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ABSTRACT

In this article, the author categorises the solid transportation problem (STP) under uncertain 
environments. He formulates the mixed and fully intuitionistic fuzzy solid transportation problems 
(FIFSTPs) and utilizes the triangular intuitionistic fuzzy number (TIFN) to deal with uncertainty and 
hesitation. The PSK (P. Senthil Kumar) method for finding an intuitionistic fuzzy optimal solution for 
fully intuitionistic fuzzy transportation problem (FIFTP) is extended to solve the mixed and type-4 
IFSTP and the optimal objective value of mixed and type-4 IFSTP is obtained in terms of triangular 
intuitionistic fuzzy number (TIFN). The main advantage of this method is that the optimal solution 
of mixed and type-4 IFSTP is obtained without using the basic feasible solution and the method 
of testing optimality. Moreover, the proposed method is computationally very simple and easy to 
understand. Finally, the procedure for the proposed method is illustrated with the help of numerical 
examples which is followed by graphical representation of the finding.
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INTRODUCTION

The transportation problem is a special class of linear programming problem, widely used in the 
areas of inventory control, communication network, aggregate planning, employment scheduling, 
personal management and so on. In several real-life situations, there is a need for shipping the product 
from different origins (Factories) to different destinations (warehouses). The transportation problem 
deals with shipping commodities from different origins to various destinations. The objective of the 
transportation problem is to determine the optimum amount of a commodity to be transported from 
various supply points (origins) to different demand points (destinations) so that the total transportation 
cost is minimum or total transportation profit is maximum.

In the history of mathematics, Hitchcock (1941) originally developed a basic transportation 
problem. The transportation algorithm for solving transportation problems with equality constraints 
introduced by Dantzig (1963) is the simplex method specialized to the format of a table called 
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transportation table. It involves two steps. First, we compute an initial basic feasible solution for the 
transportation problem and then, we test optimality and look at improving the basic feasible solution 
to the transportation problem. Swarup et al. (1997) presented tracts in operations research which deals 
the transportation problem when all the parameters are crisp number.

The solid transportation problem is a generalization of the classical transportation problem in 
which three-dimensional properties are taken into account in the objective and constraint set instead 
of source (origin) and destination. Shell (1955) stated an extension of well-known transportation 
problem is called a solid transportation problem in which bounds are given on three items, namely, 
supply, demand and conveyance. In many industrial problems, a homogeneous product is transported 
from an origin to a destination by means of different modes of transport called conveyances, such as 
trucks, cargo flights, goods trains, ships and so on. Haley (1962) presented the solution procedure 
for solving solid transportation problem, which is an extension of the modified distribution method. 
Patel and Tripathy (1989) proposed a computationally superior method for a solid transportation 
problem with mixed constraints. Basu et al. (1994) developed an algorithm for finding the optimum 
solution of a solid fixed charge linear transportation problem.

For finding an optimal solution, the solid transportation problem requires m n l� � � 2  non-
negative values of the decision variables to start with a basic feasible solution. Jimenez and Verdegay 
(1996) investigated interval multiobjective solid transportation problem via genetic algorithms. Li 
et al. (1997a) designed a neural network approach for a multicriteria solid transportation problem. 
Roy and Mahapatra (2014) gave solving solid transportation problems with multi-choice cost and 
stochastic supply and demand. Efficient algorithms have been developed for solving transportation 
problems when the coefficient of the objective function, demand, supply and conveyance values are 
known precisely.

Many of the distribution problems are imprecise in nature in today’s world such as in corporate 
or in industry due to variations in the parameters. To deal quantitatively with imprecise information 
in making decision, Zadeh (1965) introduced the fuzzy set theory and has applied it successfully 
in various fields. The use of fuzzy set theory becomes very rapid in the field of optimization after 
the pioneering work done by Bellman and Zadeh (1970). The fuzzy set deals with the degree of 
membership (belongingness) of an element in the set but it does not consider the non-membership 
(non-belongingness) of an element in the set. In a fuzzy set the membership value (level of acceptance 
or level of satisfaction) lies between 0 and 1 where as in crisp set the element belongs to the set 
represent 1 and the element not in the set represent 0.

The unit fuzzy costs, that is, the fuzzy cost of transporting one unit from a particular supply 
point to a particular demand point, the fuzzy amounts available at the supply points and the fuzzy 
amounts required at the demand points are the parameters of the fuzzy transportation problem. Due 
to the lack of certainty in the parameters of a crisp transportation problem, several authors have 
solved transportation problems under fuzzy environment. For example, Dinagar and Palanivel (2009) 
investigated the transportation problem in fuzzy environment using trapezoidal fuzzy numbers. 
Mohideen and Kumar (2010) gave a better fuzzy optimal solution to the problems proposed by 
Pandian and Natarajan (2010). The transportation problem is a special kind of linear programming 
problem. Due to this, Nasseri et al. (2017) presented a generalized model for fuzzy linear programs 
with trapezoidal fuzzy numbers. Kumar (2016a, 2016b, 2017a, 2017b) formulated different types 
of fuzzy and intuitionistic fuzzy transportation problems and proposed a new and efficient solution 
method called PSK method.

Bit et al. (1993) presented a fuzzy programming approach to multiobjective solid transportation 
problem. Gen et al. (1995) gave a genetic algorithm for solving a bicriteria solid transportation problem 
with fuzzy numbers. Li et al. (1997b) discussed the genetic algorithm for solving fuzzy multiobjective 
solid transportation problem with fuzzy numbers. Jimenez and Verdegay (1998) proposed a solution 
procedure for uncertain solid transportation problem. Jimenez and Verdegay (1999) developed a 
parametric approach for solving fuzzy solid transportation problems by an evolutionary algorithm. 
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Liu (2006) presented a method to find the membership function of the fuzzy total transportation cost 
when the unit shipping costs, the supply and demand quantities, and the conveyance capacities are 
convex fuzzy numbers. Ojha et al. (2009) presented entropy based solid transportation problem for 
general fuzzy costs and time with fuzzy equality. Chakraborty et al. (2014) studied multi-objective 
multi-item solid transportation problem with fuzzy inequality constraints. Sinha et al. (2016) presented 
profit maximization solid transportation problem with trapezoidal interval type-2 fuzzy numbers. 
Thus, several researchers have solved solid transportation problems under fuzzy environment.

In conventional transportation problem supply, demand and costs are fixed crisp numbers. 
Therefore, in this situation the DM can predict transportation cost exactly. On the contrary in real world 
transportation problems, the availabilities and demands are not known exactly. These are uncertain 
quantities with hesitation due to various factors like lack of good communications, error in data, 
understanding of markets, unawareness of customers and many more. Also, the costs are in uncertain 
quantities with hesitation due to various factors like variation in rates of fuels, traffic jams, weather 
etc. In such situations, the DM cannot predict transportation cost exactly. He/She may hesitate. So, 
to counter these uncertainties with hesitation Atanassov (1986) proposed the intuitionistic fuzzy set 
(IFS) which is more reliable than the fuzzy set proposed by Zadeh (1965). The major advantage of 
intuitionistic fuzzy set over fuzzy set is that IFS separates the degree of membership (belongingness) 
and the degree of non-membership (non-belongingness) of an element in the set. With the help of 
IFS theory decision maker can decide about the degree of acceptance, degree of non-acceptance 
and degree of hesitation for some quantity. In case of transportation problem, the DM can decide 
about the level of acceptance and non-acceptance for the transportation cost or profit. Due to this, 
the application of IFS theory becomes very popular in transportation, decision making, planning, 
manufacturing, scheduling, etc.

Therefore, due to the applications of intuitionistic fuzzy set theory, several authors have been 
solved optimization problems under intuitionistic fuzzy environment. For example, Atanassov (1995) 
presented the ideas for intuitionistic fuzzy equations, inequalities and optimization. He formulated the 
optimization problems using the apparatus of the IFSs and he studied the importance of considering 
the concept of IFSs in optimization problems. Further, he discussed that how to use the apparatus 
of the IFSs in optimization problems. Ramík and Vlach (2016) studied intuitionistic fuzzy linear 
programming and duality: a level sets approach. Prabakaran and Ganesan (2017) presented duality 
theory for intuitionistic fuzzy linear programming problems. Solving intuitionistic fuzzy linear 
programming problem based on ranking function was proposed by Sudha and Kavithanjali (2017). 
Virivinti and Mitra (2018) presented handling optimization under uncertainty using intuitionistic 
fuzzy-logic-based expected value model. Nachammai et al. (2018) presented a comparative study of 
the methods of solving intuitionistic fuzzy linear programming problem. Nasseri et al. (2018) proposed 
an approach for solving linear programming problem with intuitionistic fuzzy objective coefficient. 
Thus, many authors have solved LPP under intuitionistic fuzzy environment.

Intuitionistic fuzzy solid transportation problem is a generalization of the fuzzy solid transportation 
problem in which input values are expressed as intuitionistic fuzzy numbers. Intuitionistic fuzzy solid 
transportation problem arises when the decision-maker has some vague information about the problem, 
that is, the data having uncertainty and hesitation in the parameters of the problem.

As there is a hesitation in the parameters of fuzzy transportation problem, several authors have 
been solved transportation problem under intuitionistic fuzzy environment. For example, Hussain and 
Kumar (2012a, 2012b, 2012c,) investigated a method for solving transportation problem in which all 
the parameters except transportation cost are represented by TIFN. Hussain and Kumar (2013) proposed 
an optimal more-for-less solution of mixed constraints intuitionistic fuzzy transportation problems. 
Kumar and Hussain (2014a) presented a systematic approach for solving mixed intuitionistic fuzzy 
transportation problems. Singh and Yadav (2014) developed efficient approach for solving type-1 
intuitionistic fuzzy transportation problem where the supply, demand are TIFNs and the cost is fixed 
crisp number. Kumar and Hussain (2015) proposed a method for solving unbalanced intuitionistic 
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fuzzy transportation problems. Singh and Yadav (2015) developed fuzzy programming approach 
for solving intuitionistic fuzzy linear fractional programming problem. Computationally simple and 
new method called PSK method for finding an optimal solution to fully intuitionistic fuzzy real-life 
transportation problems was presented by Kumar and Hussain (2016a). Recently, Kumar (2018a, 
2018b, 2018c) formulated balanced and unbalanced IFTPs and solved the same by using different 
solution algorithms. Therefore, several authors have solved intuitionistic fuzzy transportation problems. 
There are several papers in the literature in which triangular intuitionistic fuzzy numbers are used 
for solving real life problems but to the best of our knowledge, till now no one has used triangular 
intuitionistic fuzzy numbers for solving the solid transportation problems.

