error 

≈ 0 7. %  and S
otnt
= 8 5356.  or measurement error ≈ 10%

e
15

 - standard deviation S
e15

0 1526= . ; signal-to-noise ratio S
otnL
= 1 0326.  or measurement error 

≈ 1%
e

2
 - standard deviation S

e2
0 1946= . ; signal-to-noise ratio S

otnL
= 1 3164. .or measurement error 

≈ 1 5, %
e

3
 - standard deviation S

e3
0 3364= . ; signal-to-noise ratio S

otnL
= 2 2758.  or measurement error 

≈ 2%
e

5
 - standard deviation S

e5
0 5141= . ; signal-to-noise ratio: S

otnL
= 3 4782.  or measurement error 

≈ 3 5. �%
e

6
 - standard deviation S

e6
0 9149= . ; signal-to-noise ratio: S

otnL
= 6 1897.  or measurement error 

≈ 6�%

Histograms of the generated measurement errors (noise) are presented in Figure 1, Figure 2, 
Figure 3, Figure 4, Figure 5, Figure 6, Figure 7 and Figure 8.

The input data used for obtaining estimates of the growth parameters by the methods listed below:

•	 The Two-step LS and IV method-based procedure for simultaneous estimation of the individual 
growth parameters L∞ , K  and t0  advanced by the present paper

•	 The Gulland-and-Holt method for estimation of L∞  and K
•	 The von Bertalanffy method for estimation of t0  as presented in Table 1

SIMULATION RESULTS

The results rendered by the execution of the above listed procedure and methods are presented in 
Table 2 and figures 9 to 11:

CONCLUSION

Advanced in the article is a two-step procedure (algorithm), based on the LSM and IV implementation 
for simultaneous estimation of the three unknown parameters in von Bertalanffy growth equation. 
Specific software in MATLAB programming environment has additionally been developed for the 
purposes of the present analysis.

To assess the forecasting quality and accuracy of the approximating model use is made of the 
variance (standard deviation) of the model error – i.e. the difference between the measured (simulated) 
values and those forecasted (estimated) by the model.



International Journal of Agricultural and Environmental Information Systems
Volume 10 • Issue 2 • April-June 2019

59

Research studies have been carried out with extra levels of added noise (input of a measurement 
error in the length or age determination of the given biological object) with the noise burden being 
normally distributed and generated by the normrnd function with a mathematical expectation of 
M = 0  and a standard deviation Ã= S  from 0.01 to 0.5. The simulated measurement error is 0.07% 
to 3.5% for L  and 1% and 5% for t .

The results of the conducted experiments as to the two-step LS and IV method-based procedure 
for simultaneous estimation of von Bertalanffy growth parameters: L∞ , K  and t

0
 have been compared 

to the results obtained by the Gulland-and-Holt method for estimation of L∞  and K  and subsequent 
execution of von Bertalanffy method for estimation of t

0
. To achieve the stated objective, developed 

has been a MATLAB-based program for consecutive implementation of the selected two methods.
The estimates of the growth parameters produced by the proposed procedure for simultaneous 

estimation of L∞ , K  and t
0

 in the case of non-dirty (non-noisy) data were characterized with a very 
high degree of accuracy and the two methods were found to be comparatively noise-resistant to added 
measurement error of L  and with values of the added error being up to 3.5%, they tend to yield 
estimates with a relative accuracy of 1 to 6%, thus, identifying t

0
 as the most noise-sensitive parameter.

The results show conclusively that in the presence of higher levels of added noise the estimates 
of the growth parameters improved significantly due to the applied instrumental variable, which 
makes the hitherto described two-step LS and IV method-based procedure for simultaneous estimation 

Figure 1. Histogram (distribution shape) of the simulated measurement error e01 (left)
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of von Bertalanffy growth parameters: L∞ , K  and t
0

 extremely appropriate with lower quality of 
input data (if there are length measurement errors of around 3-4%).

The two surveyed approaches to estimating the growth parameters proved to be particularly 
sensitive in terms of accuracy upon application of a measurement error in estimating t

0
, and made 

it necessary for the issue of age determination to be addressed with utmost attention.
The analyzed two-step LS and IV method-based procedure for simultaneous estimation of von 

Bertalanffy growth parameters: L∞ , K  and t
0

 is applicable not only to data measurements of 
parameters L  and t  ∆ =( )t const  at regular intervals, but also to non-regular measurements of the 
these parameters ∆ ≠( )t const , provided that the number of data is greater than that of the parameters 
under estimation. It should be borne in mind that the qualities of the instrumental variable as regards 
the noise resistance of the estimates are most pronounced with substantial amount of input data and 
the number of iterations ( klu ) could be increased until the right stabilization of the estimates has 
been secured.

