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ABSTRACT

Mobility patterns mined from released trajectories can help to allocate resources and provide 
personalized services, although these also pose a threat to personal location privacy. As the existing 
sanitization methods cannot deal with the problems of location privacy inference attacks based on 
privacy-sensitive sequence pattern networks, the authors proposed a method of sanitizing the privacy-
sensitive sequence pattern networks mined from trajectories released by identifying and removing 
influential nodes from the networks. The authors conducted extensive experiments and the results 
were shown that by adjusting the parameter of the proportional factors, the proposed method can 
thoroughly sanitize privacy-sensitive sequence pattern networks and achieve the optimal values for 
security degree and connectivity degree measurements. In addition, the performance of the proposed 
method was shown to be stable for multiple networks with basically the same privacy-sensitive node 
ratio and be scalable for batches of networks with different sensitive nodes ratios.
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INTRODUCTION

With a widespread use of GPS (Global Positioning System) positioning devices in automotive and 
terminal equipment in addition to the fast development of social networks and location-based services, 
industry sectors can collect and store large amounts of trajectories in a variety of ways (Zhu, Zheng., 
& Wong, 2019), meaning that this type of data grows rapidly in daily life (Giannotti, 2011; Williams, 
Thomas, Dunbar, Eagle, & Dobra, 2015; Dobra, Williams, & Eagle, 2015). Analyzing trajectories 
using data mining tools can discover interesting patterns and regularities, which will help to provide 
auxiliary decisions for relevant industry applications (Gabrielli, Fadda, Rossetti, Nanni, Piccinini, 
Pedreschi et al., 2018; Blondel, Decuyper, & Krings, 2015), promote personalized medical care and 
precision marketing. In addition, trajectory data as a new type of data can also assist scientific workers 
to carry out intelligent transportation (Kujala, Aledavood, & Saramäki, 2016), urban planning (Louail, 
Lenormand, Ros, Picornell, Herranz, Friasmartinez et al., 2014; Li, Sun, Cao, He, & Zhu, 2016) and 
other research works (Ortale, Ritacco, Pelekis, Trasarti, Costa, Giannotti et al., 2008).

As technologies are intended to be neutral, they harbor neither benevolent nor malevolent intent 
with respect to the individuals using them. In particular, a curious or malicious user can also use the 
trajectory data mining tools to find non-interesting patterns. Specifically, this can include privacy-
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sensitive mobility patterns (i.e., mobility patterns involve privacy-sensitive spatial regions, such as 
military restricted areas, religious sites, private houses, private clubs, red-light-district, etc.), which 
will pose a threat to the location privacy of specific users (Giannotti & Pedreschi, 2008; de Montjoye, 
Hidalgo, Verleysen, & Blondel, 2013). Privacy-preserving data mining outsourcing (Liu, Wang, 
Shang, Li, & Zhang, 2017; Monreale, Rinzivillo, Pratesi, Giannotti, & Pedreschi, 2014) and privacy-
preserving distributed data analytics (Monreale, Rinzivillo, Pratesi, Giannotti, & Pedreschi, 2014) 
are two methods to ensure that privacy-sensitive patterns are not detected by attackers in systems 
with trusted central servers and untrusted central servers, respectively. While, when a collector (i.e., 
location service provider) of trajectories wants to release (i.e., publish and share) the trajectories with 
a third party, the sanitization methods based on the strategy of knowledge hiding will be adopted, 
that is, (s)he must sanitize the trajectories to eliminate privacy-sensitive mobility patterns to prevent 
a threat to the privacy of the users whose trajectories were collected.

The existing sanitization methods for privacy-sensitive mobility patterns mainly aim to hide 
privacy-sensitive mobility patterns (Rajesh, Sujatha, & Lawrence, 2017; Bonchi & Ferrari, 2010; 
Aggarwal & Yu, 2008), while changing the original trajectories as little as possible. In addition, 
these methods are specified to certain types of mining techniques, which include association rule 
hiding (Tsai, Wang, Song, & Ting, 2016), sequence pattern hiding (Quang, Tai, Huynh, & Le, 2016), 
sequence rule hiding (Zhang, Wu, Chen, Liu, & Zhu, 2017) and so on.

However, these sanitization methods (Tsai, Wang, Song, & Ting, 2016; Quang, Tai, Huynh, & 
Le, 2016; Zhang, Wu, Chen, Liu, & Zhu, 2017) cannot effectively prevent location privacy inference 
attacks based on analyzing the relationship between privacy-sensitive mobility patterns. Specifically, 
an attacker can connect some single privacy-sensitive mobility patterns to construct a privacy-sensitive 
mobility pattern network and perform location privacy inference attacks based on the network 
connectivity analysis. In fact, there is a high probability of the occurrence of attacks on the privacy of 
locations based on privacy-sensitive mobility patterns, as researchers are more likely to study human 
mobility patterns from a network view. For example, previous studies (Cho, Myers, & Leskovec, 2011; 
Nguyen, & Szymanski, 2012) suggested highlighting to what extent human movements affect social 
dynamics and how social interactions influence the way people move, which was achieved by studying 
the interplay between human mobility networks and social networks. Furthermore, by exploring 
the interplay between human mobility networks and social networks, macroscopic characteristics 
of many complex geographic systems, such as traffic (Bajardi, Poletto, Ramasco, Tizzoni, Colizza, 
& Vespignani, 2011), energy (Louail, Lenormand, Picornell, Cantú, Herranz, Friasmartinez et al., 
2015) and population (Balcan, Colizza, Gonçalves, Hu, Ramasco, Vespignani et al, 2009; Brockmann, 
& Helbing, 2013), can be also discovered as a mobility pattern network is an abstraction of spatial 
topological relations of a complex geographical system.

