
DOI: 10.4018/IJAEIS.2019040105

International Journal of Agricultural and Environmental Information Systems
Volume 10 • Issue 2 • April-June 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

98

Identification of Cherry Leaf Disease 
Infected by Podosphaera Pannosa 
via Convolutional Neural Network
Keke Zhang, College of Engineering, Northeast Agricultural University, Harbin, China

Lei Zhang, Department of Radiology, University of Pittsburgh, Pittsburgh, USA

Qiufeng Wu, College of Science, Northeast Agricultural University, Harbin, China

ABSTRACT

The cherry leaves infected by Podosphaera pannosa will suffer powdery mildew, which is a serious 
disease threatening the cherry production industry. In order to identify the diseased cherry leaves in 
early stage, the authors formulate the cherry leaf disease infected identification as a classification 
problem and propose a fully automatic identification method based on convolutional neural network 
(CNN). The GoogLeNet is used as backbone of the CNN. Then, transferred learning techniques 
are applied to fine-tune the CNN from pre-trained GoogLeNet on ImageNet dataset. This article 
compares the proposed method against three traditional machine learning methods i.e., support vector 
machine (SVM), k-nearest neighbor (KNN) and back propagation (BP) neural network. Quantitative 
evaluations conducted on a data set of 1,200 images collected by smart phones, demonstrates that 
the CNN achieves best precise performance in identifying diseased cherry leaves, with the testing 
accuracy of 99.6%. Thus, a CNN can be used effectively in identifying the diseased cherry leaves.
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1. INTRODUCTION

Podosphaera pannosa (syn. Sphaerotheca pannosa) is a fungus which causes powdery mildew in 
various farm and greenhouse crops worldwide (leus et al., 2006). Powdery mildew is a very common 
disease on many types of plant such as apricot, peach, plum, roses, cherry. Typical symptoms of 
leaves infected by powdery mildew are covered by white powdery fungal, and turned out distortion, 
scrappy and premature defoliation subsequently (Shetty et al., 2012). Powdery mildew causes severe 
yield and quality reduction; therefore, it is urgently needed to utilize an effective method to diagnose 
the powdery mildew in early stage.

There are several approaches of diagnosing plant diseases. The first method is the traditional 
pathology way, that is, observing disease, obviously it is an enormous workload, time-consuming 
and highly rely on the plant pathologist. In response to this issue, the Enzyme-linked Immunosorbent 
Assay (ELISA) is proposed, which can detect the viral protein content of plant extract (Clark et al., 
1980). However, it is hardly effective in diagnosing fungal disease and bacterial disease. Furthermore, 
the real-time polymerase chain reaction (PCR) method is utilized in testing plant pathogen (Schaad 
et al., 2002), the method is superior to the two aforementioned methods in speed and accuracy, but it 
is difficultly to implement widely, since the operator should possess professional skill, and the most 
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important reason is that the equipment utilized is very expensive. Thus,we propose an image-based 
diagnosing method via machine learning, which is real-time, high accuracy, strong operability, and 
can be potentially used in farm.

Utilizing image-based machine learning algorithm to identify plant disease can be formulated as 
image classification problem, image classification algorithms are usually divided into feature extraction 
and classification (Yan et al., 2016), that is, extracting features by suitable feature extractor, and then 
build a classifier by the extracted features (Lin et al., 2016). A type of the machine learning which 
is called supervised learning has been widely used in classification problem, which means features 
are attached correctly labels before sent into classifier. The typical process is that, sending training 
set which is consisted of features and labels to a learning algorithm which is a hypothesis function. 
Thus, we can get the prediction according to features fed into the hypothesis function. Traditional 
supervised learning algorithms have been applied to identifying plant disease, i.e., utilizing Support 
Vector Machine(SVM) to detect little leaf disease in pine trees in United States (Singh et al., 2017), 
refining the prevalence of wheat scab according to Back Propagation(BP) neural network (Jin et al., 
2012), classifying huanglongbing and citrus canker infected leaves by K-Nearest Neighbor(KNN) 
(Sankaran et al., 2013), and detecting plant leaf disease by Probabilistic Neural Network(PNN) 
(Stephen et al., 2017).