Figure 2. Histogram (distribution shape) of the simulated measurement error e05 (right)
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Figure 3. Histogram (distribution shape) of the simulated measurement error e1 (left)
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Figure 4. Histogram (distribution shape) of the simulated measurement error e15 (right)
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Figure 5. Histogram (distribution shape) of the simulated measurement error e2 (left)
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Figure 6. Histogram (distribution shape) of the simulated measurement error e3 (right)
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Figure 7. Histogram (distribution shape) of the simulated measurement error e5 (left)
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Figure 8. Histogram (distribution shape) of the simulated measurement error e6 (right)
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Table 1. Simulated data used to examine the operational workability and estimating accuracy of the calculation procedures and 
methods and noise levels of t  and L

t = tsim L = Lsim e01 e05 e1 e15* e2* e3* e5* e6*

0.1000 0.5044 -0.0070 -0.0108 -0.1701 -0.0403 0.1269 -0.7347 0.0121 -0.6466

0.1400 2.0249 0.0039 0.1376 0.0791 0.2156 0.0639 -0.5375 1.0478 1.4042

0.1700 3.1344 -0.0083 -0.0708 0.1387 -0.0809 -0.0696 -0.2500 -0.0942 -0.7391

0.2100 4.5741 -0.0125 -0.0122 -0.0183 -0.0645 -0.0007 -0.2621 -0.3221 -0.2809

0.2600 6.3116 -0.0140 0.0020 -0.0908 0.0976 0.1236 -0.4801 -0.5039 0.0681

0.2900 7.3220 0.0028 -0.0687 0.1227 -0.1353 0.4657 -0.2035 -0.9055 -1.4299

0.3300 8.6330 0.0195 0.0540 -0.0511 0.1413 0.1773 -0.2794 -0.2447 -0.8577

0.3900 10.5244 0.0020 0.0372 -0.0818 -0.2525 -0.0488 0.3301 0.1507 -1.0996

0.4100 11.1354 0.0049 0.0771 -0.1262 -0.3631 -0.3946 -0.1830 -0.4920 -2.2647

0.4500 12.3293 0.0014 0.0344 -0.1468 -0.0238 0.0498 -0.3828 0.1267 1.8131

0.5100 14.0517 0.0023 -0.1775 0.0276 0.0493 0.0522 -0.1249 0.3940 -0.6208

0.5300 14.6081 0.0237 -0.0484 -0.0332 0.1913 -0.1583 -0.2055 -0.2966 0.7141

0.5700 15.6953 -0.0078 0.0156 0.0788 0.0180 0.2019 0.0786 0.2461 0.0146

0.6400 17.5181 -0.0016 -0.0408 -0.0057 0.1432 0.0782 -0.0694 0.2827 -0.8450

0.6900 18.7605 -0.0067 0.0142 -0.0210 0.0361 0.1174 -0.4457 -0.0214 -0.0343

0.7200 19.4830 0.0071 -0.0033 -0.1721 0.1019 -0.0972 0.1741 0.9782 0.3440

0.7800 20.8783 0.0026 -0.0274 -0.0775 -0.1453 -0.1368 -0.1092 -0.6361 -0.9714

0.8500 22.4257 -0.0033 0.0034 0.0104 -0.0115 -0.0935 -0.1800 0.1375 1.0184

0.8900 23.2728 0.0074 0.0256 -0.0428 -0.0897 -0.2221 -0.2555 -0.4634 1.0173

0.9300 24.0938 -0.0101 0.0572 0.1275 -0.0355 -0.1045 0.2382 -0.3609 -0.0828

1.1000 27.3109 0.0012 -0.0447 -0.1831 0.3445 0.1454 -0.0327 0.2205 0.5222

1.1600 28.3483 0.0020 -0.0286 -0.0181 -0.2106 -0.4511 -0.4658 0.5464 -1.0358

1.2100 29.1765 0.0157 -0.0360 0.0115 0.0051 -0.3544 0.6512 0.0851 0.4861

1.2600 29.9730 0.0054 0.0424 -0.0722 -0.0481 0.0053 -0.1025 0.6524 -0.1091