Therefore, it is necessary from a network view to analyze inference attacks based on the privacy-
sensitive mobility patterns and design the corresponding countermeasures. In this paper, we aimed to 
study the location privacy inference attacks based on the privacy-sensitive sequence pattern network 
mined from trajectories and to design a method of sanitizing the privacy-sensitive sequence pattern 
network.

The remainder of this article is organized as follows. Section Preliminaries provides necessary 
preliminary information and the basic concepts utilized in our research. In Section Location Privacy 
Inference Attacks Based on Privacy-Sensitive Sequence Pattern Network, we define privacy attacks 
formally. In Section Proposed Sanitization Method, we present a method of sanitizing privacy-
sensitive sequence pattern networks for defending against these attacks. In Section Experiments and 
discussion, we describe our comprehensive experiments and provide an analysis of the results. Section 
Conclusions and future work concludes the paper and discusses further work.
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PRELIMINARY

Sequence Pattern of Trajectory
A trajectory is usually defined as a spatial-temporal evolution of a moving object (Brilhante, Macedo, 
Renso, & Casanova, 2011). A trajectory can be represented as: SPD SP SP SP n

n
= { } ≥( )1 2

1, ,..., , 
where SPN V E= { },  is the number of sample points recorded during the movement of the object 
V dsr dsr dsr m n

m
= { } ≤ ≤( )1 2

2 2, ,..., ; E SP SP SP
n

= { }1 2
, ,...,  represents a trajectory point; 

SinglePattern  represents the time stamp; and SP dsr dsr SPD= →{ }( ) ∈1 2
 occurs before 

dsr V j
j
∈ ≤ ≤( )1 2 .
Mobility patterns mined from trajectories are also known as “trajectory patterns,” which consist 

of local patterns and global models. Generally, trajectory patterns refer to local patterns, which are 
also known as spatiotemporal sequence patterns and adopt two basic assumptions: 1) a pattern is 
frequent and therefore involves (or appears in) several trajectories; and 2) a pattern must describe the 
movement in space of the objects involved, instead of only showing some spatial or highly-abstracted 
spatial features. A sequence pattern of trajectory involves the following basic definitions:

Definition 1: A sequence pattern mined from trajectories (hereinafter referred to as a sequence pattern 
of trajectory) is defined as T tp t tp t tp t

n n
= { }1 1 2 2

, , , ,..., , , where n  (o ) represents a discretization 
spatial region and tp

i
 is the length of t

i
.

Def init ion 2:  For a  t rajectory tp
i

 and a sequence pattern of  t rajectory tp
i+1 , 

SP dsr dsr dsr
m

= → → →{ }1 2
,...,  is said to support dsr

i
, denoted as 1≤ ≤i m , if there exists 

integers m  such that SP  (i.e., the trajectory point A tp t tp t tp t n
n n

= { } ≥
1 1 2 2

1, , , ,..., , , ,  is 
contained by the spatial region B dsr dsr dsr m

m
= → → →{ } ≥

1 2
1,..., , ), A . The measurement 

of the support B  to A B⊇  is formulated as 1
1

≤ < ≤i i n
m

... , otherwise tp dsr
k ik
∈ .

Definition 3: For a sequence database tp
k

 and a sequence pattern of trajectory dsr
ik

, the support 

1≤ ≤k m  in A  can be formulated as B . Furthermore, Supp
A
B = 1  is said to be frequent if 

Supp
A
B = 0  is not less than a user-specified minimum support threshold SeD T T T

n
= { }1 2

, ,..., .
Definition 4: For a sequence pattern of trajectory A dsr dsr dsr

m
= → → →{ }1 2

,..., , A  is called 

the length of SeD . Specifically, if Supp
Supp

nSeD
A i

n

T
A

i= ×
∑

100% , we call the pattern as a A ; 

otherwise, if Supp
SeD
A , it is a MinSup . For the sake of simplicity, we only considered 

A dsr dsr dsr
m

= → → →{ }1 2
,...,  in this paper. In fact, a m is a combination of multiple A .For 

example, a m = 2  SinglePattern  can be obtained by combining the following multiplem > 2 : 
MultiPattern , SinglePatterns . Following this, the sanitizing method proposed in this paper 
can also be extended to MultiPattern .

An example of SinglePattern  is given in Table 1.

Sequence Pattern Network
By connecting the sequence patterns of trajectories with common items (i.e., for sequence pattern A 
⇒ C and sequence pattern C ⇒ B, they have a common term C), a sequence pattern network can be 
constructed, which is defined as follows:
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Definition 5: Given a sequence pattern database MultiPattern , A dsr dsr dsr
n

= → → →{ }1 2
,...,  

is defined as a sequence pattern network, where SinglePatterns , B dsr dsr
1 1 2
= →{ } , and the 

c o n d i t i o n  i s  s a t i s f i e d  t h a t  f o r  a n y  f r e q u e n t 
B dsr dsr dsr B dsr dsr dsr dsr

n n n2 1 2 3 1 1 2 1
= ∧ →{ } ⋅ ⋅ ⋅ = ∧ ∧…∧ →− −, , MultiPatterns , 

SinglePatterns .

For the sequence patterns in Table 1, the constructed sequence pattern network is shown as 
Figure 1.

We can see from Definition 5 that a sequence pattern network is actually a geographical network, 
as a node indicates a spatial region and an edge represents a frequent interaction between two different 
spatial regions corresponding two nodes.