The allocation problem is one of the most important problems of management science. In 
general, both the transportation problems and the assignment problems are called allocation problems 
or optimization problems. The transportation problem deals with assigning sources to destinations 
and the assignment problem deals with assigning jobs to machines. An assignment problem is a 
particular case of transportation problem where the sources are assignees and the destinations are 
tasks. Furthermore, every source has a supply of 1 (since each assignee is to be assigned to exactly 
one task) and every destination has a demand of 1 (since each task is to be performed by exactly 
one assignee). Also, the objective is to minimize the total cost or to maximize the total profit of 
allocation. Hence, every intuitionistic fuzzy assignment problem can be represented by intuitionistic 
fuzzy transportation problem if their supply of sources and demand of destinations should be exactly 
one. In general, the objective of the allocation problem is to assign the available resources in an 
economic way. When the resources to be allocated are scarce, a well-planned action is necessary 
for a decision-maker to attain the optimal utility. If the supplying sources and the receiving agents 
are limited, the best pattern of the allocation to get the maximum return or the best plan with the 
least cost, whichever may be applicable to the problem, is to be found out. In literature, Kumar and 
Hussain (2014b, 2014c, 2014d) proposed different methods to solve the different kinds of intuitionistic 
fuzzy assignment problem. Kumar and Hussain (2016b, 2016c) presented the solution methods for 
solving fully intuitionistic fuzzy real-life assignment problem and unbalanced intuitionistic fuzzy 
assignment problem. Kumar (2018d) developed a simple and efficient algorithm for solving type-1 
intuitionistic fuzzy solid transportation problems. Kumar (2018e) presented the PSK method for 
solving intuitionistic fuzzy solid transportation problems. Recently, various kinds of optimization 
problems under fuzzy and intuitionistic fuzzy environment were presented by Kumar (2018f, 2018g, 
2018h, 2019a, 2020a, 2020b).

Ranking of alternatives in intuitionistic fuzzy environment plays a major role in decision making. 
Burillo et al. (1994) proposed definition of intuitionistic fuzzy number and studied its properties. A 
number of researchers like Grzegorzewski (2003), Nehi et al. (2005), Nayagam et al. (2008), Guha 
and Chakraborty (2010), Deng Feng Li et al. (2010), Nehi (2010), Das and Guha (2013), Shabani and 
Jamkhaneh (2014) studied IFNs and analyzed its properties. Corresponding to every intuitionistic fuzzy 
number, Varghese and Kuriakose (2012) have proposed its crisp equivalent using its non-membership 
and membership function. Mahapatra and Roy (2009), Shaw and Roy (2012), Mahapatra and Roy 
(2013), Velu et al. (2017), Kumar et al. (2017) have proposed ranking methods and some arithmetic 
operations on triangular/trapezoidal intuitionistic fuzzy numbers.

In this article, PSK method for finding the intuitionistic fuzzy optimal solution for fully 
intuitionistic fuzzy transportation problem is extended to solve the mixed and type-4 IFSTPs in 
single stage. The optimal object value of mixed and type-4 IFSTP is obtained in terms of TIFN. 
The existing ordering procedure of Varghese and Kuriakose is used to transform the mixed and 
type-4 IFSTP into a crisp one so that the conventional method may be applied to solve the STP. 
The occupied cells of crisp STP that we obtained are as same as the occupied cells of mixed 
and type-4 IFSTP, but the value of occupied cells of mixed and type-4 IFSTP is the maximum 
possible value of crisp supply (or fuzzy/intuitionistic fuzzy supply), crisp demand (or fuzzy/
intuitionistic fuzzy demand) and crisp conveyance capacities (or fuzzy/intuitionistic fuzzy 
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conveyance capacities). On the basis of this idea the solution procedure is differs from STP to 
mixed and type-4 IFSTP in allocation step only. Therefore, the PSK method for solving FIFTP 
is extended to solve the mixed and type-4 IFSTP. Moreover, the author proved a theorem, which 
states that every solution obtained by PSK method to fully intuitionistic fuzzy solid transportation 
problem with equality constraints is a fully intuitionistic fuzzy optimal.

The article is organized in the following manner. Some preliminary definitions and the 
Kumar and Hussain’s (2016a) multiplication operation for TIFN will be explained in Section 
2. Section 3 presents the ranking procedure and ordering principles of TIFN. Section 4 
describes the definition of fully intuitionistic fuzzy solid transportation problem (FIFSTP) and 
its mathematical formulation. Section 5 consists of the PSK Method with new theorems and 
remarks. Section 6 provides the numerical example, results and discussion. The last section 
draws some conclusions.

PRELIMINARIES

In this section, some basic definitions and Kumar and Hussain’s (2016a) multiplication operation 
is given.

Definition: Let X  be a finite universal set. An intuitionistic fuzzy set A  in X  is an object having 
the form A x x x x X

A A
= ( ) ( ) ∈{ }, , :µ ϑ , where the functions � , : ,µ ϑ

A A
x x X( ) ( ) → 


0 1  

define respectively, the degree of membership and degree of non – membership of the element 
x X∈  to the set A , which is a subset of X, and for every element  x X∈ , �0 1≤ ( )+ ( ) ≤µ ϑ

A A
x x . 

Furthermore, we have π µ ϑ
A A A
x x x( ) = − ( )− ( )1  called the intuitionistic fuzzy set index or 

hesitation margin of x  in A . π
A
x( )  is the degree of indeterminacy of x X∈  to the IFS A  

and π
A
x( ) ∈  0 1,  i.e., π

A
x X( ) → 


: ,0 1  and 0 1≤ ( ) ≤π

A
x  for every x X∈ . π

A
x( )  

expresses the lack of knowledge of whether x  belongs to IFS A  or not.

For  example ,  l e t  A  be  an  in tu i t ion is t ic  fuzzy  set  wi th  µ
A
x( ) = 0 5.  and 

ϑ π
A A
x x( ) = ⇒ ( ) = − +( ) =0 4 1 0 5 0 4 0 1. . . . .  It can be interpreted as “the degree that the object 

x  belongs to IFS A  is 0.5, the degree that the object x  does not belongs to IFS A  is 0.4 and the 
degree of hesitancy is 0.1”.

Definition (Mahapatra, B. S., & Mahapatra, G. S. (2010)): An Intuitionistic Fuzzy Number 
(IFN) �AI  is:
1. 	 An intuitionistic fuzzy subset of the real line R,
2. 	 Normal, that is, there is some x R

0
∈  such that µ �AI x0

1( ) = ,  ϑ�AI x0
0( ) = ,

3. 	 C o n v e x  f o r  t h e  m e m b e r s h i p  f u n c t i o n  µ �AI x( ) ,  t h a t  i s , 

µ λ λ µ µ� � �A A AI I Ix x x x
1 2 1 2

1+ −( )( ) ≥ ( ) ( )( )min , , for every  x x R
1 2
, ,∈  λ ∈ 


0 1, ,

4. 	 Concave for the non – membership function ϑ�AI x( ) , i.e., ϑ λ λ�AI
x x

1 2
1+ −( )( ) ≤  

max , ,ϑ ϑ� �A AI Ix x
1 2( ) ( )( ) for every x x R

1 2
, ∈ , λ ∈ 


0 1, .

Definition: A fuzzy number A is defined to be a triangular fuzzy number (TFN) if its membership 
functions  µ

A
: ℝ→ [0, 1] is equal to:
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�

� ,

� ,
µ
A
x

x a

a a
if x a a

a x

a a
if x a a

( ) =

−

−
∈ 




−

−
∈ 




1

2 1
1 2

3

3 2
2 3

0 OOtherwise











�	

Definition: A Triangular Intuitionistic Fuzzy Number (ÃI is an intuitionistic fuzzy set in R with the 
following membership function  µ

A
x( )  and non-membership function ϑ

A
x( ) :) :

�

, �

, �

, �

,

µ
A
x

x a

x a

a a
a x a

x a

a x

a a

( ) =

<
−

−
≤ ≤

=
−

−

0

1

1

1

2 1
1 2

2

3

3 2

for

for

for

ffor

for

�

, �

a x a

x a

2 3

3
0

≤ ≤

>











and ϑ
A
x

x a

a x

a a
a x a

x a

x a

a

( ) =

<
−

−
≤ ≤

=
−

1

0

1

2

2 1

1 2

2

2

3

,

,

,

'

'

'

for

for

for

''

'

'

,

,
−

≤ ≤

>











a
a x a

x a
2

2 3

3
1

for

for 

	

where � ’ ’a a a a a
1 1 2 3 3
≤ ≤ ≤ ≤  and µ ϑ

A
x x( ) ( ) ≤, .

A
0 5  for µ ϑ

A
x x( ) = ( )A

, ∀ ∈x R.  This TIFN 

is denoted by �AI   = a a a a a a
1 2 3 1 2 3
, , , ,' '( )( ) .

Particular Cases

Let �AI  = a a a a a a
1 2 3 1 2 3
, , , ,' '( )( )  be a TIFN. Then the following cases arise.

Case 1: If � ’a a
1 1
= , � ’

�
a a

3 3
=  then �AI  represent Triangular Fuzzy Number (TFN). It is denoted by 

�A a a a= ( )1 2 3
, , .