1.2900 30.4362 0.0003 0.0786 0.0112 0.0569 0.0657 0.0813 -0.4651 1.3672

1.3200 30.8886 -0.0134 0.0528 0.1661 0.2689 -0.1898 0.1064 0.1691 -0.8135

1.4000 32.0447 -0.0147 0.0671 -0.1050 0.1368 0.1073 -0.3920 -0.2654 1.7098

1.4700 32.9988 0.0059 0.0125 -0.0351 -0.0985 0.2518 0.3663 -0.3787 0.0171

1.5300 33.7761 -0.0070 -0.0401 -0.1419 -0.2151 0.1367 0.0753 -1.3158 0.3787

1.6500 35.2258 -0.0024 0.0340 0.0728 0.1272 -0.3127 0.0431 0.3801 1.2321

1.7200 36.0108 -0.0087 0.0863 -0.1206 -0.1488 -0.1461 0.4052 0.9374 0.9375

1.8500 37.3598 0.0018 0.0253 -0.0858 -0.1073 -0.1708 0.0477 0.2498 -0.7445

1.9200 38.0314 0.0023 0.0465 0.1423 0.0698 -0.0678 -0.5167 0.6882 -0.7780

2.1000 39.5992 0.0174 -0.0772 0.0823 -0.2284 -0.1343 -0.0048 0.0295 -0.7776

2.1700 40.1519 0.0182 0.0286 -0.0756 0.2334 -0.1683 0.3501 -0.6152 0.9135

2.3200 41.2392 0.0106 -0.0077 0.1017 0.0154 0.3820 0.3638 -0.4362 -0.1153

2.4500 42.0840 0.0108 0.0277 -0.0659 -0.0351 -0.0666 0.0794 -0.4013 -0.3780

2.5200 42.5046 -0.0117 0.0638 0.0106 0.1212 -0.0305 -0.5080 0.5512 0.0701

2.6400 43.1744 0.0128 -0.0320 0.1834 0.1209 0.0573 0.3289 -0.2402 0.8804

2.7800 43.8805 -0.0094 0.0753 0.2257 -0.0374 -0.3464 -0.0172 0.0457 -0.1351

2.8600 44.2507 -0.0160 -0.0472 -0.0443 0.1653 -0.2283 0.0576 -0.6666 0.2629

2.9700 44.7234 0.0317 0.0020 -0.0030 0.0551 0.0940 0.3844 -0.0915 -1.9681

3.0100 44.8855 0.0032 0.0153 0.1039 0.1650 0.0703 0.1208 -0.8129 -0.5674

3.1500 45.4146 -0.0066 0.0533 0.0608 0.0395 -0.2322 -1.1167 -0.3512 -0.9066

3.2100 45.6242 0.0001 -0.0162 -0.0233 -0.0287 0.2251 -0.4991 0.3797 -0.5433

3.4400 46.3429 0.0007 -0.0468 -0.0209 0.2623 -0.0133 -0.2484 0.8548 -0.6477

3.9300 47.5045 -0.0207 0.0708 -0.0784 -0.1175 0.0283 -0.3874 0.2427 -0.3588

4.1500 47.8980 -0.0072 0.0181 -0.2272 0.0950 0.0219 0.0460 0.0486 -0.4176

4.2000 47.9784 0.0053 -0.0957 -0.0157 0.3034 -0.1100 0.0456 0.5366 0.5591

4.3500 48.2016 0.0004 0.0160 -0.1198 -0.0620 -0.3663 -0.2079 0.3640 1.2207

*the noise levels e15, e2, e3 and e5 are added to L(t) measurements only, considering the fact that in relation to t this appear to be approximately 10% 
error in age determination – in this case it is recommended age determination by using analytical methods or repetition of the experiment.
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Table 2. Simulation results L∞, K and t0

Two-steps procedure for simultaneous estimation of the 
individual growth parameters L∞, K and t0, based on the LS 
and IV methods﻿
(proposed in the present material)

Consecutive execution of:﻿
1. Gulland-Holt method for estimation of K and L∞
2. Estimation of t0 by the von Bertallanfy model (uses the 
calculated value for L∞ delivered upon the execution of 
the preceding method)

Model values: t0 =0.087; yearsK= = 0.78; L∞ 50.00cm

1. Simulation data tsim и L
sim

 - graphical representation is depicted in Figure 9

1.1 After the execution of the LSM﻿

L∞ = 49 9925. ; K = 0 7801. ; t
0
0 0863= .

