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ABSTRACT

In this article, a hybrid method is proposed to solve the uncapacitated planar multi-facility location 
problems. The new hybrid method consists of a combination of the Revised Weighted Fuzzy C-Means 
(RWFCM) algorithm proposed by Esnaf and Küçükdeniz (2013) and the Fortified Weiszfeld algorithm 
developed by Drezner (2015). The cluster centers and the cluster assignments of the RWFCM are fed 
into the Fortified Weiszfeld Algorithm separately for each cluster and facility-customer allocations 
are determined. The proposed approach is benchmarked on sample datasets from the facility location 
literature. Results of the proposed hybrid method show that the newly proposed sequentially-run 
method achieves better results when compared against the benchmark methods. This paper is a pioneer 
study of the hybrid use of Revised Weighted Fuzzy C-Means and Fortified Weiszfeld algorithms.

Keywords
Revised weighted fuzzy c-means algorithm, Uncapacitated multi-facility location problem, Weiszfeld and 
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INTRODUCTION

In this paper, a hybrid algorithm to solve uncapacitated planar multi-facility location problems is 
proposed. The multi-facility location problem (MFLP) is the problem of placing a number of facilities 
to serve a group of customers such a way that the total cost is minimized. German engineer Alfred 
Weber gave the first example of MFLP problems in his famous book “On the Location of Industries” 
in 1909. In his book, Weber emphasized that the locations of industries are crucial for optimizing 
the costs (Weber, 1909).

Weber (1909) used and generalized the Fermat problem in order to minimize the costs. The Fermat 
problem is about finding a special point in a triangle so that the sum of its distances to the corners 
is minimized. The problem introduced first in a letter from Fermat to Torricelli in the 17th century. 
Since then the same question arose and was answered in several forms. Weber (1909) reformulated 
the question by increasing the number of points from three to any number, and used the idea of “a 
weight” which is in fact firstly discussed in Steiner in 19th century (Beck & Sabach, 2015).
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Hence, the problem is being now called the Fermat-Weber problem, or just the Weber Problem. 
Here, the aim is to find the optimum locations of facilities serving all the demand points whose 
locations are known, with condition that the sum of the distances from each demand point to the 
facility is minimized. In the original problem there is only one facility, and therefore it is also called 
“the single facility location problem”. On the other hand, Multi-Facility Location Problem is a 
generalization of Weber problem. In MFLP there is more than one facility. (Iyigun & Ben-Israel, 2010)

The location problem and its solutions have a rich literature. Since the 1960s the problem is 
studied more thoroughly, and many different forms have been produced and many solution methods 
are proposed. Daskin (1995) gives a detailed classification which contains more than ten types of 
classes for the problem. Similarly, Sule (2001) gives 5 steps of classification. The diversity is due to 
the richness of the variety of constraints in different applications.

The solution methods first primarily depend on the number of facilities and classified as the 
Single Facility Location Problem (SFLP) and Multi-Facility Location Problem (MFLP). In this paper, 
Multi-Facility Location Problems are in focus. In many applications of MFLP, decomposing the 
problem into a single facility location is very common because these problems are NP-hard (Esnaf 
and Küçükdeniz, 2013).

Another important factor in solving MFLP is the structure of the facility and demand points: 
Continuous (planar), network or discrete structures. In this study the assumption is that the solution 
has a continuous structure, that is, facilities can be placed anywhere on the plane.

One another factor in constructing solutions for MFLP is the capacity of the facilities. The 
facilities can have limited or unlimited sources. The facilities have an unlimited capacity for the 
problems solved in this study.

Besides, other factors are static or dynamic structures of the facility, ownership of the facility as 
public or private, deterministic or probabilistic characteristics of the demand, the addition of facilities 
to the existing system or facility closure, and fixed and variable costs.

In this paper, it is focused on determining locations of uncapacitated facilities in a d-dimensional 
plane. The authors will suggest a combination of two previously known algorithms for the solution. 
The first algorithm is the revised weighted version of fuzzy c-means and the second is the empowered 
version of the Weiszfeld algorithm (Weiszfeld,1963) called Fortified Weiszfeld proposed by Drezner 
(2015).

The rest of the paper is organized as follows. The MFLP is described mathematically in the 
second section. In the third section, it is given a literature review of developments in recent decades. 
The fourth section contains the details of the revised weighted fuzzy c-means algorithm, Weiszfeld 
and Fortified Weiszfeld algorithms. The fifth section gives the details of the proposed algorithm. 
Afterward, the results of experiments on different data sets are given in the sixth section. The data 
sets used to make an objective comparison here are the same as Esnaf and Küçükdeniz (2013) in 
order to obtain a robust comparison. In the seventh and the last section, conclusions are discussed.