Case 2: If � ’
����

’a a a a a m
1 1 2 3 3
= = = = =  then �AI  represent a real number  m .

Definition: Let �A a a a a a aI = ( )( )1 2 3 1 2 3
, , , ,' '  and �B b b b b b bI = ( )( )1 2 3 1 2 3

, , , ,' '  be any two TIFNs then 
the arithmetic operations as follows:
◦◦ Addition: � �A BI I⊕  = a b a b a b a b a b a b

1 1 2 2 3 3 1 1 2 2 3 3
+ + +( ) + + +( ), , , ,' ' ' '

◦◦ Subtraction: ÃI  BĨ = a b a b a b a b a b a b
1 3 2 2 3 1 1 3 2 2 3 1
− − −( ) − − −( ), , , ,' ' ' '

◦◦ Multiplication: Kumar and Hussain’s (2016a) multiplication operation:

� � � � � � �A BI I⊗ = ℜ( ) ℜ( ) ℜ( )( ) ℜ( ) ℜ( )a B a B a B a B a B aI I I I I
1 2 3 1 2

, , , ,'
33
'ℜ( )( )�BI if ℜ( ) ℜ( ) ≥� �A BI I, 0 	

Remark: All the parameters of the conventional STP such as supply, demand, cost and conveyance 
capacity are in positive. Since in transportation problems, negative parameters have no physical 
meaning. Hence, in the proposed method all the parameters may be assumed as non-negative 
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triangular intuitionistic fuzzy number. On the basis of this idea we need not further investigate 
the multiplication operation under the condition that ℜ( ) ℜ( ) <� �A BI I, 0 .

Scalar multiplication:

1. 	 kA ka ka ka ka ka ka forI ' '� = ( )( ) ≥
1 1 2 32 3

0, , , , , k

2. 	 kA ka ka ka ka ka ka kI� = ( )( ) <
3 2 1 3 2 1

0, , , , ,' '  for

COMPARISON OF TIFN

Definition: Let �A a a a a a aI = ( )( )1 2 3 1 2 3
, , , ,' '  and �B b b b b b bI = ( )( )1 2 3 1 2 3

, , , ,' '  be two TIFNs. Then the 
set of TIFNs is defined as follows:
1. 	 ℜ �AI( )  > ℜ �BI( )  if and only if �AI  ≻ �BI ;

2. 	 ℜ �AI( )  < ℜ �BI( )  if and only if �AI  ≺ �BI ;

3. 	 ℜ �AI( )  = ℜ �BI( )  if and only if �AI  ≈ �BI , where:

ℜ( ) =
−( ) − −( )+ −( ) + +( )+

�A
a a a a a a a a a a a

I 1

3

2 2 3
3 1 2 3 1 3 1 1 2 3 3

2

�

’ ’ ’ ’ ’� −−( )
− + −



















a

a a a a

1

3 1 3 1

2’

’ ’

�

	

ℜ( ) =
− − −( )+ −( ) + +( )+

�B
b b b b b b b b b b b

I 1

3

2 2 3
3 1 2 3 1 3 1 1 2 3 3

2

�
( )’ ’ ’ ’ ’� −−( )

− + −



















b

b b b b

1

3 1 3 1

2’

’ ’

�

	

Whenever the above formula doesn’t provide finite value then we can make use of the following 
formula. The score function for the membership function µ

A
x( )  is denoted by S x

A
µ ( )( )  and is 

defined by �S x
a a a

A
µ ( )( ) = + +

1 2 3
2

4
. 

The score function for the non-membership function ϑ
A
x( )  is denoted by S x

A
ϑ ( )( )  and is 

defined by S x
a a a

A
ϑ ( )( ) = + +

1 2 3
2

4

' '

. 

The accuracy function of �AI  is denoted by f AI�( )  and is defined by:

f A
S x S x a a a a a a

I A A�( ) =
( )( ) + ( )( )

=
+ +( ) + + +µ ϑ� �

2

2 2

8
1 2 3 1 2 3

( )’ ’

	

From the accuracy function, we have:

1. 	 f �AI( )  > f �BI( )  if and only if �AI  ≻ �BI ;

2. 	 f �AI( )  < f �BI( )  if and only if �AI  ≺ �BI ;
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3. 	 f �AI( )  = f �BI( )  if and only if �AI  ≈ �BI .

Definition: The ordering   and ≼ between any two TIFNs �AI  and �BI  are defined as follows:
1. 	 �AI   �BI  iff �AI ≻ �BI  or �AI ≈  �BI ;
2. 	 �AI   �BI  iff �AI ≺ �BI  or �AI ≈  �BI  

Definition: Let �ω
r
I r m, , , ,= …{ }1 2  be a set of TIFNs. If ℜ( ) ≤ ℜ( )� �ω ω

p
I

r
I  for all r, then the TIFN 

�ω
p
I  is the minimum of   �ω

r
I r m, , , ,= …{ }1 2 .

Definition: Let �ω
r
I r m, , , ,= …{ }1 2  be a set of TIFNs. If ℜ( ) ≥ ℜ( )� �ω ω

s
I

r
I  for all r, then the TIFN 

�ω
s
I  is the maximum of �ω

r
I r m, , , ,= …{ }1 2 .

FULLY INTUITIONISTIC FUZZY SOLID TRANSPORTATION 
PROBLEM AND ITS MATHEMATICAL FORMULATION

The following basic terminologies used in this article are defined in this section.

Definition: If the solid transportation problem has at least one of the parameters (cost) or three of the 
parameters (supply, demand and conveyance capacity) or all of the parameters (supply, demand, 
conveyance capacity and cost) in intuitionistic fuzzy numbers then the problem is called IFSTP. 
Otherwise it is not an IFSTP.

Further, solid intuitionistic fuzzy transportation problem can be classified into four categories. 
They are:

1. 	 Type-1 intuitionistic fuzzy solid transportation problem (type-1 IFSTP);
2. 	 Type-2 intuitionistic fuzzy solid transportation problem (type-2 IFSTP);
3. 	 Type-3 intuitionistic fuzzy solid transportation problem (type-3 IFSTP or Mixed Intuitionistic 

Fuzzy solid Transportation Problem (MIFSTP));
4. 	 Type-4 intuitionistic fuzzy solid transportation problem (type-4 IFSTP or Fully Intuitionistic 

Fuzzy solid Transportation Problem (FIFSTP)).

Definition: A solid transportation problem having intuitionistic fuzzy availabilities, intuitionistic fuzzy 
demands and intuitionistic fuzzy conveyance capacity but crisp costs is termed as intuitionistic 
fuzzy solid transportation problem of type-1.

Definition: A solid transportation problem having crisp availabilities crisp demands and crisp 
conveyance capacity but intuitionistic fuzzy costs is termed as intuitionistic fuzzy solid 
transportation problem of type-2.

Definition: The solid transportation problem is said to be the type-3 intuitionistic fuzzy solid 
transportation problem or mixed intuitionistic fuzzy solid transportation problem if all the 
parameters of the solid transportation problem (such as supplies, demands, conveyance capacities 
and costs) must be in the mixture of crisp numbers, triangular fuzzy numbers and triangular 
intuitionistic fuzzy numbers.

Definition: The solid transportation problem is said to be the type-4 intuitionistic fuzzy solid 
transportation problem or fully intuitionistic fuzzy solid transportation problem if all the 
parameters of the solid transportation problem (such as supplies, demands, conveyance capacities 
and costs) must be in intuitionistic fuzzy numbers.
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Definition: The intuitionistic fuzzy solid transportation problem is said to be balanced intuitionistic 
fuzzy solid transportation problem if total intuitionistic fuzzy supply and total intuitionistic fuzzy 
demand is equal to total intuitionistic fuzzy conveyance capacity.

That is:

i

m

i
I

j

n

j
I

k

l

k
Ia b e

� � �
� � �� �

1 1 1





 	

Definition: The intuitionistic fuzzy solid transportation problem is said to be an unbalanced 
intuitionistic fuzzy solid transportation problem if total intuitionistic fuzzy supply and total 
intuitionistic fuzzy demand is not equal to total intuitionistic fuzzy conveyance capacity.

That is:

i

m

i
I

j

n

j
I

k

l

k
Ia b e

� � �
� � �� �

1 1 1





 	

Definition: A set of intuitionistic fuzzy non-negative allocations  xijk
I I> 0  satisfies the supply, 

demand and conveyance restriction (i.e., which satisfies the Equations (1), (2) and (3)) is known 
as intuitionistic fuzzy feasible solution.

Definition: Any feasible solution is an intuitionistic fuzzy basic feasible solution if the number of non-
negative allocations is at most m n l+ + −( )2  where m is the number of origins and n is the number 
of destinations and l is the number of conveyances in the m n l× ×   solid transportation table.

Definition: If the intuitionistic fuzzy basic feasible solution contains less than m n l+ + −( )2  non-
negative allocations in m n l× ×   solid transportation table, it is said to be degenerate.

Definition: Any intuitionist fuzzy feasible solution to a solid transportation problem containing m 
origins and n destinations and l conveyances is said to be intuitionist fuzzy non-degenerate, if it 
contains exactly m n l+ + −( )2  occupied cells.

Definition: The intuitionistic fuzzy basic feasible solution is said to be intuitionistic fuzzy optimal 
solution if it minimizes the total intuitionistic fuzzy transportation cost, that is, minimize 

i

m

j

n

k

l

ijk
I

ijk
Ic x

= = =
∑∑∑ ⊗

1 1 1

� �  subject to the constraints (or) it maximizes the total intuitionistic fuzzy 

transportation profit.
Definition (Mathematical Formulation of FIFSTP): Consider transportation with m origins, n 

destinations and l conveyances. Let �c c c c c c c
ijk
I

ijk ijk ijk ijk ijk ijk
= ( )( )′ ′1 2 3 1 2 3, , , ,  be the unit cost of transporting 

one unit of the product from ith origin to jth destination by means of the kth conveyance. Let 
�a a a a a a a
i
I

i i i i i i
= ( )( )′ ′1 2 3 1 2 3, , , ,  be the quantity of commodity available at origin i. Let

� , , , ,�b b b b b b b
j
I

j j j j j j
= ( )( )′ ′1 2 3 1 2 3  be the amount of the quantity of commodity needed at destination 

j .  Let �e
k
I  be the amount of the mater ial  transpor ted by k th conveyance. Let 

�x x x x x x x
ijk
I

ijk ijk ijk ijk ijk ijk
= ( )( )′ ′1 2 3 1 2 3, , , ,  be the number of units of quantity transported from ith origin 

to jth destination by means of the kth conveyance. Our objective is to minimize the total intuitionistic 
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fuzzy transportation cost satisfying intuitionistic fuzzy supply, intuitionistic fuzzy demand and 
intuitionistic fuzzy conveyance constraints.