In fact, the conventional machine learning exists several shortages in image classification 
problem, image classification is usually divided into feature extraction and classification (Yan et al., 
2016), both feature extractor and classifier are hard to correctly select in specific problem. Thus, 
deep learning is proposed to overcome disadvantages mentioned above, it is composed of multiple 
processing layers to representation of data with multiple levels of abstraction (Yann et al., 2015). In 
addition, computer vision, medical imaging, and signal processing tasks have evidently showcased 
the effectiveness of deep features learned by deep neural networks (Zhou et al., 2017; Liu et al., 2015; 
Ouyang et al., 2013; Yan et al., 2016; Melendez et al., 2015; Zhang et al., 2016; Xie et al., 2017; Luo 
et al., 2016; Luo et al., 2017) which are likely to replace the conventional hand-crafted features (Yann 
et al., 2015). Meanwhile, deep learning has been initially used in agriculture, such as plant species 
identification (Mehdipour et al., 2017), weed identification (Tang et al., 2017), blood defects in cod 
fillets classification (Misimi et al., 2017), and pest identification (Cheng et al., 2017).

This paper focus on identifying cherry leaf infected by Podosphaera pannosa with deep 
Convolutional Neural Network (CNN). The rest of this paper is organized as follows. Section 2 
introduces the dataset of cherry leaf and the GoogLeNet. Section 3 displays the three comparative 
experiments between CNN and the state-of-the-art. Section 4 concludes this paper.

2. MATERIALS AND METHODS

The cherry leaf infected by Podosphaera pannosa will suffer from powdery mildew, thus, identifying 
cherry leaf infected by Podosphaera pannosa only need to identify the cherry leaf is healthy or diseased, 
which can be formulated as a binary classification problem. The classification process of this work 
can be described as follows. A pair x yi i( ) ( ),� �  is called a training sample(i.e., an input cherry leaf 

image), the dataset that we will be used to learn is a list of m  training samples x y i mi i( ) ( ), ; ,...,� � �� �1 , 
which is called a training set (See Table 2). Then make the training set to learn a function 
h X Y:  ( X denote the space of input values, Y  denotes the space of output values), thus, h x( )  
can be considered as a suitable predictor, that is, a classifier (i.e., CNN). So, we can obtain a series 
of discrete values (i.e., predict labels, “Health” and “Podosphaera pannosa”) from the classifier.

CNN is mainly stacked by three types of layers, i.e., convolutional layer, pooling layer and fully-
connected layer. CNN has several excellent properties. Firstly, CNN can combine feature extraction 
with classification (Anthimopoulos et al., 2016), that is, the proceed of classification algorithm is 
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not needed to divide into feature extraction and classification, CNN will extract feature and select 
classifier automatically. In addition, it is not necessary to carry on a preprocessing step to separate 
the target things from a complex background image, owing to CNN can find image features by itself 
(Dyrmann et al., 2016). Furthermore, the weights of convolutional layer are shared, according to 
utilizing a same filter to slide over all image spatial locations, parameters are dramatically reduced 
as well, and it largely improves the efficiency of CNN.

The classification process by CNN can be represented with the following formula. Firstly, send 
the training samples (i.e., training cherry leaves images) to the classifier (i.e., CNN), then, convolution 
process is conducted, that is, a series of filters slide over the feature map of the previous layer, and 
the weight matrices do dot product.
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Where f ( )⋅  is activation function, typically a rectified linear activation ReLU:

f x x( ) max( , )= 0 	 (2)

N j  is the number of filters of the certain layer, xi
l−1  represents the feature map of the previous 

layer, wj
l  is the weight matrix, and bj

l  is the bias term.
Following convolution operation, max pooling or average pooling methods are carried out. 

Furthermore, the learned features are sent to fully connected layer.
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Where squash( )⋅  is a compression function, the function compress the learned features to a 
vector.