1.2 After the implementation of the IV﻿

L∞ = 49 9925. ; K = 0 7801. ; t
01

0 0863= .

S
S

Sotn model
e

L
_

. *= = ≈−7 1075 10 04

1.1. Gulland-Holt method for estimation of K and L∞
L∞ = 49 9925. ; K = 0 7801.

1.2. Von Bertalanffy method for estimation of t
0

 

L∞ =( )49 9925.

t
0
0 0876= .

2. Simulation data: tsim and L L esim01 01
= +

2.1 After the execution of the LSM﻿

L∞ = 49 9380. ; K = 0 7823. ; t
0
0 0845= .

2.2 After the implementation of the IV﻿

L∞ = 49 9380. ; K = 0 7823. ; t
0
0 0845= .

S
S

Sotn model
e

L
_

. . %= = =0 0031 0 31

2.1. Gulland-Holt method for estimation of K  and L∞
L∞ = 49 9381. ; K = 0 7823.

2.2. Von Bertalanffy method for estimation of t
0

 

L∞ =( )49 9381.

t
0
0 0914= .

3. Simulation data: tsim  and L L esim05 05
= +  graphical representation is depicted in Figure 10

3.1 After the execution of the LSM﻿

L∞ = 49 8952. ; K = 0 7884. ; t
0
0 0907= .

3.2 After the implementation of the IV﻿

L∞ = 49 8952. ; K = 0 7884. ; t
0
0 0907= .

S
S

Sotn model
emodel

L
_

. . %= = =0 0052 0 52

3.1. Gulland-Holt method for estimation of K  and L∞
L∞ = 49 8930. ; K = 0 7885.

3.2. Von Bertalanffy method for estimation of t
0

 

L∞ =( )49 8930.

t
0
0 0944= .

4. Simulation data: tsim  and L L esim1 1
= +

continued on following page
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4.1 After the execution of the LSM﻿

L∞ = 50 1409. ; K = 0 7850. ; t
0
0 1158= .

4.2 After the implementation of the IV﻿

L∞ = 50 1389. ; K = 0 7850. ; t
0
0 1158= .

S
S

Sotn model
emodel

L
_

. . %= = =0 0269 2 69

4.1. Gulland-Holt method for estimation of K  and L∞
L∞ = 50 1409. ; K = 0 7850.

4.2. Von Bertalanffy method for estimation of t
0

 

L∞ =( )50 1409.

t
0
0 0696= .

5. Simulation data: tsim  and L L esim15 15
= +

5.1 After the executi
L∞ = 50 8706.

on of the LSM

L∞ = 50 8706.
; K = 0 7590. ; 

t
0
0 1285= .

5.2 After the
t
0
0 0366= .

 implementation of the IV

L∞ = 50 8651.
; K = 0 7592. ; 

S
S

Sotn model
emodel

L
_

. . %= = =0 0460 4 60

t
0
0 1283= .

5.1. Gulland-Holt method for estimation of K  and 
L∞

; K = 0 7590.

5.2. Von Bertalanffy method for estimation of 
t
0  

L∞ =( )50 8706.

6. Simulation data: 
tsim  and 

L L esim2 2
= +

6.1 After the execution of the LSM﻿

L∞ = 50 2648.
; K = 0 7521. ; 

t
0
0 0680= .

6.2 After the implementation of the IV﻿

L∞ = 50 2537.
; K = 0 7525. ; 

t
0
0 0680= .

S
S

Sotn model
emodel

L
_

. . %= = =0 0193 1 93

6.1. Gulland-Holt method for estimation of K  and 
L∞

L∞ = 50 2648.
; K = 0 7521.

6.2. Von Bertalanffy method for estimation of 
t
0  

L∞ =( )50 2648.

t
0
0 0595= .

7. Simulation data: 
tsim  and 

L L esim3 3
= +

7.1 After the execution of the LSM﻿

L∞ = 49 6445.
; K = 0 8100. ; 

t
0
0 1165= .

7.2 After the implementation of the IV﻿

L∞ = 49 6637.
; K = 0 8092. ; 

t
0
0 1164= .

S
S

Sotn model
emodel

L
_

. . %= = =0 0262 2 62

7.1. Gulland-Holt method for estimation of K  and 
L∞

L∞ = 49 6445.
; K = 0 8100.