A STP having uncertainty and hesitation in transportation costs, supply, demand and conveyance 
(i.e., capacity of different modes of transport) can be formulated as follows:

(FIFSTP) (P) Minimize � � �Z c xI

i

m

j

n

k

l

ijk
I

ijk
I= ⊗

= = =
∑∑∑

1 1 1

	

subject to:

i

m

k

l

ijk ijk ijk ijk ijk ijk i i
x x x x x x aa

= =

′ ′∑∑( )( ) ≈
1 1

1 2 3 1 2 3 1� , , , , , 22 3 1 2 3 1 2, , , , � , , ,a a a i ma
i j j j( )( ) = …′ ′ for 	 (1)

i

m

k
ijk ijk ijk ijk ijk ijk

l

j j
x x x x x x bb

= =

′ ′∑∑( )( ) ≈
1 1

1 2 3 1 2 3 1� , , , , , 22 3 1 2 3 1 2, , , , � , , ,b b b j nb
j j j j( )( ) = …′ ′ for 	 (2)

i

m

j
ijk ijk ijk ijk ijk ijk

n

k k
x x x x x x ee

= =

′ ′∑∑( )( ) ≈
1 1

1 2 3 1 2 3 1� , , , , , 22 3 1 2 3 1 2, , , , � , , ,e e e k le
k k k k( )( ) = …′ ′ for 	 (3)

x x x x x x i m
ijk ijk ijk ijk ijk ijk

I1 2 3 1 2 3 0 1 2, , , , , , , ,( )( ) = …′ ′  � for 

                                              andj n= …1 2, , ,

                                             k l= …1 2, , ,

	 (4)

where:

m = the number of supply points	
n = the number of demand points	
l = the number of conveyances	

When the supplies, demands and costs are intuitionistic fuzzy numbers, then the minimum total 
cost becomes an intuitionistic fuzzy number. Symbolically it can be noted that �Z I  where:

� � �Z c xI

i

m

j

n

k

l

ijk
I

ijk
I= ⊗

= = =
∑∑∑

1 1 1

	

Hence it cannot be minimized directly. For solving the problem we convert the intuitionistic 
fuzzy supplies �a

i
I( ) , intuitionistic fuzzy demands �b

j
I( ) , intuitionistic fuzzy conveyance capacities 

�e
k
I( )  and the intuitionistic fuzzy costs �c

ijk
I( )  into crisp ones by an intuitionistic fuzzy number ranking 

method of Varghese and Kuriakose.
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Consider transportation with m origins, n destinations and l conveyances. Let c
ijk

 be the unit 
cost of transporting one unit of the product from ith origin to jth destination by means of the kth 
conveyance. Let a

i
 be the quantity of commodity available at origin i. Let  b

j
 be the amount of the 

quantity of commodity needed at destination j. Let e
k

 be the amount of the material transported by 
kth conveyance. Let x

ijk
 be the number of units of quantity transported from ith origin to jth destination 

by means of the kth conveyance. Our aim is to determine transportation schedule to minimize the 
transportation cost satisfying supply, demand and conveyance constraints:

(P*) Minimize � � �Z c xI

i

m

j

n

k

l

ijk
I

ijk
I= ℜ( )⊗ℜ( )

= = =
∑∑∑

1 1 1

	

subject to:

j k

l

ijk
I

j
I

n

x j ma
= =
∑∑ℜ( ) ≈ ℜ( ) = …

1 1

1 2� , � , , ,� � for 	 (5)

i

m

k

l

ijk
I

j
Ix b j n

= =
∑∑ℜ( ) ≈ ℜ( ) = …

1 1

1 2� ,� � , , ,� � for 	 (6)

i

m

j

n

ijk
I

k
Ix e k l

= =
∑∑ℜ( ) ≈ ℜ( ) = …

1 1

1 2� ,� � , , ,� �  for 	 (7)

ℜ( ) = …

= …

� �x i m

j n
ijk
I I 0 1 2

1 2

, , , ,

, , ,

for 

                for  annd

                    k l= …1 2, , ,

	 (8)

Since ℜ �c
ijk
I( ) , ℜ( ) ℜ( ) ℜ( )� � �a b e

i
I

j
I

k
I, , ,  all are crisp values, this problem (P*) is obviously the 

crisp solid transportation problem of the form (P) which can be solved by the conventional method 
namely the Modified Distribution Method or Min Zero- Min Cost method. Once the optimal solution 
x *  of Model (P*) is found, the optimal intuitionistic fuzzy objective value �Z I *  of the original problem 
can be calculated as:

� � �Z c xI

i

m

j

n

k

l

ijk
I

ijk
I* *= ⊗

= = =
∑∑∑

1 1 1

	

where, �c c c c c c c
ijk
I

ijk ijk ijk ijk ijk ijk
= ( )( )′ ′1 2 3 1 2 3, , , , , �x x x x x x x

ijk
I

ijk ijk ijk ijk ijk ijk
= ( )( )′ ′1 2 3 1 2 3, , , , .  If m=3, n=3 and l=3 then 

the FIFSTP (see Table 1) and its equivalent crisp STP (refer to Table 2) can be stated in the tabular 
form shown.
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Result 1: The balanced condition is the necessary and sufficient condition for the existence of a 
feasible solution to the SIFTP.

Result 2: If l =1 , the number of conveyances is only one, the above problem reduces to an IFTP.

Now a new method is proposed, namely, PSK method for finding an optimal solution to the 
mixed and fully intuitionistic fuzzy solid transportation problems.

PSK METHOD

The PSK method proceeds as follows:

Step 1: Formulate a TP with different origins, numerous destinations and various types of 
conveyances. This type of problem is called STP or three-dimensional transportation 
problems. Consider the STP having all the parameters such as supply, demand, unit 
transportation cost and conveyance capacities must be a mixture of crisp numbers, 
triangular fuzzy numbers and triangular intuitionistic fuzzy numbers (This situation is 
known as MIFSTP). 

Step 2: Examine whether the total intuitionistic fuzzy supply, total intuitionistic fuzzy demand and 
total intuitionistic fuzzy conveyance capacities are all equal (or its all ranking index must be 
equal). If not, change it. This step gives the balanced mixed intuitionistic fuzzy solid transportation 
problem (BMIFSTP).

Step 3: After using step 2, convert BMIFSTP into balanced fully intuitionistic fuzzy solid transportation 
problem (BFIFSTP) using the following steps:

Table 1. Tabular representation of 3 × 3 × 3 FIFSTP

Capacity
�e I
k

E1 E1 E1 �e I
1

E2 E2 E2
�e I
2

E3 E3 E3
�e I
3

D1 D2 D3

Supply
�a
i
I

O1 �cI
111

�cI
112

�cI
113

�cI
121

�cI
122

�cI
123

�cI
131

�cI
132

�cI
133

�aI
1

O2 �cI
211

�cI
212

�cI
213

�cI
221

�cI
222

�cI
223

�cI
231

�cI
232

�cI
233

�aI
2

O3 �cI
311

�cI
312

�cI
313

�cI
321

�cI
322

�cI
323

�cI
331

�cI
332

�cI
333

�aI
3

Demand 
�b
j
I �b I

1
�b I
2

�b I
3
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1. 	 If any one or more in the supplies/demands/conveyance capacities/costs of a transportation 
problem having a real number say a1� �  that can be expanded as a TIFN

a a a a a a a
1 1 1 1 1 1 1
� � �� �, , , , ;

2. 	 If any one or more in the supplies/demands/conveyance capacities/costs of a transportation 
problem having a triangular fuzzy number say a a a

1 2 3
, ,� �  that can be expanded as a TIFN

a a a a a a a a a
1 2 3 1 2 3 1 2 3
, , , , , ,� � � � �� � ;

3. 	 If any one or more in the supplies/demands/conveyance capacities/costs of a transportation 
problem having a TIFN say a a a a a a

1 2 3 1 2 3
, , , ,

' '� �� �  that can be kept as it is. That is

a a a a a a a a a a a a
1 2 3 1 2 3 1 2 3 1 2 3
, , , , , , , ,

' ' ' '� �� � � � �� � .
Step 4: After using step 3, transform the BFIFSTP into its equivalent crisp STP using the ranking 

procedure as mentioned in section 3.
Step 5: Now, the crisp STP having all the entries of supply, demand, unit transportation costs and 

conveyance capacities are in integers then kept as it is. Otherwise at least one or all of the supply, 
demand, unit transportation costs and conveyance capacities are not in integers then rewrite its 
nearest integer value.