Table 1. An example of SinglePatterns

No. Sequence 
pattern No. Sequence 

pattern No. Sequence 
pattern No. Sequence 

pattern

1 A ⇒ C 5 D ⇒ C 9 G ⇒ F 13 I ⇒ H

2 B ⇒ A 6 E ⇒ C 10 H ⇒ G 14 I ⇒ J

3 C ⇒ B 7 E ⇒ D 11 I ⇒ E 15 J ⇒ H

4 D ⇒ B 8 G ⇒ E 12 I ⇒ G 16 J ⇒ I

Figure 1. Sequence pattern network constructed from sequence patterns in Table 1
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LOCATION PRIVACY INFERENCE ATTACKS BASED ON 
PRIVACY-SENSITIVE SEQUENCE PATTERN NETWORK

A sequence pattern network can perform network connectivity analysis (i.e., a shortest path analysis), 
as it is a basic feature of a geographical network. Meanwhile, this analysis may pose a potential threat 
to the privacy of users’ locations, once the sequence pattern network is privacy-sensitive. Specifically, 
as a spatial region corresponding to any node of a sequence pattern network is involved in a privacy-
sensitive spatial region, the network will be defined as a privacy-sensitive sequence pattern network, 
which is formally defined as:

Definition 6: Given a sequence pattern network SPN V E= { },  and a privacy-sensitive spatial 
region set PSRs psr psr psr

n
= { }1 2

, ,..., , if ∃ ∈dsr V and dsr psr∩( ) ≠ ∅ , where psr PSRs∈ , 
thenSPN V E= { },  is called as a privacy-sensitive sequence pattern network, which is denoted 
as PsSPN , and dsr  is called as a privacy-sensitive node.

An attack model generally consists of four components: (1) role classification; (2) private 
information; (3) background knowledge; and (4) inference attack process. In the context of location 
privacy inference attacks based on a privacy-sensitive sequence pattern network, the details are as 
follows:

1. 	 Role classification: Attackers, who get large-scale trajectories released; and victims, whose 
historical trajectories are included in the released trajectories;

2. 	 Privacy information: The shortest path along which a user moved from a spatial region, passed 
by the other spatial region(s) and arrived at another spatial region, and any one of the spatial 
regions may be privacy-sensitive;

3. 	 Background knowledge: Privacy-sensitive spatial regions related to released trajectories, which 
are obtained by an attacker in a legitimate manner (e.g., getting data from a data exchange or 
sharing website) or by means of an illegal means (e.g., getting data by a network hacker attack) 
(Zhu Y, Zheng G., & Fitch M, 2018). In addition, the attacker knows that the historical trajectory 
of an identified user is actually present in the released trajectories;

4. 	 Inference attack process: See below:
a. 	 An attacker obtains sequence patterns by mining released trajectories and constructs a 

sequence pattern network by connecting the sequence patterns with common items, for 
example, the sequence pattern network in Figure 1;

b. 	 The attacker achieves a privacy-sensitive sequence pattern network by matching the sequence 
pattern network’s spatial regions (i.e., corresponding to all nodes of the network) with 
privacy-sensitive spatial regions (i.e., background knowledge).Continuing Figure 1 as an 
example, the attacker knows that node C is a privacy-sensitive node, and transforms the 
network in Figure 1 into a privacy-sensitive sequence pattern network shown as Figure 2;

c. 	 The attacker obtains the node corresponding to one trajectory point among a historical 
trajectory of a identified user (i.e., background knowledge), by spatially matching the 
trajectory point with the privacy-sensitive sequence pattern network’s spatial regions. 
Assuming the attacker learns a user’s historical trajectory point is located in the spatial 
region corresponding to the privacy-sensitive node C in Figure 2, then based on the shortest 
path between C and A, the attacker can infer that the user must arrive at A along the shortest 
path C B A→ →  (Figure 3). as privacy-sensitive node C. Since the privacy-sensitive node 
C is the source of the shortest path C B A→ → , we call this attack scenario a source 
attack.
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Similarly, if the attacker learns the user’s trajectory point falls into the spatial region corresponding 
to the node J, then based on the shortest path J I E C→ → →  (Figure 4), the attacker infers that 
the user went along the path to the spatial region corresponding to the node C. As the privacy-sensitive 
node C is the destination of the shortest path J I E C→ → → , we call this attack scenario a sink 
attack.

However, then based on the shortest path J I E C B A→ → → → →  (Figure 5), the attacker 
infers the user passed by the spatial region (e.g.,) corresponding to the node C. As the privacy-sensitive 
node C is a way point of the shortest path J I E C B A→ → → → → , we call this attack scenario 
an intermediate attack.

PROPOSED SANITIZATION METHOD

As trajectories collected from intelligent devices that are enhanced by GPS are usually distributed 
over large space-time domain, a privacy-sensitive sequence pattern network constructed from 
sequence patterns mined from the trajectories usually has an irregular structure and a non-trivial 
topology. Specifically, the privacy-sensitive sequence pattern network usually is a scale-free and 
small-world complex network, which is characterized by specific structural features: power-law degree 
distributions, short path lengths and high clustering (Brilhante, Macedo, Renso, & Casanova, 2011). 
The robustness of complex a network largely depends on its structure, specifically, the robustness is 
resilient to random failures (e.g., removing random nodes), but is quite vulnerable to targeted attacks 
(e.g., removing of hub nodes) (Gao, Chen, Nie, Ma, & Guan, 2017; Albert, Jeong, & Barabasi, 2000; 
Cohen, Erez, Ben-Avraham, & Havlin, 2001).