The softmax regression often follows the final fully connected layer, an input x will get the 
probability of belong to class i .
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Where y  is the response variable (i.e., predict label), k  is the number of categories, θ  is the 
parameters of our model.

In this work, transfer learning is used to fine-tune the GoogLeNet. GoogLeNet is the first place 
of the ImageNet of Large-Scale Visual Recognition Challenge (ILSVRC) in 2014, which is trained 
from 1.2 million images, and classify 100000 testing images into 1000 leaf-node categories (Szegedy 
et al., 2015). Transfer learning in GoogLeNet is fine-tune the weights from the cherry leaf dataset, 
using three new layers, a fully connected layer, a softmax layer and a classification output layer 
replace the last three layers of the network, setting the size of the final connected layer to 2, which is 
equal to the number of classification category in this work. It should be noted that the size of input 
images must be shaped into 224×224, which satisfy the input pixel size requirement of GoogLeNet. 
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The performance of the fine-tuned GoogLeNet is evaluated by Receiver Operating Characteristic 
(ROC) curve and Area Under ROC Curve (AUC), and three comparative experiments are carried out 
between CNN and the state-of-the-art such as Support Vector Machine (SVM), K-Nearest Neighbor 
(KNN) and Back Propagation (BP) Neural Network (Liu et al., 2013; Xu et al., 2013).

This section displays the utilized dataset in this work, and introduces the GoogLeNet. Meanwhile, 
feature visualization of the trained CNN is conducted.

2.1. Dataset
This paper aims at identifying cherry leaf infected by Podosphaera pannosa, the dataset which contains 
healthy cherry leaf and diseased leaf infected by Podosphaera pannosa comes from an open access 
repository of images (Hughes and Salathé, 2015), the infected cherry leaves will suffer from powdery 
mildew and the symptom of the diseased leaves shows that leaves are covered by white powdery 
fungal, meanwhile often accompanied by curly and dry (See the first row of Figure 1) (Shetty et 
al., 2012). The first row of Figure 1 displays the diseased leaves infected by Podosphaera pannosa, 
and the second row shows the healthy cherry leaves. The statistics of dataset is shown in Table 1, 
the number of healthy cherry leaves is 600, which is equal to the number of diseased cherry leaves.

2.2. GoogLeNet
GoogLeNet is a deeper network with computational efficiency, which has 22 layers, 12 times fewer 
parameters than AlexNet which contains 60 million parameters (Szegedy et al., 2016). The critical 
part of the architecture of GoogLeNet is Inception module (See Figure 2), which contains four 1x1 
convolutional layers, one 3x3 convolutional layer, one 5x5 convolutional layer and one 3x3 max-
pooling layer. The whole architecture of GoogLeNet is stacked by Inception modules on top of each 
other. The codenamed Inception is inspired by the network in network (Lin et al., 2014), the most 
obvious difference between the naive Inception module and the Inception module given in Figure 
2 is that, additional 1x1 convolutional layers are added to the Inception module. The additional 1x1 
convolutional layer not only reduces the spatial dimension largely, but also limits the size of GoogLeNet 
(Szegedy et al., 2015). The fine-tuned GoogLeNet in this work is removed the last three layers, and 
add three new layers includes one fully connected layer, one softmax layer and one classification layer. 

Figure 1. Cherry leaf image dataset. The first row shows cherry leaves infected by Podosphaera pannosa and the second row of 
the figure displays healthy cherry leaves.
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Meanwhile, the size of fully connected layer is modified to 2, since identify cherry leaves infected 
by Podosphaera pannosa is a binary classification in this paper.

2.3. Feature Visualization
We examined the features of the first convolutional layer and the final fully connected layer learned of 
the CNN by utilizing the t-distributed Stochastic Neighbour Embedding (t-SNE) algorithm (Maaten 
and Hinton, 2008) (See Figure3). 240 test images were used to extract the features, blue points 
represent the cherry leaves infected by Podosphaera pannosa, and red points represent the healthy 
cherry leaves, respectively. Figure3 (a) displays the scatterplot of the features at the first convolutional 
layer of CNN. Obviously, blue points and red points are mixed together, since the features of the input 
samples could not be used to differentiation the two different samples properly. Figure3 (b) shows 
the scatterplot at the final fully connected layer of CNN, blue points and red points are separated 
distinctly, which indicates that the features learned with layered structure of the CNN can be used 
to classify the cherry leaves precisely. Both Figure 3 (a) and Figure 3(b) indicate that the end-to-end 
learning mechanism of the CNN can efficiently separate the two different classes of leaves.