Step 6: After using step 5 of the proposed method, now solve the crisp STP by using any one of the 
existing methods (Modified Distribution Method or Min Zero-Min Cost). This step yields the 
optimal allocation and optimal objective value of the crisp STP (The optimal allotted cell in crisp 
solid transportation table is referred as occupied cells. The remaining cells are called unoccupied 

Table 2. Tabular representation of crisp 3 × 3 × 3 STP

Capacity
�e I
k

E1 E1 E1
ℜ( )�e I1

E2 E2 E2

ℜ( )�e I2

E3 E3 E3

ℜ( )�e I3

D1 D2 D3

Supply
�a
i
I

O1
ℜ( )�cI111 ℜ( )�cI112 ℜ( )�cI113 ℜ( )�cI121 ℜ( )�cI122 ℜ( )�cI123 ℜ( )�cI131 ℜ( )�cI132 ℜ( )�cI133 ℜ( )�aI1

O2
ℜ( )�cI211 ℜ( )�cI212 ℜ( )�cI213 ℜ( )�cI221 ℜ( )�cI222 ℜ( )�cI223 ℜ( )�cI231 ℜ( )�cI232 ℜ( )�cI233 ℜ( )�aI2

O3
ℜ( )�cI311 ℜ( )�cI312 ℜ( )�cI313 ℜ( )�cI321 ℜ( )�cI322 ℜ( )�cI323 ℜ( )�cI331 ℜ( )�cI332 ℜ( )�cI333 ℜ( )�aI3

Demand 
�b
j
I ℜ( )�b I1 ℜ( )�b I2 ℜ( )�b I3
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cells. The number of occupied cells in crisp STP which are exactly m n l� � �� �2  and all has 

zero cost. Similarly, in FIFSTP also have the same m n l� � �� �2  number of occupied cells 
but its corresponding costs are intuitionistic fuzzy zeros). Now, construct the new fully 
intuitionistic fuzzy solid transportation table (FIFSTT) whose occupied cells costs are intuitionistic 
fuzzy zeros and the remaining cells costs are its original cost. Now, subtract the minimum cost 
of each source from all the elements of that source. Now, subtract the minimum cost of each 
destination from all the elements of that destination. Then subtract the minimum cost of each 
conveyance from all the elements of that conveyance. Clearly, each source, each destination and 
each conveyance of the resulting table has at least one intuitionistic fuzzy zero. Thus, the current 
resulting table is the allotment table.

Step 7: After using step 6 of the proposed method, now we check the allotment table if one or 
more an origin/a demand/a conveyance having exactly one occupied cell (intuitionistic fuzzy 
zero) then allot the maximum possible value (i.e., minimum of supply, demand and 
conveyance capacities) to that cell and adjust the corresponding supply and demand/demand 
and conveyance capacity/conveyance capacity and supply. Otherwise, if all the origins/
destinations/conveyances having more than one occupied cells then select a cell in the α - 
origin, β - destination and γ-conveyance of the transportation table whose cost is maximum 
(If the maximum cost is more than one i.e., a tie occurs then select arbitrarily) and examine 
which one of the cell having minimum original cost (If the minimum original cost is more 
than one i.e., a tie occurs then select arbitrarily) among all the occupied cells in that origin/
destination/conveyance then allot the maximum possible value to that cell. In this manner 
proceed selected origin, destination and conveyance entirely. If the entire origin, destination 
and conveyance of the occupied cells having fully allotted then select the next maximum 
cost of the transportation table and examine which one of the cells is minimum cost among 
all the occupied cells in that origin, destination and conveyance then allot the maximum 
possible value to that cell. Repeat this process until all intuitionistic fuzzy supply points are 
fully used, all intuitionistic fuzzy demand points are fully received and all conveyance 
capacities are fully used. This allotment yields the fully intuitionistic fuzzy solution to the 
given fully intuitionistic fuzzy solid transportation problem.

Remark: Allot the maximum possible value to the occupied cells in FIFSTP which is the most 
preferable origin/a destination/a conveyance having exactly one occupied cell. Further, we check 
the minimum number of zeros originwise, demandwise and conveyancewise in the allotment 
table and allot the maximum possible value to the zero cells having minimum original cost. If 
more than one occurs, then select arbitrarily.

Remark: From the MODI method, we conclude that the m n l× ×  STP have exactly m n l� � � 2  
number of non-negative independent allocations.

Remark: From the Min-Zero Min-Cost Method, we can make exactly m n l� � � 2  number of 
zeros (zero referred to as zero cost) in the cost matrix. All these zeros (costs) are in 
independent positions.

Remark: From the first two Remarks of this section, we can directly replace the intuitionistic fuzzy 
zeros instead of original costs in the occupied cells in the original FIFSTP. This modification 
does not affect the originality of the problem. 

Now, we prove the following theorems which are used to derive the solution to an intuitionistic 
fuzzy solid transportation problem obtained by the PSK method is an intuitionistic fuzzy optimal 
solution to the fully intuitionistic fuzzy solid transportation problem.
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Theorem

If x i m j n k lijk
IO

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and  is an optimal solution of the problem (Q):

(Q) Minimum 
i

m

j

n

k

l

ijk
I

i
I

j
I

k
I

ijk
Ic u v w x

� � �
���� �

1 1 1

    � � � 	

subject to Equations (1)-(4) and:

   c u v w i j kijk
I

i
I

j
I

k
IΘ Θ Θ  0, , for all   and 	 (9)

where ui
I  (minimum cost of ith source of the newly constructed transportation table cijk

I ), v j
I  (minimum 

cost of jth destination of the resulting transportation table  c uijk
I

i
I��� �� , wk

I  (minimum cost of kth 

conveyance of the resulting transportation table   c u vijk
I

i
I

j
I� ��� �� , are any real values, then 

x i m j n k lijk
IO

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and  is an optimum solution to the problem (P). 

Proof

Let ui
I  be the minimum cost of ith source of the newly constructed transportation table cijk

I�� �� . Now, 

we subtract ui
I  from the ith source entries so that the resulting table is  c uijk

I
i
I��� �� . Let v j

I  be the 

minimum cost of jth destination entries of the resulting table  c uijk
I

i
I��� �� . Now, we subtract v j

I  from 

the jth destination entries so that the resulting table is   c u vijk
I

i
I

j
I� �� � . Let wk

I  be the minimum cost 

of kth conveyance entries of the resulting table   c u vijk
I

i
I

j
I� �� � . Now, we subtract wk

I  from the kth 

conveyance entries so that the resulting table is    c u v wijk
I

i
I

j
I

k
I� � �� � . It may be noted that 

   

c u v wijk
I

i
I

j
I

k
I I� � �� � 0 , for all i, j and k. Further each source, each destination and each conveyance 

having at least one intuitionistic fuzzy zero. 
From the statement of the theorem, clearly:

x i m j n k lijk
IO

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

is a feasible solution of (P).
Suppose that:

x i m j n k lijk
IO

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

is not an optimal solution of (P). Then, there exists a feasible solution:
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y i m j n k lijk
I

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

such that:
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Clearly, y i m j n k lijk
I

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and  is also a feasible solution of 
the problem (Q).

Now:
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by (1) to (3):
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� � �
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by (1) to (3), which contradicts:

x i m j n k lijk
IO

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

is optimal solution of the problem (Q). Hence, we can conclude that any optimal solution:

x i m j n k lijk
IO

, , , , ; , , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

to the problem (Q) is also an intuitionistic fuzzy optimal solution to the problem (P). 
Hence proved the theorem.

Corollary

If x i m j n k loI
ijk , , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and  is a feasible solution to the problem (P) 

and    

c u v wijk
I

i
I

j
I

k
I I� � �� � 0 , for all i, j and k where ui

I , v j
I  and wk

I  are some real TIFNs, such 
that the minimum:
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i

m

j

n

k

l

ijk
I

i
I

j
I

k
I

ijk
Ic u v w x

� � �
���� �

1 1 1

    � � � 	

subject to Equations (1)-(4) are satisfied, is intuitionistic fuzzy zero, then:

x i m j n k loI
ijk , , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

is an intuitionistic fuzzy optimal solution to the problem (P).

Proof

Let x i m j n k lijk
oI

, , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and  be the feasible solution to the problem 

(P). Now, consider the problem (P) with    

c u v wijk
I

i
I

j
I

k
I I� � �� � 0 , for all i, j and k denoted by 

problem (P1). From the first Theorem of in this section, Clearly, (P) is a original problem and (P1) is 
a reduced problem of problem (P). Further, in a problem (P1) there is no possibility to minimize the 
cost/time below intuitionistic fuzzy zero. Hence proved the Corollary.

Now, the author proves that the solution to the fully intuitionistic fuzzy solid transportation 
problem (or mixed intuitionistic fuzzy solid transportation problem) obtained by the PSK method 
is a fully intuitionistic fuzzy optimal solution (or mixed intuitionistic fuzzy optimal solution) 
to the fully intuitionistic fuzzy solid transportation problem (or mixed intuitionistic fuzzy solid 
transportation problem).

Theorem (PSK Theorem in MIFSTP)
A solution obtained by the PSK’s method for a fully intuitionistic fuzzy solid transportation 
problem (or mixed intuitionistic fuzzy solid transportation problem) with equality constraints 
(P) is a fully intuitionistic fuzzy optimal solution (or mixed intuitionistic fuzzy optimal solution) 
for the fully intuitionistic fuzzy solid transportation problem (P) (or mixed intuitionistic fuzzy 
solid transportation problem).

Proof
Let us, now describe the PSK’s method in detail.

We construct a solid transportation table in which costs, supplies, demands and conveyance 
capacities are must be a mixture of crisp numbers, triangular fuzzy numbers and triangular intuitionistic 
fuzzy numbers such transportation problem is called MIFSTP. Next, transform the MIFSTP into a 
balanced mixed intuitionistic fuzzy solid transportation problem (BMIFSTP), if it is not balanced, by 
using ranking method and convert BMIFSTP into balanced fully intuitionistic fuzzy solid transportation 
problem (BFIFSTP) using the following steps:

1. 	 If any one or more in the supplies/demands/conveyance capacities/costs of a transportation 
problem having a real number say a1� �  that can be expanded as a TIFN a a a a a a a

1 1 1 1 1 1 1
� � �� �, , , , ;

2. 	 If any one or more in the supplies/demands/conveyance capacities/costs of a transportation 
problem having a triangular fuzzy number say a a a

1 2 3
, ,� �  that can be expanded as a TIFN

a a a a a a a a a
1 2 3 1 2 3 1 2 3
, , , , , ,� � � � �� � ;



International Journal of Operations Research and Information Systems
Volume 10 • Issue 2 • April-June 2019

37

3. 	 If any one or more in the supplies/demands/conveyance capacities/costs of a transportation 
problem having a TIFN say a a a a a a

1 2 3 1 2 3
, , , ,

' '� �� �  that can be kept as it is. That is

a a a a a a a a a a a a
1 2 3 1 2 3 1 2 3 1 2 3
, , , , , , , ,

' ' ' '� �� � � � �� � .