LITERATURE REVIEW

In order to solve MFLP, it is generally followed the method to divide the set of demand points into 
subsets and find supply center for each of them separately. Miehle (1958) is first to put forward this 
way of solving MFLP. Cooper (1963) gave the statement of Multi-Facility Weber problem formally 
(Rosing 1991). Cooper (1964) used this idea to propose an iterative heuristic method known as 
Alternate Location-Allocation (ALA) algorithm. The same way will be followed in this study: first 
decompose the set of demand points into sub-clusters and then tune the position of cluster centers so 
that optimal facility locations are obtained.

Since 1960s different composite methods are proposed to solve both uncapacitated and capacitated 
MFLPs. Kuenne and Soland (1972) applied a branch-and-bound algorithm. Logendran and Terrell 
(1988) introduced the stochastic uncapacitated facility location-allocation (UFLA) model. Taillard 
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(1996) proposed triple algorithm CLS, LOPT and DEC which can be used for the sets with a large 
number of demand points.

Levin and Ben-Israel (2004) suggested a hybrid method consists of the Nearest Center 
Reclassification Algorithm (known also as ALA) proposed by Cooper (1964) and Newton-Bracket 
method that is used for single facility problem.

Esnaf and Küçükdeniz (2009) proposed a hybrid method in which demand points are clustered 
using fuzzy c-means and afterward the center of each cluster is determined by center of gravity 
method. This method is used for uncapacitated continuous multi-facility location-allocation problem.

Esnaf and Küçükdeniz (2013) developed an algorithm named Revised Weighted Fuzzy C-Means 
to avoid using sequential computations and reducing CPU time.

Literature review reveals that the hybridization of fuzzy c-means and Weiszfeld type algorithms 
is a novel approach, which has not been investigated yet.

PROBLEM DEFINITION

Multi-facility location problem is an optimization problem with the cost function, which is defined 
below (Iyigün and Ben-Israel, 2010):

z w d x v
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k i
,( )  is the Euclidean distance and calculated as follows:
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,( ) = −( ) + −( )2 2

	 (2)

In this paper several assumptions are accepted for the MFLP (as in Lozano et al., 1998 and Esnaf 
and Küçükdeniz, 2013):

1- Facilities can be located anywhere on a plane, and their final locations are iteratively found.
2- Interactions between facilities are not allowed.
3- Each customer is only served by a single facility; in other words, customers may not split their 

demand between two or more facilities.
4- Transportation costs are assumed to be proportional to the Euclidean distance.
5- Each customer is assigned to its nearest facility.
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6- Setup costs are omitted.
7- Customers spread over a continuous region of a plane and their locations and demands are fixed.

REVISED WEIGHTED FUZZY C-MEANS ALGORITHM (RWFCM) 
and FORTIFIED WEISZFELD HYBRID ALGORITHM

In this paper the authors propose to use both RWFCM and Weiszfeld algorithms consecutively to 
get remarkable results for continuous multi-facility location problem. RWFCM first clusters the 
demand points and derives the cluster centers. After that, these cluster centers are fine-tuned by using 
Weiszfeld algorithm. In addition, a modified form of Weiszfeld algorithm called Fortified Weiszfeld 
by Drezner (2015) fine-tuned the cluster centers.

The details of these algorithms are given below.

Revised Weighted Fuzzy C-Means Algorithm (RWFCM)
The RWFCM (Esnaf, and Küçükdeniz 2013) is a specific form of the weighted fuzzy c-means 
algorithm proposed by Bezdek (1981), Tsekouras (2005) and Tsekouras et al. (2005). In this algorithm 
the weights of the demand points are given and accepted as constant during all iterations. In supply 
chain management context, demands of the customers are the weight factor used by the RWFCM 
algorithm.

In FCM and RWFCM same cost function is used:
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In FCM (Bezdek, 1981) the final prototypes and the respective membership functions that solve 
this constraint optimization problem are given by the following equations:
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and
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In FCM, the weights are equal. On the other hand, RWFCM accepts different values for weights. 
The weights of points are seen as the demand amount of each point in RWFCM.