3. EXPERIMENTAL RESULTS

This section shows the setup of experiment, furthermore, the comparative experiment on CNN and 
the state-of-the-art is shown in detail.

Table 1. Setup in Cherry leaf Image Dataset

Category Sample

Health 600

Podosphaera pannosa 600

Figure 2. Inception module of the GoogLeNet
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3.1. Experimental Setup
The dataset utilized in this paper includes 600 healthy cherry leaves and 600 diseased leaves infected 
by Podosphaera pannosa (See Table1), and it comes from an open access repository of images on Plant 
Village (Liu et al., 2013). The dataset is processed into two types, the first type dataset is consisted 
of 80% training samples and 20% testing samples, which is called type1 (See Table2). In addition, 
5-folder cross validation is used. The cross-validation dataset is composed of training samples and 
validation samples, both them are subsets of 960 training samples (See Table2), it is called cvtype1, 
cvtype2 and so on.

For the purpose of evaluating classification performance of CNN and the state-of-the-art, three 
comparative experiments are carried out. Utilizing CNN to identify diseased cherry leaves has only 
one stage, and the notation is CNN. The traditional machine learning is generally divided into feature 
extraction and classification two stages. In feature extraction stage, 100 features are extracted from 
each cherry leaf image using the Scale-Invariant Feature Transform (SIFT) algorithm (Li et al., 
2011; Lazebnik et al., 2006). In classification stage, the extracted features are delivered into different 

Figure 3. Two-dimensional scatterplots of high-dimensional features generated with t-SNE. (a) Scatterplot at the first convolutional 
layer of CNN. (b) Scatterplot at the final fully connected layer of CNN.

Table 2. Details of dataset

dataset subset Health Podosphaera pannosa overall

type1
training samples 480 480 960

testing samples 120 120 240

cvtype1
training samples 380 388 768

validation samples 100 92 192

cvtype2
training samples 385 383 768

validation samples 95 97 192

cvtype3
training samples 388 380 768

validation samples 92 100 192

cvtype4
training samples 381 387 768

validation samples 99 93 192

cvtype5
training samples 386 382 768

validation samples 94 98 192
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classifiers i.e., SVM, KNN, and BP. Combining SIFT with SVM, KNN, and BP are referred to as 
SVM, KNN, and BP, respectively. The first experiment presents the testing classification accuracy of 
CNN and the state-of-the-art (See Figure 4). Meanwhile, classification results per class for CNN and 
the state-of-the-art is presented (See Figure 5), the evaluation metric is classification accuracy as well. 
The third comparative experiment focus on comparing the overall performance of each classification 
algorithm, by plotting the ROC curves of CNN and the state-of-the-art. In addition, the AUC values 
are computed (See Figure 6). The final experiment is to execute 5-folder cross validation, and carry 
out statistical significance analysis (See Table 3).

3.2. Comparative Experiments on CNN and the State-of-the-Art
The first comparison metric is accuracy:

accuracy
true positives true negatives

positives negatives
=

+
+

	

The “true positives” is the number of correctly predicted “Health” label, “positives” is the number 
of “Health” label, “true negatives” is the number of correctly predicted “Podosphaera pannosa” label, 
and “negatives” is the number of “Podosphaera pannosa” label. The testing accuracies is reported in 
Figure 4, each bar represents the testing accuracy of different classification method. It is clearly that 
the CNN achieves the best performance, with the accuracy of 99.6%. In addition, the classification 
results per class for four methods is presented in Figure 5. The notation ‘Health’ and ‘Podosphaera 
pannosa’ represent two classes in this work, that is, health cherry leaves and the diseased cherry 
leaves infected by Podosphaera pannosa. The bar with red color represents the accuracy of “Health” 
category, and the bar with blue color represents the accuracy of “Podosphaera pannosa” category, 
respectively. The best performance, “Health” classification accuracy of 100% and “Podosphaera 
pannosa” classification accuracy of 99.2%, is achieved by CNN. Thus, it can be considered that the 
CNN has the best accuracy in identifying cherry leaves infected by Podosphaera pannosa.