After using above steps, we get the fully intuitionistic fuzzy solid transportation table cijk
I�� ��  

then, transform the FIFSTP into its equivalent crisp STP using the ranking procedure of Varghese 
and Kuriakose.

Now, the crisp STP having all the entries of supply, demand, unit transportation costs and 
conveyance capacities are integers then kept as it is. Otherwise at least one or all of the supply, 
demand, unit transportation costs and conveyance capacities are not in integers then rewrite its nearest 
integer value because decimal values in solid transportation problem has no physical meaning (such 
a transportation problem referred as crisp STP).

Now, solve the crisp STP by using any one of the existing methods (Modified Distribution 
Method, Min Zero-Min Cost). This process will yield the optimal allotment and optimal objective 
value of the crisp STP (The optimal allotted cells in crisp solid transportation table is referred to as 
occupied cells which are exactly m n l� � �� �2 . All the decision variables in these occupied cells 
are basic feasible with zero cost. Clearly, each supplies of sources, each demand of destinations and 
each capacity of conveyance have at least one zero cost which corresponds to the occupied cells. The 
remaining cells are called unoccupied cells. All the decision variables in these unoccupied cells are 
non-basic. The value of decision variables in these unoccupied cells are at zero level).

By the definitions, occupied cells in crisp STP is same as that of occupied cells in FIFSTP but 
the value of occupied cells for FIFSTP is the maximum possible value of intuitionistic fuzzy supply, 
intuitionistic fuzzy demand and intuitionistic fuzzy conveyance capacity. Therefore, we need not 
further investigate the occupied cells in FIFSTP. But only we claim that how much quantity 
(intuitionistic fuzzy supply, intuitionistic fuzzy demand and intuitionistic fuzzy conveyance capacity) 
to allot the occupied cells subject to (1), (2), (3) and (4) are satisfied. The occupied cells in crisp STP 
is exactly m n l� � �� �2  and all are having zero cost. Similarly, in FIFSTP also have the same 

m n l� � �� �2  number of occupied cells but its corresponding cost is intuitionistic fuzzy zeros. 
Now, construct the new FIFSTT whose occupied cells costs are intuitionistic fuzzy zeros and the 
remaining cells costs are its original cost. Let ui

I  be the minimum cost of ith source of the current 

table cijk
I�� �� . Now, we subtract ui

I  from the ith source entries so that the resulting table is  c uijk
I

i
I��� �� . 

Let v j
I  be the minimum cost of jth destination of the resulting table  c uI

ijk i
I��� �� . Now, we subtract 

v j
I  from the jth destination entries so that the resulting table is   c u vijk

I
i
I

j
I� �� � . Let wk

I  be the 

minimum cost of kth conveyance capacity of the resulting table   c u vijk
I

i
I

j
I� �� � . Now, we subtract 

wk
I  from the kth conveyance capacity entries so that the resulting table is    c u v wijk

I
i
I

j
I

k
I� � �� � . It 

may be noted that    

c u v wijk
I

i
I

j
I

k
I I� � �� � 0 , for all i, j and k. Clearly, each source, each destination 

and each conveyance have at least one intuitionistic fuzzy zero. Hence the current resulting table is 
the allotment table.

Now, we check the allotment table if one or more sources/destinations/conveyances having exactly 
one occupied cell then allot the maximum possible value to that cell and adjust the corresponding 
supply and demand/demand and conveyance capacity/conveyance capacity and supply with a positive 
difference of supply, demand and conveyance capacity. Otherwise, if all the supply of sources, demand 
of destinations/capacity of conveyance having more than one occupied cells then select a cell in the 
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α -source, β -destination and γ-conveyance of the transportation table whose cost is maximum (If 
the maximum cost is more than one i.e., a tie occurs then select arbitrarily) and examine which one 
of the cells is minimum cost (If the minimum cost is more than one i.e., a tie occurs then select 
arbitrarily) among all the occupied cells in that source, destination and conveyance capacity then 
allot the maximum possible value to that cell. In this manner proceed selected source, destination/
conveyance entirely. If the entire source, destination/conveyance of the occupied cells having fully 
allotted then select the next maximum cost of the transportation table and examine which one of the 
cells is minimum cost among all the occupied cells in that supply of sources, demand of destination 
and capacity of conveyance then allot the maximum possible value to that cell. Repeat this process 
until all the intuitionistic fuzzy supply points are fully used, all the intuitionistic fuzzy demand points 
are fully received and all the intuitionistic fuzzy conveyance capacity are fully used. This step yields 
the optimum intuitionistic fuzzy allotment.

Clearly, the above process satisfies all the rim requirements (supply, demand and conveyance 
capacity restriction). If all the rim requirements are satisfied then automatically it satisfies, the total 
intuitionistic fuzzy supply and total intuitionistic fuzzy demand is equal to total intuitionistic fuzzy 
conveyance capacity i.e., the necessary and sufficient condition for a FIFSTP is satisfied.

Finally, we have a solution:

x i m j n k lijk
I

, , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

for the FIFSTP whose cost matrix is [    c u v wijk
I

i
I

j
I

k
IΘ Θ Θ ] such that xijk

I  ≈ 0I  for (    c u v wijk
I

i
I

j
I

k
IΘ Θ Θ ) 

 0I  and � �xijk
I  0I  for (    c u v wijk

I
i
I

j
I I

kΘ Θ Θ ) ≈ 0I .
Therefore, the minimum:

i

m

j

n

k

l

ijk
I

i
I

j
I

k
I

ijk
Ic u v w x

� � �
���� �

1 1 1

    � � � 	

subject to Equations (1)-(4) are satisfied, is intuitionistic fuzzy zero. Thus, from the Corollary of in 
this section, the solution:

x i m j n k lijk
I

, , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	

is obtained by the PSK method for a fully intuitionistic fuzzy transportation problem (or mixed 
intuitionistic fuzzy solid transportation problem) with equality constraints is a fully intuitionistic 
fuzzy optimal solution (or mixed intuitionistic fuzzy optimal solution) for the fully intuitionistic 
fuzzy solid transportation problem (or mixed intuitionistic fuzzy solid transportation problem). 
Hence proved the theorem.

Theorem

Let x i m j n k lijk
I

, , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and  be the vector of feasible (optimal) 
solutions to the IFSTP. Then any other vector:

y i m j n k lI
ijk , , , , ; , , ; , ,� � � � � �� �1 2 1 2 1 2 and 	
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(say) with the same ranking values is also feasible (optimal). That is, given a vector of feasible (optimal) 
solutions to the IFSTP, any other vector with the same ranking values is also feasible (optimal). 

Proof
The proof is trivial.

Theorem
A vector of intuitionistic fuzzy numbers is a feasible (optimal) solution to the IFSTP if and only if 
the crisp vector of its ranking values is a feasible (optimal) solution of the crisp one.

Proof
The proof is trivial.

Theorem
If some of the intuitionistic fuzzy numbers in the IFSTP (type-1, type-2, type-3 and type-4 IFSTP) 
are replaced by equivalent intuitionistic fuzzy numbers (their ranking values, for example), the new 
IFSTP has the same set of feasible (optimal) solutions. 

Proof
The proof is straightforward.

The proposed method, namely, PSK method for solving a mixed and fully intuitionistic fuzzy 
solid transportation problems are illustrated by the following examples.

ILLUSTRATIVE EXAMPLES

Example 1: Real Life MIFSTP
A company has three factories O1, O2, and O3 that manufacture the same product of umbrellas in 
three different places. The company manager would like to transport umbrellas from three different 
factories to three different retail stores D1, D2, and D3. All the factories are connected to all the retail 
stores by the three different mediums called land, water, space and umbrellas are transported by means 
of motorcycle (E1), ship (E2) and aircraft (E3). The availability(availability of umbrellas are depends 
on its production but production depends on men, machine, etc.) of umbrellas are not known exactly 
due to long power cut, labour’s over time work, unexpected failures in machine etc. The demand of 
an umbrella is not known exactly due to seasonal changes (In rainy days the sale of an umbrella is 
more when compared to sunny days). The transportation cost is not known exactly due to variations 
in rates of petrol, traffic jams, weather in hilly areas etc. Similarly, the capacity of different modes of 
transport is not known exactly (Since it depends on size of the transport, structure of the transport, 
efficiency of the transport etc.). So, all the parameters of the STP are given in mixture of crisp 
numbers, triangular fuzzy numbers and triangular intuitionistic fuzzy numbers. The transportation 
cost for an umbrella from three different factories to three different retail stores by means of three 
different transports are given in Table 3 from the past experience.

In this table, c111 = 4; c
112

= (5,7,9); 
cI
113

= (7,8,9)(6,8,10); 
cI
121

= (1,3,5)(0,3,6); c
122

= 9; 
c
123

= (5,7,9); c
131

= (4,6,8); cI
132

= (5,8,10)(1,8,11); c
133

= 2; c
211

= (2,4,6); cI
212

= (1,2,3)(0,2,4); 
c

213
= 6; c

221
=1; c222 = (2,3,4); cI

223
= (4,8,12)(3,8,13); cI

231
=(7,8,9)(6,8,10); c

232
= 4; 

c
233

= (4,5,6); cI
311

= (4,8,12)(3,8,13); c
312

= 1; c
313

= (2,3,4); c
321

= (2,4,6); cI
322

= (5,8,10)
(1,8,11); c

323
= 3; c

331
= 5; c

332
= (4,6,8); cI333 = (3,4,5)(2,4,6). 
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Supply: a1 = (10,11,12), a2 = 13, aI3 = (4,10,16)(2,10,18)

Demand: bI1 = (5,8,10)(1,8,11), b2 = (10,15,20), b3 = 12
Conveyance: e1 = 11, e2 = (12,14,16), eI3 = (3,8,16)(0,8,19)

Find the optimal allocation which minimizes total intuitionistic fuzzy transportation cost.