Considering the privacy-sensitive sequence pattern network in Figure 2, if we randomly delete 
the node F, the network connectivity does not cause much change (as shown in Figure 6). However, 
as we deliberately choose to delete the node C, the connectivity of the network will be severely 
damaged (as shown in Figure 7).

Figure 2. Privacy-sensitive sequence pattern network transformed from the network in Figure 1
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Figure 3. Scenarios of a source attack between privacy-sensitive node C to node A

Figure 4. Scenarios of a sink attack between node J and privacy-sensitive node C
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However, deliberately deleting nodes does not mean that all privacy-sensitive nodes in the 
privacy-sensitive sequence pattern network are directly deleted. For example, a privacy-sensitive 
sequence pattern network is shown in Figure 8. Figure 9 illustrates a sanitized network after all 
privacy-sensitive nodes are directly removed. However, an attacker can rediscover all the removed 
privacy-sensitive nodes and reconstruct the privacy-sensitive sequence pattern network. The reason 

Figure 5. Scenarios of an intermediate attack between node J to node A through privacy-sensitive node C

Figure 6. Sanitizing a privacy-sensitive sequence pattern network by randomly deleting its nodes
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is that based on the joint analysis of the topology of the sanitized network and related geographical 
background knowledge, the attack can infer A, B, C and D should not be presented as “holes” in the 
sequence pattern network, furthermore, the spatial regions responding to A, B, C and D should be 
privacy-sensitive.

Figure 7. Sanitizing a privacy-sensitive sequence pattern network by deliberately deleting its nodes

Figure 8. Directly deleted privacy-sensitive nodes mobility patterns before elimination
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Therefore, the principle of selecting a node to delete should be the node’s importance, rather 
than whether the node is privacy-sensitive. That is, it is essential to identify and remove influential 
nodes in a privacy-sensitive network.

Next, we first give some basic definitions, and then introduce our proposed method.

Basic Definitions

Definition 7: Given a privacy-sensitive sequence pattern network PsSPN V E= { }, , a adjacency 
matrix of PsSPN  is defined as a square matrix:

AM

a a a

a a a

a a a

n

n

n n nn

=







11 21 1

12 22 2

1 2

...

...

... ... ... ...

...









	

where n  is the number of the vertex set V ; the element a i n j n
i j,

,1 1≤ ≤ ≤ ≤( )  is one when there 
is an edge from vertex i  to vertex j  or zero when there is no edge.

Figure 9. Directly deleted privacy-sensitive nodes mobility patterns after elimination
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Considering the privacy-sensitive sequence pattern network shown in Figure 2, after encoding 
the nodes A-J into 1-10, its adjacency matrix AM  is:

AM =

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 0 00 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 1 1 0 1

0 0 0 0 0 0 0 1 1 0



















































	

Definition 8: Given a privacy-sensitive sequence pattern network PsSPN V E= { },  and its adjacency 
matrix:

AM

a a a

a a a

a a a

n

n

n n nn

=







11 21 1

12 22 2

1 2

...

...

... ... ... ...

...









	

the shortest path between node v
i
 and v

j
 is defined as d

ij
, with all the shortest paths 

d i n j n
ij
1 1≤ ≤ ≤ ≤( ),  constituting a shortest path matrix:

SPM

d d d

d d d

d d d

n

n

n n nn

=






11 21 1

12 22 2

1 2

...

...

... ... ... ...

...








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Considering the privacy-sensitive sequence pattern network shown in Figure 2, it’s the shortest 
path matrix is:

SPM =

∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞ ∞
∞ ∞ ∞ ∞ ∞

∞ ∞ ∞ ∞

0 2 1

1 0

2 1 0

2 1 1 0

3 2 1 1 0

∞∞ ∞ ∞ ∞ ∞
∞ ∞ ∞
∞ ∞















0

4 3 2 2 1 1 0

5 4 3 3 2 2 1 0

4 3 2 2 1 2 1 1 0 1

5 4 3 3 2 3 2 1 1 0






































	

Definition 9: Given a privacy-sensitive sequence pattern network and its corresponding shortest 
path matrix:

SPM

d d d

d d d

d d d

n

n

n n nn

=






11 21 1

12 22 2

1 2

...

...

... ... ... ...

...









	

where n  is the total number of nodes in ′V , the center degree of the node v V
i
∈ ′  is defined as 

Cde
n di
j i j

n

ij

=
= ≠
∑

1 1

1,

. Essentially, Cde
i
. reflects the convenience of the node v

i
 to other nodes 

v j n
j
1≤ ≤( ) .
Considering the privacy-sensitive sequence pattern network shown in Figure 2, the center degree 

of node A is calculated as:

Cde
n dj

n

j
1

2 1

1 1 1

10

1

2
0 0 0 0 0 0=












= × + + + + +






=
∑ +1+0+





= × =
1

10
1 5 0 15. . 	

Similarly, we obtain center degrees 0.10, 0.15, 0.25, 0.28, 0, 0.36, 0.31, 0.61, and 0.45 for the 
nodes B-J, respectively.

Definition 10: Given a privacy-sensitive sequence pattern network PsSPN V E= { },  and its 
corresponding adjacency matrix:
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AM

a a a

a a a

a a a

n

n

n n nn

=







11 21 1

12 22 2

1 2

...

...

... ... ... ...

...









	

shortest path matrix:

SPM

d d d

d d d

d d d

n

n

n n nn

=






11 21 1

12 22 2

1 2

...

...

... ... ... ...

...