So, the steps of RWFCM are given as follows:
Step 1: 	 c , the number of clusters, p , a value for the factor and initial values for facilities v

i
 are 

selectively determined.
Step 2: 	 By using the formula (6) the membership values u

ik
 are calculated for 1 1≤ ≤ ≤ ≤i c k n�,�

Step 3: 	 The new values of the facilities are obtained by the formula (5).
Step 4: 	 The iterations are continued until max v v

i i
new

err
−{ } < ε  where ε  is the error coefficient 

that is determined initially.
Weiszfeld Algorithm
Weiszfeld (1937) gave a different method to prove a theorem which had been given first by Sturm 
in 1884 for solving Fermat problem. In fact, he had given three different proofs and in the first one 
defined a sequence converges to an optimal solution of the problem.

From this sequence an algorithm can be deduced. Since the notion of algorithm is not familiar 
in those days, the paper had been ignored for a long time. First Miehle (1958), and later Kuhn and 
Kunne (1962) proposed similar methods and emphasized the convergence problem of the original 
algorithm. In 1963, Cooper also reinvented the method without knowing Weiszfeld’s work, for 
the more general problem of multiple locations in plane (Beck and Sabach, 2015). Cooper did not 
provide a convergence analysis but mentioned that in his numerical tests, the method works very 
well in comparison to other methods. It seems that after 1963, researchers studying optimization and 
location problems were very well aware of the method, and Weiszfeld’s original paper got its rightful 
credit (Beck and Sabach, 2015).

After 70’s the researches focused on the convergence analysis and Kuhn (1973), Chandrasekaran 
and Tamir (1989), Brimberg (1995), Cánovas, et al. (2002) gave a detailed explanation on the 
convergence of the algorithm.

In Fermat-Weber problem objective function is given as (Beck and Sabach, 2015):
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Note that the gradient is only defined on points different from a
i
’s. Weiszfeld’s original result 

is (Beck and Sabach, 2015):
Theorem: Suppose that all a

i
’s are collinear. Then,
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x( ){ }  has a unique optimal solution
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By defining a new operator T  as T x
w
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In other words, ∀ ∈ ℘� � � \ ,y d�
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Hence, this connection gives us Weiszfeld iterative formula:
Initialization: x

o
d� � \∈ ℘�

General Step: k = …( )0 1, , ..  x T x
k k+ = ( )1

The algorithm can be written using more suitable notation as follows:
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Modified Weiszfeld Algorithm
As the number of demand points is raised, the convergence becomes slower and the algorithm 
may require thousands of iterations. Due to this fact, some researchers focused on accelerating the 
Weiszfeld’s algorithm, in parallel to convergence studies.

Ostresh (1978) suggested accelerating the algorithm by using the operator as follows:

T y y T y yλ λ( ) = + ( )−( )  	 (14)

Ostresh (1978) and Drezner (1992) showed that the modified method defined by x T x
k k+ = ( )1
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1 2, . Chen (1984) also gives a similar step-size modification using radials 
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k-dimensional case. The use of λ  =1.8 is recommended to provide the best empirical results (Drezner, 
1992). In his formulation formula above can be notified as follows:
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where X '  is the starting point, and X ''  is the next point reached by the algorithm. In this approach 
new point is calculated as:

X X X X= + −( )′ ′′ ′ λ 	 (16)

The algorithm is continued with this new point X .
Drezner (1995) suggested using Steffensen’s method to accelerate the value of X  linearly. In 

this method each component of new point is calculated separately as follows:

x̂ x
x x

x x x
= −
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+ −0

1 0

2

2 0 1
2
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where x f x x f x
1 0 2 1
= ( ) = ( )�,� .

Besides these works, there are also studies on generalization of Weiszfeld algorithm using l
p

 
metrics (Aftab and Hartley, 2015), different structures of space or convexity of the region (Eckhardt, 
1980).

Fortified Weiszfeld Algorithm
Drezner (2015) suggested a new form for the Weiszfeld algorithm called Fortified Weiszfeld 
Algorithm. It has been shown that the algorithm is much faster than the original Weiszfeld method, 
in just a few steps, it is possible to reach the same value instead of hundreds steps of the original 
algorithm.

“The fortified Weiszfeld algorithm consists of two components: approximating a paraboloid and 
checking very few demand points to find whether they are optimal” (Drezner, 2015). For approximating 
paraboloid, the second order approximation of two-variable function is used.

In calculus, the second order approximation of a two-variable function, F x y,( ) , near point 
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So the approximation is a quadratic function v v x v y v x v y v xy
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order to find the unknown coefficients, v
i
’s, of this equation, Drezner (2015) uses eight equations 
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The equations are written as Av f=  where A
x8 5

 is the matrix given below:
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The residuals are Av f=  and the sum of squares of errors is the product vectors 
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Since the Weiszfeld algorithm stuck at the demand points, numerous iterations are needed to 
approach the solution point. To prevent such cases, the important thing is to know whether the solution 
is on a demand point. For this purpose, Love et al. (1988) propose that demand point i is optimal if 
and only if the following condition is satisfied:
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An indicator vector U u
i

= 

  is maintained. If demand point i was not checked for optimality 

u
i
= 0  otherwise u

i
= 1 . The vector U  is set to all zeroes.