Solution: For each mixed intuitionistic fuzzy number, its ranking indices is obtained by using the 
Varghese and Kuriakose (2012) ranking procedure as follows:

�� �cI111 = 4, �� � �cI
112

7, �� �cI
113

= 8, �� �cI
121

= 3, �� � �cI
122

9, �� � �cI
123

7, 	

�� � �cI
131

6, �� � �cI
132

7, �� � �cI
133

2, �� � �cI
211

4, �� � �cI
212

2, �� � �cI
213

6,	 

�� � �cI
221

1, �� � �cI222 3, �� � �cI
223

8, �� � �cI
231

8, �� � �cI
232

4, �� � �cI
233

5, 	

�� � �cI
311

8, �� � �cI
312

1, �� � �cI
313

3, �� � �cI
321

4, �� � �cI
322

7, �� � �cI
323

3, 	

�� � �cI
331

5, �� � �cI
332

6, �� � �cI333 4	

Supply: �� � �a1  11, �� � �a2  13, �� � �aI3  10

Demand: �� � �bI1  7, �� � �b2 15, �� � �b3  12

Conveyance: �� � �e1 11, �� � �e2 14, �� � �eI3  9

Table 3. Tabular representation of real life 3 × 3 × 3 MIFSTP

Capacity

ek

E1 E1 E1 e1

E2 E2 E2
e2

E3 E3 E3 eI3

Retail Stores →﻿
Factories ↓ D1 D2 D3

Supply

ai

O1 c111 c
112

cI
113

cI
121

c
122

c
123

c
131

cI
132

c
133

a1

O2
c

211
cI

212
c

213
c

221
c222 cI

223
cI

231
c

232
c

233
a2

O3 cI
311

c
312

c
313

c
321

cI
322

c
323

c
331

c
332

cI333 aI3

Demand bI1 b2 b3
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Now using step 2 of the proposed method, we get:

i

m

i
j

n

j
k

l

ka b e
� � �
� � �� � �� � � � � �

1 1 1

( ) =34	

Hence, the given problem is a BMIFSTP.
Now, using step 3 and step 4 of the proposed method, in conformation to Model (P*) 

mixed intuitionistic fuzzy solid transportation problem can be transformed into its equivalent 
crisp solid transportation problem (refer to Table 4) by using the ranking method of Varghese 
and Kuriakose.

After using step 5 of the proposed method, the optimal allotment (refer to Table 5) of the above 
problem is given.

The minimum objective value Z= (2×0) + (1×7) + (3×2) + (1×9) + (3×4) + (6×3) + (2×9) = 
70 and the optimal solution is:

x
121

2= , x
133

9= , x
221

9= , x
222

4= , x
232

0= , x
312

7= , x
332

3= 	

After using step 6 of the proposed method, now using step 7, we get the optimal solution directly 
of the MIFSTP is as follows:

x
121

2 2 2 2 2 2� � �� �, , , , , x
133

3 8 16 0 8 19� � �� �, , , , , x
221

9 9 9 9 9 9� � �� �, , , , , 	

x
222

2 4 6 2 4 6� � �� �, , , , , x
232

0 0 0 0 0 0� � �� �, , , , , x
312

5 8 10 1 8 11� � �� �, , , , , 	

x
332

3 3 3 3 3 3� � �� �, , , , 	

The minimum objective value is denoted by Min Z I  and is equal to:

Table 4. Crisp version of real life MIFSTP (Example 1)

Capacity

ek
E1 E1 E1 11

E2 E2 E2 14

E3 E3 E3 9

Retail Stores →﻿
Factories ↓ D1 D2 D3

Supply

ai
O1 4 7 8 3 9 7 6 7 2 11

O2 4 2 6 1 3 8 8 4 5 13

O3 8 1 3 4 7 3 5 6 4 10

Demand bj 7 15 12
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Min Z I = (1, 3, 5)(0,3,6) ×(2,2,2)(2,2,2)+2×(3,8,16)(0,8,19)+1×(9,9,9)(9,9,9)+(2,3,4) 	
×(2,4,6)(2,4,6)+4×(0,0,0)(0,0,0)+1×(5,8,10)(1,8,11)+ (4,6,8) ×(3,3,3)(3,3,3)	

Min Z I = (1, 3, 5)(0,3,6) × ℜ [(2,2,2)(2,2,2)]+(2,2,2)(2,2,2)× ℜ [(3,8,16)(0,8,19)]	
+ (1,1,1)(1,1,1)× ℜ [(9,9,9)(9,9,9)]+(2,3,4) (2,3,4) × ℜ [(2,4,6)(2,4,6)]+(4,4,4)(4,4,4) 	
× ℜ [(0,0,0)(0,0,0)]+(1,1,1)(1,1,1)× ℜ [(5,8,10)(1,8,11)]+ (4,6,8)(4,6,8) × ℜ [(3,3,3)(3,3,3)]	

Min Z I =(1,3,5)(0,3,6) ×2+(2,2,2)(2,2,2)×9+(1,1,1)(1,1,1)×9+(2,3,4) (2,3,4)×4	
+ (4,4,4)(4,4,4)×0+(1,1,1)(1,1,1)×7 + (4,6,8)(4,6,8)×3	

Min Z I =(2,6,10)(0,6,12)+(18,18,18)(18,18,18)+(9,9,9)(9,9,9)+(8,12,16)(8,12,16)	
+ (0,0,0)(0,0,0)+(7,7,7)(7,7,7)+(12,18,24)(12,18,24)	

Min Z I = (56, 70,84) (54, 70,86)	

Hence, the total minimum intuitionistic fuzzy transportation cost is:

Min Z I = (56, 70,84) (54, 70,86)	

�� � � �� �� � �Z I
56 70 84 54 70 86 70, , , , 	 (10)

Example 2: Real Life Type-4 IFSTP
A firm has three factories S1, S2, and S3 that manufacture the same product of air coolers in three 
different places. The firm manager would like to transport air coolers from three different factories 
to three different warehouses W1, W2, and W3. All the factories are connected to all the warehouses 

Table 5. Crisp optimal table of real life MIFSTP (Example 1)

Capacity

ek
E1 E1 E1 11

E2 E2 E2 14

E3 E3 E3 9

Retail Stores →﻿
Factories ↓ D1 D2 D3

Supply

ai
O1 4 7 8 3(2) 9 7 6 7 2(9) 11

O2 4 2 6 1(9) 3(4) 8 8 4(0) 5 13

O3 8 1(7) 3 4 7 3 5 6(3) 4 10

Demand bj 7 15 12
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by the three different mediums called land, water, space and air coolers are transported by means of 
motorcycle (E1), ship (E2) and aircraft (E3). The availability (availability of air coolers depends on its 
production but production depends on machine, men, etc.) of air coolers are not known exactly due 
to labour’s over time work, long power cut, unexpected failures in machine etc. The demand of air 
coolers is not known exactly due to seasonal changes (In sunny days the sale of air coolers is greater 
when compared to rainy days). The transportation cost is not known exactly due to variations in rates 
of petrol, weather in hilly areas, traffic jams etc. So, all the parameters of the STP are in uncertain 
quantities which are given in terms of TIFN. The transportation costs (rupees in hundreds) for an air 
cooler from different factories to different warehouses by means of different modes of transport are 
given in Table 6 from the past experience.

In this table, cI111 = (3,4,5)(2,4,6); cI
112

= (5,8,10)(1,8,11); cI
113

 = (7,8,9)(6,8,10); cI
121

 = (1,3,5)
(0,3,6); cI

122
= (3,8,16)(0,8,19); cI

123
=  (5,8,10)(1,8,11); cI

131
=  (4,6,8)(3,6,9); cI

132
= (5,8,10)

(1,8,11); cI
133

= (1,2,3)(0,2,4); cI
211

= (3,4,5)(2,4,6); cI
212

= (1,2,3)(0,2,4); cI
213

=  (2,6,10)(1,6,11); 
cI

221
= (0.5,1,1.5)(0,1,2); cI222 = (1,3,5)(0,3,6); cI

223
= (4,8,12)(3,8,13); cI

231
=(7,8,9)(6,8,10); 

cI
232

= (3,4,5)(2,4,6); cI
233

= (2,5,8)(1,5,9); cI
311

= (4,8,12)(3,8,13); cI
312

= (0.5,1,1.5)(0,1,2); 
cI

313
= (1,3,5)(0,3,6); cI

321
= (3,4,5)(2,4,6); cI

322
= (5,8,10)(1,8,11); cI

323
= (1,3,5)(0,3,6); 

cI
331

= (2,5,8)(1,5,9); cI
332

= (4,6,8)(3,6,9); cI333 = (3,4,5)(2,4,6).

Supply: aI1 = (3,10,20)(0,10,23), aI2 = (6,12,21)(2,12,25), aI3 = (4,10,16)(2,10,18)

Demand: bI1 = (5,8,10)(1,8,11), bI2 = (12,16,19)(7,16,21), bI3 = (4,12,20)(2,12,22)
Conveyance: eI1 = (3,10,20)(0,10,23), eI2 = (10,16,20)(2,16,22), eI3 = (3,8,16)(0,8,19)

Table 6. Tabular representation of real-life type-4 IFSTP

Capacity

eIk

E1 E1 E1 eI1

E2 E2 E2
eI2

E3 E3 E3
eI3

Warehouses →﻿
Factories ↓ W1 W2 W3

Supply

ai
I

S1 cI111 cI
112

cI
113

cI
121

cI
122

cI
123

cI
131

cI
132

cI
133

aI1

S2 cI
211

cI
212

cI
213

cI
221

cI222 cI
223

cI
231

cI
232

cI
233

aI2

S3 cI
311

cI
312

cI
313

cI
321

cI
322

cI
323

cI
331

cI
332

cI333 aI3

Demand bI1 bI2 bI3
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Find the optimal allocation which minimizes total intuitionistic fuzzy transportation cost.