Figure 6 displays the ROC curves of CNN and the state-of-the-art. ROC curves have been widely 
used in machine learning field as an overall performance evaluation index (Anthimopoulos et al., 
2016; Swets et al., 2000), since the ROC curve is scarcely affected by the skewed and the changes 
of class distribution (Fawcett, 2006). The X  axis is “False positive rate”(i.e., fp rate , 1-specificity), 
the Y  axis is “True positive rate”(i.e., tp rate , also called sensitivity or recall),

tp rate   
positives correctly classified

total positives
= 	

fp rate   
negatives incorrectly classified

total negatives
= 	

“positives” represents “health” label, and “negatives” represents “Podosphaera pannosa” label. At the 
same time, the AUC values of each ROC curve are given in Figure 6. In Figure 6, the ROC curve of 
CNN presents an upper left triangle straight line, that is, CNN achieves the excellent performance, 
with the AUC of 1. It is proved again that the CNN is superior to the state-of-the-art in classifying 
cherry leaves infected by Podosphaera pannosa.

The test of significance experiment is implemented with AUC values from 5-folder cross 
validation, in order to detect whether there is a significant difference between CNN and the state-
of-the-art. The level of significance is set to 0.05, which means that the comparative methods exist 
statistically significance difference when the p-value is less than 0.05. Table 3 lists the results of 
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significance experiment. The AUC column comes from the average AUC values from 5-folder cross 
validation, meanwhile, p-values which are obtained from several significance experiments is given. The 
p-values of CNN vs.SVM is 0.0193, CNN vs. KNN is 0.0094 and CNN vs.BP is 0.0316, It is clearly 
that all three p-values are less than 0.05. Therefore, we can draw a conclusion that the difference is 
significant between the CNN and the state-of-the-art.

Figure 4. Accuracies of CNN and the state-of-the-art

Figure 5. Classification results per class for four methods
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4. CONCLUSION

In this paper, a novel deep-learning based approach for identifying cherry leaves infected by 
Podosphaera pannosa has been presented.which owns the end-to-end learning mechanism. Compared 
with the traditional machine learning, which suffer from selecting appropriate feature extractor and 
classifier, the proposed method learning the feature and the classifier jointly by an end-to-end learning 
mechanism. The proposed method is compared against three conventional machine learning methods 
(i.e., SVM, KNN, and BP) on three different experiments. The testing accuracy and the classification 

Figure 6. ROC curves of CNN and the state-of-the-art

Table 3. Detection Performance (AUC) with different methods on the 5-folder cross validation and the p-values obtained when 
comparing with different methods

method AUC vs.SVM vs.KNN vs.BP vs.CNN

SVM 0.9840 -- 0.3918 0.0334 0.0193

KNN 0.9883 0.3918 -- 0.0280 0.0094

BP 0.9983 0.0334 0.0280 -- 0.0316

CNN 1 0.0193 0.0094 0.0316 --
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results per class for four methods indicate that the high precision performance of CNN, with the testing 
accuracy of 99.6% and ‘Health’ classification accuracy of 100% respectively. In addition, ROC curves 
and AUC values were presented, which indicates the best performance of the proposed method. It 
conveys that the overall performance of CNN is superior to the state-of-the-art. Furthermore, the 
significance test shows that the CNN is significantly superior to the other three methods, with the 
p-values of 0.0193, 0.0094 and 0.0316, according to comparing with SVM, KNN and BP respectively. 
To our knowledge, this is the first study which applies the deep-learning based method to the cherry 
leaf disease identification problem. The practical study of this work can be easily extended to other 
plant leaf disease identification problem.
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