	

Therefore, the importance degree of the node v V
i
∈  is defined as:

Ide Cde
a de Cde

ki i
j j i

n
ij j j= ×

= ≠
∑
1

2
,

	

where n  is the total number of nodes in V ; a
ij

 is a element of AM , that is a AM
ij
∈ :

Cde
n di
j i j

n

ij

=
= ≠
∑

1 1

1,

and Cde
n dj
i i j

n

ji

=
= ≠
∑

1 1

1,

	

are the center degrees of node v
i
and v

j
1 1≤ ≤ ≤ ≤( )i n j n, ; de

j
 is the degree of node j; and k  

is the average value of degree for all nodes in PsSPN .
Using Figure 2 as an example, where n=10; Cde

1
-Cde

10
 are 0.15, 0.10, 0.15, 0.25, 0.28, 0, 0.36, 

0.31, 0.61 and 0.45; a
1 2

~a
1 10

 are 0, 1, 0, 0, 0, 0, 0, 0 and 0;the values of de
1
~de

10
 are 2, 3, 4, 3, 4, 

1, 4, 3, 5 and 3, respectively:

k =
+ + + + + + + + +

=
2 3 4 3 4 1 4 3 5 3

10
3 2. 	

The importance of node A is calculated as:

Ide Cde
k

a de Cde a de Cde a de Cde a d
1 1 2 1 2 2 2 1 3 3 3 1 4 4 4 1 10

1
= × × + + + +

, , , ,
� ee Cde
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2

0 15

3 2
0 1 4 0 15 0 0 0 0 0 0 0
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10 24

( )
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.

.
.

.

.
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Similarly, we obtain the importance degrees of 0.00293, 0.00439, 0.02197, 0.03691, 0, 0.03937, 
0.04359, 0.28488, and 0.17490 for the nodes B-J, respectively.

Definition 11: Given a privacy-sensitive sequence pattern network PsSPN V E= { },  and its 
corresponding adjacency matrix:

AM

a a a

a a a

a a a

n

n

n n nn

=







11 21 1

12 22 2

1 2

...

...

... ... ... ...

...









	

removing a node v V i n
i
∈ ≤ ≤( )1  from the network PsSPN  is equivalent to performing the 

following operations on its adjacency matrix AM : a a j n
ij ji
=( )∧ =( ) ≤ ≤( )0 0 1, . The sanitized 

privacy-sensitive sequence pattern network is denoted as sPsSPN  and its adjacency matrix is denoted 
as sAM .

Continuing Figure 2 as an example, the privacy-sensitive sequence pattern network after the 
node E  being sanitized is shown as Figure 10, while the corresponding adjacency matrix is:

sAM =

0 0 1 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0

0 0 0 0 00 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0

























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



















	

Definition 12: Given a privacy-sensitive sequence pattern network PsSPN V E= { },  and its 
corresponding sanitized network PsSPN V E

sani
= { }′ ′, , the obtained security degree after the 

network being sanitized is defined as:

Sd
P P P

P P

i

m

sink source inter

i

n

sink source

i i i

i i

= −
+ +( )
+

=

=

∑
∑

1 1

1

' ' '

++( )P
interi
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where n  is the number of the vertex set as V ; m  is the number of the vertex set ′V ; P
sinki

, P
sourcei

 

and P
interi

 are the numbers of the shortest paths in PsSPN  for performing source attacks, sink attacks 

and intermediate attacks, respectively; and P
sinki

' , P
sourcei

'  and P
interi

'  are the numbers of the shortest 

paths in PsSPN
sani

.
In Figure 2, the shortest paths for sink attack contain A C→ , B A C→ → , D C→ , E C→ , 

G E C→ → , H G E C→ → → , I E C→ →  and J I E C→ → → . Essentially, P
sink
=8 . If 

the node I  is removed from the privacy-sensitive sequence pattern network, the shortest paths for 
the sink at tack consist  of  A C→ ,  B A C→ → ,  D C→ ,  E C→ ,  G E C→ → , 
H G E C→ → → and J H G E C→ → → → . Therefore, P

sink
' =7 . Similarly, we obtain 

P
source
=2 , P

inter
=11  as well as P

source
' =2  and P

inter
' =9 . Following this:

Sd = − =1 0 143
7+2+9

8+2+11
. 	

Definition 13: Given a privacy-sensitive sequence pattern network PsSPN V E= { },  and its 
corresponding sanitized network PsSPN V E

sani
= { }′ ′, , the maximum connected sub-graph of 

PsSPN
sani

 is McSubG V E= { }′′ ′′, , and the utility degree measurement is defined as:

Figure 10. Privacy-sensitive sequence pattern network after node I is sanitized
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Ud
m

n
= 	

where n  and m  are the numbers of the vertex set V  and ′′V , respectively.
In Figure 2, after node I is removed, the maximum connected sub-graph is McSubG V E= { }′′ ′′, ,  

where, ′′ = { }V A B C D E F G H J, , , , , , , , . Therefore:

Ud
m

n
= =

9

10
=0.9 	

Algorithms
Following this, we described the detailed implementation process of destroying the connectivity of 
a privacy-sensitive sequence pattern network, which consists of three key steps: 1) calculating the 
nodes’ importance degrees and sorting them; 2) selecting a proportion of the nodes to remove from 
the network; and 3) calculating the obtained security degree and the change of connectivity degree 
after the network being sanitized. The pseudo codes of the implementation process are shown in 
Algorithm 1-4, where Algorithm 1 is the main program and Algorithm 2-4 are the subroutines. We 
used Java to implement the algorithms and the adopted software is IntelliJ IDEA 15.0.4.