Solution: For each fully intuitionistic fuzzy number, its ranking indices is obtained by using the 
Varghese and Kuriakose (2012) ranking procedure as follows:

�� � �cI111 , �� � �cI
112

7, �� � �cI
113

8, �� � �cI
121

3, �� � �cI
122

9, �� � �cI
123

7, �� � �cI
131

6, 

�� � �cI
132

7, �� � �cI
133

2, �� � �cI
211

4, �� � �cI
212

2, �� � �cI
213

6, �� � �cI
221

1, 	

�� � �cI222 3, �� � �cI
223

8, �� � �cI
231

8, �� � �cI
232

4, �� � �cI
233

5, �� � �cI
311

8,	 

�� � �cI
312

1, �� � �cI
313

3, �� � �cI
321

4, �� � �cI
322

7, �� � �cI
323

3, �� � �cI
331

5, 	

�� � �cI
332

6, �� � �cI333 44	

Supply: �� � �aI1 11, �� � �aI2 13, �� � �aI3  10

Demand: �� � �bI1 7, �� � �bI2 15, �� � �bI3  12

Conveyance: �� � �eI1 11, �� � �eI2 14, �� � �eI3  9

Now using step 2 of the proposed method, we get:

i

m

i
j

n

j
k

l

ka b e
� � �
� � �� �

1 1 1

= 34	

Therefore, the given problem is a balanced type-4 IFSTP.
Now, using step 3 and step 4 of the proposed method, in conformation to Model (P*) type-4 

intuitionistic fuzzy solid transportation problem can be transformed into its equivalent crisp solid 
transportation problem (refer to Table 7) by using the ranking method of Varghese and Kuriakose.

Table 7. Crisp version of real-life type-4 IFSTP (Example 2)

Capacity

ek
E1 E1 E1 11

E2 E2 E2 14

E3 E3 E3 9

Warehouses →﻿
Factories ↓ W1 W2 W3

Supply

ai
S1 4 7 8 3 9 7 6 7 2 11

S2 4 2 6 1 3 8 8 4 5 13

S3 8 1 3 4 7 3 5 6 4 10

Demand bj 7 15 12
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After using step 5 of the proposed method, the optimal allotment (refer to Table 8) of the 
above problem.

The minimum objective value:

Z= (2×0) + (1×7) + (3×2) + (1×9) + (3×4) + (6×3) + (2×9) = 70	
x

121
2= , x

133
9= , x

221
9= , x

222
4= , x

232
0= , x

312
7= , x

332
3= 	

After using step 6 of the proposed method, now using step 7, we get the optimal solution directly 
of the IFSTP of type-4 is as follows:

x
121

1 2 3 0 2 4= ( )( ), , , , , x
133

3 8 16 0 8 19= ( )( ), , , , , x
221

3 8 16 0 8 19= ( )( ), , , , , x
222

3 4 5 2 4 6= ( )( ), , , , , 	
x

232
0 0 0 0 0 0= ( )( ), , , , x

312
5 8 10 1 8 11= ( )( ), , , , , x

332
1 3 5 0 3 6= ( )( ), , , , . 	

The minimum objective value:

��Z I= (1,3,5)(0,3,6) × (1,2,3)(0,2,4) + (1,2,3)(0,2,4) × (3,8,16)(0,8,19) + (0.5,1,1.5)(0,1,2)	 
× (3,8,16)(0,8,19) + (1,3,5)(0,3,6) × (3,4,5)(2,4,6)+ (3,4,5)(2,4,6) × (0,0,0)(0,0,0)	 ﻿
+ (0.5,1,1.5)(0,1,2) × (5,8,10)(1,8,11) + (4,6,8)(3,6,9) × (1,3,5)(0,3,6)	

The minimum objective value:

��Z I= (1,3,5)(0,3,6) × ℜ [(1,2,3)(0,2,4)]+ (1,2,3)(0,2,4) × ℜ [(3,8,16)(0,8,19)] + (0.5,1,1.5)(0,1,2)	 
× ℜ [(3,8,16)(0,8,19)] + (1,3,5)(0,3,6) × ℜ [(3,4,5)(2,4,6)] + (3,4,5)(2,4,6) × ℜ [(0,0,0)(0,0,0)] 	
+ (0.5,1,1.5)(0,1,2) × ℜ [(5,8,10)(1,8,11)]+ (4,6,8)(3,6,9) ×ℜ [(1,3,5)(0,3,6)]	

The minimum objective value:

Table 8. Crisp optimal table of real-life type-4 IFSTP (Example 2)

Capacity

ek
E1 E1 E1 11

E2 E2 E2 14

E3 E3 E3 9

Warehouses →﻿
Factories ↓ W1 W2 W3

Supply

ai
S1 4 7 8 3(2) 9 7 6 7 2(9) 11

S2 4 2 6 1(9) 3(4) 8 8 4(0) 5 13

S3 8 1(7) 3 4 7 3 5 6(3) 4 10

Demand bj 7 15 12
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��Z I=(1,3,5)(0,3,6)×(2)+(1,2,3)(0,2,4)×(9)+(0.5,1,1.5)(0,1,2)×(9)+(1,3,5)(0,3,6)×(4)	
+(3,4,5)(2,4,6)×(0)+(0.5,1,1.5)(0,1,2)×(7)+(4,6,8)(3,6,9)×3	

Min �Z I =(2,6,10)(0,6,12)+ (9, 18, 27)(0, 18, 36)+ (4.5,9,13.5)(0,9,18) +(4,12,20)(0,12,24)	 
+(0,0,0)(0,0,0) +(3.5,7,10.5)(0,7,14)+ (12, 18, 24) (9, 18, 27)	

Min �Z I = (35, 70,105) (9, 70,131)	

Hence, the total intuitionistic fuzzy transportation minimum cost is:

Min �Z I = (35, 70,105) (9, 70,131)	

ℜ ℜ( ) = ( )( ) =�Z I 35 70 105 9 70 131 70, , , , 	

RESULTS AND DISCUSSION

The minimum total intuitionistic fuzzy transportation cost of problem 1 is:

Min �Z I = (56, 70,84) (54, 70,86)	 (11)

The result in (11) can be explained in Figure1.
The degree of acceptance of the transportation cost for the DM increases if the cost increases from 

54 to 56; while it decreases if the cost increases from 56 to 70. Beyond (56,86), the level of acceptance 
or the level of satisfaction for the DM is zero. The DM is totally satisfied or the transportation cost is 
totally acceptable if the transportation cost is 70. The degree of non-acceptance of the transportation 
cost for the DM decreases if the cost increases from 54 to 70 while it increases if the cost increases 
from 70 to 86. Beyond (54,86), the cost is totally un-acceptable.

Assuming that µ �ZI c( )  is membership value (degree of acceptance or level of satisfaction) and 
ϑ�ZI c( )  is non-membership value (degree of non-acceptance) of transportation cost c. Then the degree 

Figure 1. Graphical representation of MIFSTC
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of acceptance of the transportation cost c is 100�µ �ZI c( )%  for the DM and the degree of non-acceptance 
is 100ϑ�ZI c( )%  for the DM. The degree of hesitation for the acceptance of the transportation cost c 

is given by 100 π �ZI c( )%  where π µ ϑ� � �Z Z ZI I Ic c= − ( )− ( )( )1  represents the hesitation index. 

Values of µ �ZI c( )  and ϑ�ZI c( )  at different values of c can be determined using equations 
given below:

µ �ZI c

c

c
c

c

c
( ) =

<
−

≤ ≤

=
−

0 56

56

14
56 70

1 70

84

14

,

,

,

,

for

for 

for 

forr 

for 

� �

, � �

70 84

0 84

≤ ≤

>











c

c

	

and:

ϑ�ZI c

c

c
c

c

c
( ) =

<
−

≤ ≤

=
−

1 54

70

16
54 70

0 70

70

16

,

,

,

,

for 

for 

for

foor  

for

�

, ��

70 86

1 86

≤ ≤

>











c

c

	

Advantages of the Proposed Method
By using the proposed method a decision maker has the following advantages:

1. 	 We need not find out the basic feasible solution and we need not apply the optimality test because 
the solution obtained by proposed method is always optimal;

2. 	 The proposed method is a single step method. So, the use of intuitionistic fuzzy modified 
distribution is not required.

CONCLUSION

The MIFSTPs and type-4 IFSTPs are solved by the proposed method which differs from the existing 
methods namely, intuitionistic fuzzy modified distribution method and intuitionistic fuzzy zero point 
method. Basically, intuitionistic fuzzy modified distribution method having too many steps. Also, it 
depends on the intuitionistic fuzzy initial basic feasible solution. Similarly, intuitionistic fuzzy zero 
point method also has the numerous number of steps. But, the proposed method doesn’t depend on 
the intuitionistic fuzzy initial basic feasible solution and also it has a minimum number of steps. In 
intuitionistic fuzzy modified distribution method, the optimality test is required whereas in intuitionistic 
fuzzy zero point method the optimality test is not required. The main advantage of the PSK method 
is that the obtained solution is always optimal. To apply this method, there is no necessity to have 
m n l+ + −( )2  number of non-negative allotted entries (i.e., basic feasible solution). Also, we need 
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not test the optimality condition. It is applicable to type-1, type-2, type-3 and type-4 IFSTPs. The 
proposed method can help decision-makers in the logistics related issues of real-life problems by 
aiding them in the decision-making process and providing an optimal solution in a simple and effective 
manner. This proposed method will reduce the decision-makers computation time. Further, it can be 
served as an important tool for a decision-maker when he/she handles various types of logistic 
problems having different types of parameters.
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