When demand point i is ‘close’ to X ''  and u
i
= 0  demand point i is checked for optimality by 

the formula above.
If demand point i is optimal, it is returned as the solution. Otherwise, set u

i
= 1  and proceed.

Closeness can be defined in many ways. It is selected as ‘close’ the demand point closest to X ' . 
Identifying such a demand point requires very little extra effort because the distances to all demand 
points are calculated for the Weiszfeld iteration (Drezner, 2015).

The algorithm consists of the following steps:
In the beginning, location accuracy ε > 0  and a starting solution ′X  are given.

(1) 	 Set u
i
= 0  for i n= …1 2, , , .

(2) 	 Perform one Weiszfeld iteration obtaining  ′′X .
(3) 	 Find the demand point k closest to ′X . The distances from ′X  to all demand points are calculated

when obtaining ′′X . If u
k
= 0  then

(a) 	 Check whether demand point k is optimal by the optimality condition (20).
(b) 	 If demand point k is optimal, stop with demand point k as the solution.
(c) 	 Otherwise, set u

k
= 1 .

(4) 	 Calculate ∆ = −′ ′′X X
2

, the Euclidean distance between ′X  and ′′X .
(5) 	 If ∆ <   then stop with ′′X  as the solution.
(6) 	 Calculate f F x y F x y

j j j
= + ∆ + ∆( )− ( )′′ ′′ ′′θ ψ, , ''  for j = 1, …, 8.

(7) 	 Calculate v A A A fT T= ( )−1
 and derive X x y= ( ),  using (17) and (19)

(8) 	 Set ′ ′′= +∆X X X  and go to Step 2.

REVISED WEIGHTED FUZZY C-MEANS – WEISZFELD 
ALGORITHMS BASED HYBRID METHOD FOR UNCAPACITATED 
MULTI-FACILITY LOCATION PROBLEMS

The proposed method intends to find the optimal locations of facilities which will serve to demand 
points, like warehouse and distribution centers. The goal is to minimize the total transportation cost 
from the facilities to the demand points.

Demand points are assumed to be placed on a continuous plane with coordinates ��� ,a x yk
k k

= ( ) . 
For each point, the demand is as assigned as the weight of the point and symbolized by w

k
. The 

transportation cost from a facility to a demand point is represented as the distance between the 
locations of these two points for per quantity of demand. Here the positions of the demand points ak  
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and values of demand quantities are known beforehand. The proposed method assumes that the 
capacity of each facility is unlimited as mentioned above.

The method will be applied in the following steps:
Step 1: 	 c , the number of clusters, and initial values of cluster centers, here facilities, are selectively 
determined.
Step 2: 	 After calculating the membership values, the new values of the cluster centers are determined 
by the RWFCM algorithm. Iterations of the RWFCM are repeated until transportation costs remain 
unchanged.
Step 3: 	 For each of the clusters, the centers are calculated by using selected Weiszfeld Algorithm. 
Options are original Weiszfeld �λ =( )1 . Modified Weiszfeld λ =( )1 8. .and Fortified Weiszfeld 
λ λ= =( )1 1 8, . .

Step 4: 	 The demand points are classified again by using new clusters centers.
Step 5: 	 The objective function is calculated and when difference between consecutive values is less 
than a predefined certain error value, the iteration stops. Otherwise go to step3.

When the iterations completed, the final positions of cluster centers will be determined, and each 
demand point is allocated to the nearest facility.

In the end, the total cost is calculated using the formula below:

TC w d C
k

n

i

c

k ik ik
=

= =
∑∑

1 1

	 (21)

where;

TC: Total Cost	
w
k
: The demand of k th demand point.	

d
ik

: The Euclidean distance between k th demand point and i th facility.	

C
ik

: The transportation cost between k th demand point and i th facility for per unit and per 
demand quantity.	

EXPERIMENTAL STUDY

The new algorithm is applied to well-known data sets, generally preferred in clustering based multi-
facility location studies. The authors’ purpose is to show that this method solves the uncapacitated 
continuous multi-facility location problem with a lower cost than the benchmark algorithms.