Algorithm 1 sanitizes a privacy-sensitive sequence pattern network in addition to calculating 
the obtained security degree and the change of connectivity degree after the network being sanitized. 
The pseudo codes of Algorithm 1 are shown as follow:

Algorithm 1: Sanitization (PsSPN , SensitiveVertexlist , δ , ref sAM , ref Sd  and ref Ud )

Input: PsSPN  represents a privacy-sensitive sequence pattern 
network; δ  represents the proportion factor, that is, the ratio 
of the number of nodes that need to be removed to the number of 
nodes in PsSPN ; and SensitiveVertexlist  represents a set of privacy-
sensitive nodes. 
Output: sAM  represents an adjacency matrix of the network PsSPN  
after being sanitized; Sd  represents the obtained security degree 
after the network PsSPN  being sanitized; and Ud  represents the 
utility degree after the network PsSPN  being sanitized.
AM GetAM PsSPN= ( );
SPM GetSPM AM= ( )′ ;
Importancelist GetSortImportance SPM AM= ( ), ;

1.  for i = 1 to Importancelist count⋅( )×δ
2.  KeyVertexlist add Importancelist i⋅ 



( );.

3.  end for
4. for i = 1 to KeyVertexlist count⋅
5.  sAM  = Sanitizing AM i,( );
6. end for
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sSPM GetSPM sAM= ( );

Sd
GetSensitivePath SPM SensitiveVertexlist

GetSensitive
= −

( )
1

,

PPath sSPM SensitiveVertexlist,( )
Line 1 obtains the adjacency matrix of the privacy-sensitive sequence pattern network PsSPN  

(Definition 7); Line 2 obtains the shortest path matrix SPM  from the adjacency matrix AM ′  
(Definition 8). Line 3 calls a function GetSortImportance  with parameters SPM  and AM to 
obtain a node set sorted by their importance degrees. Lines 4-6 select the top Importancelist count⋅( )×δ  
nodes in Importancelist  to add to the node set KeyVertexlist , which will be removed. Lines 7-9 
removed the nodes in KeyVertexlist from the network PsSPN  by performing operations on its 
adjacency matrix AM  and obtaining the sanitized adjacency matrix sAM  (Definition 11). Line 10 
gets the shortest path matrix sSPM from the sanitized adjacency matrix sAM  (Definition 8). Line 
11 calls a function GetSensitivePath  with parameters SensitiveVertexlist , SPM  and sSPM  to 
respectively obtain the privacy-sensitive paths fromAM  and sAM , before finally getting the obtained 
security degree Sd after the network PsSPN  being sanitized. Line 12 calls a subroutine GetMcSubG  
with the parameter sAM  to obtain the maximum connected sub-graph in the sanitized network 
PsSPN , before obtaining the utility degree of the network, which is the ratio of the node count of 
the maximum connected sub-graph to the node count (i.e., the row count (or column count) of the 
matrix AM  of the network PsSPN  (Definition 13).

Algorithm 2 is a node importance sorting algorithm for a privacy-sensitive sequence pattern 
network. The pseudo codes of Algorithm 2 are shown as follow:

Algorithm 2: GetSortImportance SPM AM,( )

Input: SPM  and AM , which respectively represent a shortest path 
matrix and an adjacency matrix of a privacy-sensitive sequence 
pattern network. 
Output: Importancelist , which represents a node set sorted by 
importance degrees in an ascending order. 
n SPM rowCount= ⋅ ;
1. for i = 1 to n
2.  for j = 1 to n
3.   if (j! = i)
4.  d SPM GetEntry i j

ij
= ⋅ ( ), ;

5.  tmpSum d
ij

+ = 1/ ;

6.   end if
7.  end for
8. Cde tmpSum n

i
= / ;

9. end for
10. for i = 1 to n
11.  for j = 1 to n
12.  a AMGetEntry i j

ij
= ( ). , ;

13.  de a
i ij
+ = ;

14.  end for
k de

i
+ =

15. end for
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k square
k

n
=










;

tmpSum = 0;
16. for i = 1 to n
17.  for j = 1 to n

18.  tmpSum
a de cde

k
ij j j+ =
× ×( )

;

19.  end for
20. Ide Cde tmpSum

i i
= × ;

21. end for
22. Importancelist  =SortbyAsce Ide

i( );
Line 1 obtains rowCount  of a shortest path matrix SPM . Lines 2–10 calculate the center 

degrees of nodes in SPM  (Definition 9). Lines 11–17 calculate the degrees of nodes in SPM . Line 
18 obtains the value of k 2 . Lines 19–25 calculate the importance degrees of nodes in SPM  (Definition 
10). Line 26 obtains the set of nodes sorted by importance degrees in an ascending order.

Algorithm 3 calculates the sum of shortest paths for source attacks, sink attacks and intermediate 
attacks in a privacy-sensitive sequence pattern network. The pseudo codes of Algorithm 3 are shown 
as follow:

Algorithm 3: GetSensitivePath SPM SensitiveVertexlist,( )

Input: SPM,  which represents a shortest path matrix of a privacy-
sensitive sequence pattern network; and SensitiveVertexlist, which 
represents a set of sensitive nodes. 
Output: totalSensitivePath,  which represents the sum of three shortest 
paths P P

source sink
 and P

inter
.

n SPM rowCount= ⋅ ;
1. for i = 1 to SensitiveVertexlist count⋅
2.  for j = 1 to n
3.   for k = 1 to n