7.2. Von Bertalanffy method for estimation of 
t
0  

L∞ =( )49 6445.

t
0
0 1043= .

8. Simulation data: 
tsim  and 

L L esim5 5
= +

Table 2.Continued

continued on following page



International Journal of Agricultural and Environmental Information Systems
Volume 10 • Issue 2 • April-June 2019

70

8.1 After the execution of the LSM﻿

L∞ = 51 6138.
; K = 0 6796. ; 

t
0
0 0233= .

8.2 After the implementation of the IV﻿

L∞ = 51 5260.
; K = 0 6822. ; 

t
0
0 0328= .

S
S

Sotn model
emodel

L
_

. . %= = =0 0583 5 83

8.1 Gulland-Holt method for estimation of K  and 
L∞

L∞ = 48 9194.
; K = 0 8718.

8.2. Von Bertalanffy method for estimation of 
t
0  

L∞ =( )48 9194.

t
0
0 2288= .

9. Simulation data: 
tsim  and 

L L esim6 6
= +

 graphical representation is depicted in Figure 11

9.1 After the execution of the LSM﻿

L∞ = 54 8288.
; K = 0 6729. ; 

t
0
0 2478= .

9.2 After the implementation of the IV﻿

L∞ = 54 7668.
; K = 0 6745. ; 

t
0
0 2478= .

S
S

Sotn model
emodel

L
_

. . . %= = =0 2068 0 20 68

9.1. Gulland-Holt method for estimation of K and 
L∞

L∞ = 54 8288.
; K = 0 6729.

9.2. Von Bertalanffy method for estimation of 
t
0  

L∞ =( )54 8288.

t
0

0 1327= − .

10. Simulation Data: 
t t esim01 01
= +

 and 
Lsim

10.1 After the execution of the LSM﻿

L∞ = 50 0168.
; K = 0 9079. ; 

t
0
0 3052= .

10.2 After the implementation of the IV﻿

L∞ = 50 1028.
; K = 0 9043. ; 

t
0
0 2995= .

S
S

Sotn model
emodel

L
_

. . %= = =0 2353 23 87

10.1. Gulland-Holt method for estimation of K  and 

L∞

L∞ = 51 6138.
; K = 0 6796.

10.2. Von Bertalanffy method for estimation of 
t
0  

L∞ =( )51 6138.

t
0
0 0118= .

11. Simulation Data 
t t esim05 05
= +

 and 
Lsim

11.1 After the execution of the LSM﻿

L∞ = 11 0630.
; K = −0 4741. ; 

t
0
1 2886= .

3.2 After the implementation of the IV﻿

L∞ = 103 4981.
; K = 0 1124. ; 

t
0
1 2886= .

S
S

Sotn model
emodel

L
_

. . %= = =0 3192 31 92

11.1. Gulland-Holt method for estimation of K  and 

L∞
The model is proved statistically invalid﻿

10.2. Von Bertalanffy method for estimation of 
t
0

Table 2.Continued
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Figure 9. Growth rate 
dL t

dt

( )
 functional relationship of L t

si ( ) ; the 2nd graph (at the bottom) represents L
sim

 – the simulation 

data model and L
model

 – the model, obtained by implementing the parameters estimated by the Two-step LS and IV method-
based procedure in the absence of noise (added measurement error)
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Figure 10. Growth rate 
dL t

dt

( )
 functional relationship of L t

si ( ) ; the 2nd graph (at the bottom) represents L
sim

 – the simulation 

data model and L
model

 – the model, obtained by implementing the parameters estimated by the Two-step LS and IV method-

based procedure in the presence of noise (added measurement error) e
2
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Figure 11. Growth rate 
dL t

dt

( )
 functional relationship of L t

si ( ) ; the 2nd graph (at the bottom) represents L
sim

 – the simulation 

data model and L
model

 – the model, obtained by implementing the parameters estimated by the Two-step LS and IV method-

based procedure in the presence of noise (added measurement error) e
6
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APPENDIX A: MATLAB-ENVIRONMENT SCRIPT