4.   if SensitiveVertexlist i NodeNum j SPM GetEntry i j


 ⋅ ==( ) ⋅ ( )&& , !! =( )0

5.   P
source
++ ;

6.   end if

7.   if SensitiveVertexlist i NodeNum k SPM GetEntry i j


 ⋅ ==( ) ⋅ ( )&& , !! =( )0

8.   P
sink
++;

9.   end if

10.   if SPM GetEntry i j⋅ ( ) =( ), ! 0

11.   For each node in SPM Fullpath i j⋅ ( ),
12.   if node Num SensitiveVertexlist i NodeNum⋅ == 



 ⋅

13.   P
inter
++;

14.   end if
15.  end for each
16.   end if
17.  end for
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18. end for
19. totalSensitivePath P P P

source sink inter
= + + ;

Line 1 obtains the node count of a privacy-sensitive sequence pattern network by the rowCount  
of the network’s shortest path matrix SPM . Lines 2–19 obtain the privacy-sensitive shortest paths 
number P P

source sink
 and P

inter
 by comparing each node in the SensitiveVertexlist  with the elements 

in the shortest path matrix SPM . Lines 5–7 obtain the number of the shortest paths P
source

 by counting 
the number of the elements in SPM , which have nonzero values and have the row numbers of 
elements equal to the number of nodes in the SensitiveVertexlist . Lines 8–10 obtain the number 
of the shortest paths P

sink
 by counting the number of the elements in SPM , which have nonzero 

values and have the column numbers of the elements equal to the number of the nodes in the 
SensitiveVertexlist . Lines 11–17 obtain the number of the shortest paths P

inter
 by counting the 

number of the elements in SPM , which have nonzero values and have their full paths containing 
the number of the nodes in SensitiveVertexlist . Finally, Line 20 obtains the sum of the three shortest 
paths, which is totalSensitivePath .

Algorithm 4 obtains the maximum connected sub-graph of a privacy-sensitive sequence pattern 
network sanitized. The pseudo codes of Algorithm 4 are shown as follow:

Algorithm 4: GetmCSubG sAM( )

Input: sAM,  which is an adjacency matrix of a sanitization 
privacy-sensitive sequence pattern network. 
Output: ArrayList <Integer> maxGraph, which is the maximum 
connected sub-graph in the sanitization privacy-sensitive sequence 
pattern network. 
1. boolean [] visited=new boolean[sAM rowcount⋅ ];
2. int depth = 0;
3. for i = 1 to sAM rowcount⋅
4.  visited i false



 = ;

5. end for
6. for i = 1 to sAM rowcount⋅
7.    if (!visited[i])
8.    ArrayList<Integer>list = new ArrayList<>();
9.   DFS sAM i list, ,( );
10.   if(list.size()>depth)
11.    depth = list.size();
12.    maxGraph = list;
13.   end if
14.    end if
15. end for

Lines 1-5 initialize the state variable visited. Lines 6-15 perform a depth-first search DFS  for 
the matrix sAM  to get a series of connected sub-graphs list, before obtaining the maximum connected 
sub-graph maxGraph  by comparing the nodes number of all the connected sub-graphs.
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EXPERIMENTS AND DISCUSSION

Data Preparation
First, in order to test the performance stability of our proposed method and to explore the influence 
from parameters of the implementation algorithms, we adopted nine batches of experimental data 
sets, which are simulated by mining sequence patterns from the pre-processed GPS trajectories 
(Zhang, Wu, Chen, Liu, & Zhu, 2017) and specifying privacy-sensitive sequence patterns. The basic 
information of the nine batches of sequences patterns is shown in Table 2.

Second, in order to test the performance scalability of our proposed method, we simulated 81 
batches of privacy-sensitive sequences patterns and obtained 81 privacy-sensitive sequence pattern 
networks by connecting the sequence patterns with common items. The basic information of the 81 
privacy-sensitive networks is shown in Table 3, where these 81 networks are divided into 7 levels based 
on the ratios of the number of privacy-sensitive nodes to the total number of nodes of the networks.

Experimental Result and Analysis
Experiment 1: Changes of Security Degrees and Utility Degrees With Proportion Factor
We adopted our proposed method to sanitize the simulated nine privacy-sensitive sequence pattern 
networks, which are constructed from batches of privacy-sensitive sequences patterns in Table 2. By 
gradually increasing the value of proportion factor δ( )  from 0.05 to 0.45 at intervals of 0.05, we 
collected the changes in security degrees and utility degrees after the nine networks being sanitized, 
which are shown in Figure 11 and Figure 12, respectively.

As we can see from Figure 11, for all nine privacy-sensitive sequence pattern networks, the 
obtained security degrees quickly formed a trend toward a higher range of values with an increase in 
proportion factor (i.e., more and more influential nodes were removed from the networks). Specifically, 
after the proportion factor reached 0.3, the obtained security degree was at a level of 1, meaning that 
the source attacks, sink attacks and intermediate node attacks can be completely avoided by removing 
all privacy-sensitive shortest paths and P

inter
.

Meanwhile, the opposite trends are observed for the change in utility degrees, which is shown 
in Figure 12. Essentially, the utility degrees of the sanitized privacy-sensitive sequence pattern 
networks gradually decline with an increase in the proportion factor, which means that removing the 
influential nodes from the privacy-sensitive sequence pattern networks can also reduce the utility 
of the networks. This means that some non-privacy-sensitive shortest paths may also be eliminated 

Table 2. Basic information of nine batches of sequences patterns

No. Number of Sequence 
Patterns Number of Nodes Number of Privacy-

Sensitive Nodes

1 39 78 8

2 30 60 6

3 36 72 8

4 28 52 5

5 24 48 4

6 37 74 7

7 25 50 6

8 39 78 7

9 27 54 6
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from the networks, which can be seen as a side effect of our proposed sanitization method and should 
be effectively minimized.