clc 
clear 
disp(‘Two step-procedure for simultaneous estimation of the 
individual growth’)  
disp(‘parameters L_asimpt, K and t_0, based on LS and IV methods’) 
% Calculates the growth parameters in the von Bertalanffy model  
% t – vector-row with size N – represents the age of fish in 
years% 
%(deltat=const and deltat=var)%  
% L – vector-row with size N – represent the length of fish in cm 
for ages t%  
% N – number of data 
N = input(‘ Enter the number of measurements N=’);  
l = importdata(‘C:\Users\USER\Desktop\PS\GullandH_L6.txt’);%Load 
.txt with length measurements% 
T = importdata(‘C:\Users\USER\Desktop\PS\GullandH_t.txt’);%load 
.txt file with the corresponding ages,% 
L=l’ 
t=T’ 
N=length(L) 
disp(‘Step. 1 Claculate К and Lasimpt’) 
for j=1:N-1 
   tsr(1,j)= (t(1,j+1)+ t(1,j))/2; 
end 
for j=1:N-1 
    Lpr(1,j)=(L(1,j+1)-L(1,j))/(t(1,j+1)-t(1,j)); 
end 
for j=1:N-1 
    Lsr(1,j)=(L(1,j+1)+L(1,j))/2; 
end 
plot(Lsr, Lpr, ‘o’), grid 
for j=1:N-1 
    x0(j,1)=1; 
end 
X=[x0 -Lsr’]; 
X1=X’*Lpr’; 
X2=X’*X; 
B=inv(X2)*X1 
Lust=B(1)/B(2) 
K=B(2) 
for j=1:N 
   Lmodd(1,j)=Lust*(1-exp(-K*t(1,j))); 
end 
[L’  Lmodd’] 
plot(t, [L’ Lmodd’]), grid 
disp(‘Step 2. Claculate t0’)  
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for j=1:N 
 a1=abs(1-(L(1,j)/Lust)); y(1,j)=log(a1)/K; 
end 
Z=t+y; 
t0=sum(Z)/N         
for j=1:N 
  Lmod(1,j)=Lust*(1-exp(-K*(t(1,j)-t0))); 
end 
[L’  Lmod’] 
plot(t, [L’ Lmod’]), grid 
disp(‘IV implementation:  V, V1’) 
%   the cycle klu=1:(3-10)can be run as many time as needed until 
stabilization of the estimates is reached%            
for klu=1:3 
for j=1:N-1 
        Lsr1(1,j)=(Lmod(1,j+1)+Lmod(1,j))/2; 
end 
V=[x0 -Lsr1’]; 
X1x=V’*Lpr’; 
X2x=V’*X; 
Bb=inv(X2x)*X1x 
Lustt=Bb(1)/Bb(2) 
Kk=Bb(2)  
for j=1:N 
    y1(1,j)=log(1-(Lmod(1,j)/Lust))/K; 
end 
V1=t+y1; 
t01=(V1*Z’)/sum(V1)  
Lmod1=Lustt*(1-exp(-Kk*(t-t01))); 
Lmod = Lmod1 
K=Kk  
Lust=Lustt  
t0=t01 
end 
[L’ Lmodd’ Lmod’ Lmod1’] 
plot(t, [L’  Lmod’ Lmod1’]), grid 
SL=std(L); 
SL=std(L); 
Eo=(L-Lmod); So=std(Eo); Sotn=So/SL 
end