Therefore, we hypothesized whether the optimal values of security degree and utility degree can 
be obtained by adjusting the proportion factor. We used the average of the security degree and utility 
degree as an indicator to find out the optimal value, with the experimental results shown in Figure 13.

We can see from Figure 13 that for all privacy-sensitive sequence pattern networks, the change 
trends of the average values of security degrees and utility degrees with the proportion factor are very 
obvious: the average values increase first, reach a peak and finally decrease gradually. Essentially, for 
each privacy-sensitive sequence pattern network, there is a peak of the average value, which means 
that the optimal values of security degrees and connectivity degrees for each network can be achieved 
by adjusting their proportion factors. For example, for the No 6 privacy-sensitive sequence pattern 
network, the average value of 0.81275 is the maximum when the proportion factor is 0.1.

Experiment 2: Changes of Security Degree and Utility 
Degree With Ratios of Privacy-Sensitive Nodes
We adopted our proposed method to sanitize the generated 81 privacy-sensitive sequence pattern 
networks in Table 3, with the experimental results shown in Figure 14 and Figure 15.

As we can see from Figure 14, for a specific proportion factor, the changing trends of the obtained 
security degrees are overall gradually reduced with increasing levels of ratios of privacy-sensitive 
nodes. This result means that it is more difficult to sanitize a privacy-sensitive network with a higher 
ratio of privacy-sensitive nodes. Specifically, more influential nodes may need to be removed from 
the privacy-sensitive network in order to eliminate the privacy-sensitive shortest paths among the 

Table 3. Basic information of 81 privacy-sensitive sequence pattern networks

Level
Ratio of 
Privacy-

Sensitive Nodes

Number of 
PsSPN Level

Ratio of 
Privacy-

Sensitive Nodes

Number of 
PsSPN

1 0.1875 1

4

0.4 4

2

0.2143 1 0.4118 2

0.2308 2 0.4167 7

0.25 4 0.4211 2

0.2667 3 0.4286 2

0.2857 2 0.4375 3

0.2941 1 0.4444 1

3

0.3077 1 0.4545 1

0.3125 1 0.4615 1

0.3158 1 0.4667 5

0.3333 2

5

0.5 10

0.3529 2 0.5385 3

0.3571 5 0.5455 1

0.3636 2 0.5833 4

0.375 1
6

0.6 1

0.3846 1 0.6667 1

0.3889 2 7 0.7 1
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Figure 11. Changes in security degrees with changes in proportion factors

Figure 12. Changes in utility degrees with changes in proportion factors
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Figure 13. Changes in the average of security degree and utility degree with change in proportion factor for nine privacy-sensitive 
sequence pattern networks

Figure 14. Changes in security degree with levels of ratios of privacy-sensitive nodes
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network. For example, in order to achieve a security degree of 0.8, for the networks with 1 or 2 levels 
of ratios of privacy-sensitive nodes, the proportion factor parameters only need to be set to greater 
than or equal to 0.10. However, for the networks with 3 or 4 levels of ratio of sensitive nodes, the 
proportion factor parameters need to be set to greater than or equal to 0.20. Furthermore, for the 
networks with 6 or 7 levels of ratio of privacy-sensitive nodes, the proportion factor parameters need 
to be set to greater than or equal to 0.25.

It is also worth noting that for all the networks with 1–7 levels ratio of sensitive nodes, the obtained 
security degrees basically tend to be 1 after the proportion factor was up to 0.3, which means that 
these networks can be also completely sanitized.

From Figure 15, we see that the overall changing trends of the obtained utility degrees are 
gradually increased with an increase in the levels of ratio of privacy-sensitive nodes, which means 
that the number of non-privacy-sensitive paths removed from privacy-sensitive networks is gradually 
reduced with an increase in the privacy-sensitive nodes ratios. This trend is what we expect.

Similarly, we also hypothesized whether the optimal values of security degree and utility degree 
of privacy-sensitive networks with different privacy-sensitive nodes ratios can be also obtained by 
adjusting proportion factors. We also use the average value of the security degree and utility degree 
as the indicator to find out the optimal value, with the experimental results shown in Figure 16. We 
can see that the changing trends are same with the ones in Figure 13. Essentially, for each network 
with different privacy-sensitive nodes ratios, an optimal value of security degree and utility degree 
can be achieved by setting an appropriate proportion factor parameter, which means that our proposed 
method has scalability for privacy-sensitive networks with different privacy-sensitive node ratios.

Figure 15. Changes in utility degree with levels of ratios of privacy-sensitive nodes
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CONCLUSION AND FUTURE WORK

To overcome the fact that most existing sanitization methods cannot effectively prevent location privacy 
inference attacks based on a privacy-sensitive sequence pattern network constructed from sequence 
patterns mined from trajectories, we proposed a method for sanitizing the privacy-sensitive sequence 
pattern network by identifying and removing influential nodes from the networks. We conducted 
extensive experiments and the results show that our proposed method can thoroughly sanitize privacy-
sensitive sequence pattern networks from location privacy inference attacks, such as source attacks, 
sink attacks, intermediate attacks and so on, by completely eliminating the privacy-sensitive shortest 
paths in the network. In addition, our proposed method can achieve the optimal values for security 
degree and utility degree by adjusting the proportion factor parameter. Finally, the performance of 
our method was shown to be stable for multiple networks with basically the same privacy-sensitive 
node ratio and be scalable for batches of networks with different sensitive nodes ratios.

With the development of big data technology (such as Hadoop, Spark and so on), attackers 
may use the technology to explore the released trajectories and perform location privacy inference 
attacks. Therefore, it is a direction for us to study how to revise our proposed method to deal with 
such attacks in the future.
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