APPENDIX B: CONTENT OF THE PROGRAM SCRIPT

clc 
clear 
disp(‘1. Gulland and Holt Method for estimation of Lasimpt and K 
‘) 
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r = input(‘ Enter the number of measurements r=’);  
L = importdata(‘C:\Users\USER\Desktop\PS\GullandH_L.txt’);%Loads 
.txt file with Length measurements to form the input vector for 
the regression analysis% 
t = importdata(‘C:\Users\USER\Desktop\PS\GullandH_t.txt’);%Loads 
.txt file with the corresponding age data% 
n=r-1 
for i = 1:n 
    deltat(i)=t(i+1)-t(i);%calculates deltat% 
    deltaL(i)=L(i+1)-L(i);%calculates the increment in length for 
step deltat% 
    y(i)=deltaL(i)/deltat(i); 
end 
Y=y’ 
%Calculates the mean length for interval deltat and forms the 
independent variable x for the regression analysis%  
for i=1:n 
    Lmean(i)=((L(i)+deltaL(i))+L(i))/2; 
end 
x=Lmean’ 
disp(‘***a.Regression analysis***’) 
x0 = ones(n,1); 
F = [x0,x];%Forms the regression matrix% 
FF = (F’*F); 
b =((FF^(-1))*F’)*Y; %Calculates the regression coefficients b% 
beta = b’; 
b0 = beta(1,1); 
b1 = beta(1,2); 
disp(‘Check the condition number of matrix FF:’) 
Cond_FF = cond(FF)% determines the condition factor of the 
information matrix FFl, which forms the covariance matrix, once 
inverted - if the condition factor cond(FF) >10-10^2 it is 
recommended to run the analysis with normalized/standardized 
variables% 
maxval = 10; 
if (Cond_FF > maxval) 
    disp(‘Cond FF>10 ==>’) 
    disp(‘Run the regression analysis with standardized/Normalized 
variables’) 
    xmean = mean(x);%Calculates the mean value of x=Lmean% 
    ymean = mean(Y);%Calculates the mean value of y=deltaL/deltat% 
    sX = std(x);%Calculates the standard deviation of x% 
    Xnorm =(x-xmean)/sX;%Standardizes x (the observed/measured 
values)% 
    f0 = ones(n,1); 
    Fnorm = [f0,Xnorm];%Forms the regression matrix% 
    FFnorm = Fnorm’*Fnorm; 
    disp(‘Condition factor of FFnorm’) 
    Cond_norm = cond(FFnorm)%Claculates the condition factor of 
the matrix FFnorm% 
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%formed by using the standardized x values% 
    B =(((FFnorm)^(-1))*Fnorm’)*Y; 
    Bl = B’; 
    disp(‘Regression coefficient b0n – standardized variables’) 
    b0n = Bl(1,1) 
    disp(‘Regression coefficient b1n - standardized variables’) 
    b1n = Bl(1,2) 
    disp(‘Regression coefficient B0 - model’) 
    B0 = (b0n-((b1n*xmean)/sX)) 
    disp(‘Regression coefficient B1 - model’) 
    B1 = b1n/sX 
    disp(‘Calculates the estimation of the dependent variable y_
hat=GrR by using the values calculated for the regression 
coefficients yhat=:’) 
    yhat = B0+B1*x 
    e = Y-yhat 
    disp(‘Calculates the model error e:’) 
    scatter(x,Y);grid 
    title(‘Regression analysis(Plot (y_m_e_a_s,х) и (y_h_a_t,х)’) 
    hold on 
    y1 = yhat; 
    plot(x,y1) 
    hold off 
else 
    disp(‘Condition number of matrix FF<10’) 
    b0 = beta(1,1) 
    disp(‘Regression coefficient b0=:’) 
    b1 = beta(1,2) 
    disp(‘Regression coefficient b1=:’) 
    disp(‘Calculates the estimation of the dependent variable y_
hat=GrR by using the values calculated for the regression 
coefficients yhat=:’) 
    yhat = b0+b1*x 
    disp(‘Calculates the model error e:’) 
    e = Y-yhat 
    scatter(x,Y);grid 
    title(‘Regression analysis(Plot (y_m_e_a_s,х) и (y_h_a_t,х)’) 
    hold on 
    y1 = yhat; 
    plot(x,y1) 
    hold off 
end 
disp(‘***b. Model Statistical analysis***’) 
Qo = sum((Y-yhat).^2); %Calculates the partition of the sum of 
squares% 
Q = sum((Y-ymean).^2);%Calculates the total sum of squares% 
Qcalc = Qo/Q; 
disp(‘Calculate the correlation coefficient R’) 
R = sqrt((1-Qcalc)) 
disp(‘F-test the R value and model workability F=’) 
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F =(R^2*(n-2))/((1-R^2)*1)% Fc is found in F-test distribution 
table to be compared%  
%with the calculated value F>Fcr% 
 
Fcr = input(‘Enter table value for Fcr=:’);  
if (F > Fcr) 
    disp(‘The model is proved functional and can be used to 
predict the behavior of the BO under analysis’) 
                figure 
                scatter(x,Y);grid 
                title(‘Regression analysis(Plot (y_m_e_a_s,х) и 
(y_h_a_t,х)’)                hold on 
                y1 = yhat; 
                plot(x,y1) 
                hold off 
if (Cond_FF > maxval) 
                disp(‘Claculate the growth parameters K и L_asimpt 
by using the calculated regression coefficients’) 
                disp(‘K=:’) 
                K = -B1  
                a = B0; 
                disp(‘L_asimpt=:’) 
                Lasimpt = -(a/B1  
else 
    disp(‘The model is proved non-functional and respectively 
cannot be used to predict the BO behavior’) 
end 
 
disp(‘2. Von Bertalanffy method for estimation of K и t0’) 
disp(‘***Provides estimates of К and to if Lasimpt is known***’) 
r = input(‘ Enter the number of measurements (observations) r=’);          
Lasimpt = input(‘ Enter value for Lasimpt=’);  
x=t 
y=-log(1-(L/Lasimpt))%Forms the output vector y for the regression 
analysis% 
disp(‘***a.Regression analysis***’) 
x0 = ones(r,1); 
F = [x0,x];%Forms the regression matrix% 
FF = (F’*F); 
b =((FF^(-1))*F’)*y; %Calculates the regression koefficients b_i% 
beta = b’; 
b0 = beta(1,1); 
b1 = beta(1,2); 
disp(‘Check the condition number of the matrix FF:’) 
Cond_FF = cond(FF))% determines the condition factor of the 
information matrix FFl, which forms the covariance matrix, once 
inverted - if the condition factor cond(FF) >10-10^2 it is 
recommended to run the analysis with normalized/standardized 
variables% 
maxval = 10; 
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if (Cond_FF > maxval) 
    disp(‘Cond FF>10 ==>’) 
    disp(‘Run the regression analysis with standardized/Normalized 
variables’) 
    xmean = mean(x);%Calculates the mean value of x=t% 
    ymean = mean(y);%Calculates the mean value of y=-log(1-(L/
Lasimpt))% 
    sX = std(x);%Calculates the standard deviation of x% 
    Xnorm =(x-xmean)/sX;%Standardizes x values% 
    f0 = ones(r,1); 
    Fnorm = [f0,Xnorm];%Forms the regression matrix by using the 
standardized x values% 
    FFnorm = Fnorm’*Fnorm; 
    disp(‘Condition number of matrix FFnorm’) 
    Cond_norm = cond(FFnorm 
    B =(((FFnorm)^(-1))*Fnorm’)*y; 
    Bl = B’; 
    disp(‘Regression coefficient b0n – standardized variables’) 
    b0n = Bl(1,1) 
    disp(‘Regression coefficient b1n – standardized variables’) 
    b1n = Bl(1,2) 
    disp(‘Regression coefficient B0 - model’) 
    B0 = (b0n-((b1n*xmean)/sX)) 
    disp(‘Regression coefficient B1 - model’) 
    B1 = b1n/sX 
    disp(‘Calculates the estimation of the dependent variable y_
hat by using the values calculated for the regression coefficients 
yhat=: ‘) 
    yhat = B0+B1*x 
            disp(‘Calculates the model error e e:’) 
            e = y-yhat 
else 
            disp(‘The condition number of matrix FF<10’) 
            disp(‘Regression coefficient b0=:’) 
            b0 = beta(1,1) 
            disp(‘Regression coefficient b1=:’) 
            b1 = beta(1,2) 
 
            disp(‘Calculates the estimation of the dependent 
variable y_hat by using the values calculated for the regression 
coefficients yhat=:yhat=:’) 
            yhat = b0+b1*t 
            disp(‘Claculates the model error e:’) 
            e = y-yhat 
end 
    disp(‘***b. Model statistical analysis***’) 
            Qo = sum((y-yhat).^2); % Calculates the partition of 
the sum of squares % 
            ymean=mean(y); 
            Q = sum((y-ymean).^2);% Calculates the total sum of 
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squares% 
            Qcalc = Qo/Q; 
            disp(‘Correlation coefficient R’) 
            R = sqrt((1-Qcalc))%Calculates the correlation 
coefficient% 
            disp(‘F-test the R value and model workability F=’) 
            F =(R^2*(r-2))/((1-R^2)*1 
            Fcr = input(‘Enter table value for Fcr=:’);  
if (F > Fcr) 
                disp(‘The model is proved functional and can be 
used to predict the behavior of the BO under analysis’) 
if (Cond_FF > maxval) 
                disp(‘Estimation of the growth parameters K and t0 
by using the regression coefficients estimated’) 
                disp(Estimation of K=:’)   
                K=B1 
                disp(‘Estimation of t0=:’) 
                t0=-(B0/B1) 
else 
                   disp(‘Estimation of the growth parameters K and 
t0 by using the regression coefficients estimated’) 
                disp(‘ Estimation of K=:’)   
                K=b1 
                disp(‘Estimation of t0=:’) 
                t0=-(B0/B1) 
 end 
else 
                disp(‘The model is proved non-functional and 
respectively cannot be used to predict the BO behavior’) 
end
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