For this purpose, the data sets given by Esnaf and Küçükdeniz (2013) are chosen to show the 
performance of the RWFCM & Fortified Weiszfeld method. In this paper, particularly the same data 
sets were chosen to compare the results with the developed hybrid method. These data sets include 
customer number, X and Y coordinates and demands of each customer. The demand quantities are 
constant for all iterations of the algorithm.

Benchmarking methods are briefly explained as follows:
Fuzzy C-Means Algorithm (FCM): This is an algorithm for clustering the demand points using 

fuzzy membership values. Dunn (1973) developed the algorithm then it is improved by Bezdek (1981).
FCM&COG Algorithm: This is a hybrid method that uses the FCM algorithm and Center of 

Gravity method. First, the FCM determines the cluster centers and then the center of gravity method, 
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fine-tunes the cluster centers of FCM, trying to minimize the total cost. It is proposed by Esnaf & 
Küçükdeniz (2009).

Particle Swarm Optimization (PSO) method: The PSO is developed by Kennedy and Eberhart 
(1995) and improved with the modifications suggested by Mezura-Montes and Coello Coello (2011). 
In this study the conditions of the PSO is considered completely same as in Esnaf and Küçükdeniz 
(2013).

Table 1 shows the total costs of benchmarking methods, RWFCM, and hybrid methods. Here 
in the hybrid methods, it is used Weiszfeld with λ=1, Modified Weiszfeld with λ=1.8 and Fortified 
Weiszfeld with λ=1 and λ=1.8 combined with the RWFCM.

To show the cost performance in percentage changes the following formula is used:

∆ =
−








×

H M

H
� �100 	 (22)

where H  represents the objective function value, i.e. transportation cost, generated by benchmark 
methods (FCM, FCM&COG, PSO and RWFCM) for each data set, M  is the transportation cost 
generated by the new hybrid methods for the corresponding data set.

Table 2 gives the percentage of cost differences of benchmark methods, given above, with the 
proposed hybrid method RWFCM & Weiszfeld using �λ = 1 .

RWFCM & Weiszfeld using λ=1 is 25.67%, 11.55%, 21.32%,17.4%, and 1.9% better than FCM, 
FCM&COG, PSO mean, PSO minimum, and RWFCM, respectively.

The following Table 3 gives the comparisons of the results obtained when it is applied the 
Modified Weiszfeld and Fortified Weiszfeld algorithms instead of Weiszfeld algorithm itself in the 
hybrid algorithm. It is clear that for these data sets, the difference between Modified and Fortified 
algorithms is minor.

Since the differences are minor, it is difficult to compare the results when using Modified or 
Fortified Weiszfeld algorithms in the hybrid method. The authors prepared Table 4 to show the 
differences between the costs of different versions of the proposed method and the RWFCM results in 
numbers. Therefore, the authors get slightly but better results than Drezner (1992) and Drezner (2015).

The differences between the costs of the RWFCM and the different versions of the RWFCM & 
Weiszfeld method are given in Table 4 below.

Since the values depend on the number of the data set, the effect of methods may be more clear 
on percentage values. The following Table 5 is prepared for clarification. 

RWFCM & Fortified Weiszfeld algorithm with 1.8 lambda value attains the highest cost 
improvement ratio with 2.043%. RWFCM & Modified Weiszfeld algorithm follows the first with 
2.042%, using the same lambda value. The results given above show that more cost savings can be 
achieved by using hybrid methods with higher lambda values, here is 1.8.

CONCLUSION

This paper suggests a hybrid solution consisting of two different methods for MFLP. The first method 
is the Revised Weighted Fuzzy C-Means and the second is a gradient-based Weiszfeld algorithm. 
Hybridization depends on the application of these algorithms consecutively. The results show that 
when the classical or modified versions of the Weiszfeld algorithm run after RWFCM give better 
cost function values for multi-facility location problems.

For the experimental study, the method is applied to the data sets used by Esnaf and Küçükdeniz 
(2013) to compare with the results of the RWFCM algorithm. These are ten different data sets with 
twenty-six different settings from Osman and Christofies (1994), Bongartz et al. (1994), Lorena and 
Pereira (2002) and Taillard (2003).
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The results of this new method were compared against the RWFCM, Fuzzy C-Means, Fuzzy 
C-Means with Center of Gravity, Particle Swarm Optimization algorithms. New algorithm gives 
better results with an average 1.899% than the RWFCM. The best improvement is on Bongartz data 
set with 20 clusters with 4.28% value. The lowest improvement for the cost function is 0.571% in the 
25 cluster centers CPmedcap and 0.748% in the CPmedcap data set with 40 cluster centers.

The results of the basic version of the new method compared with FCM, FCM&COG and PSO 
methods are remarkable as the RWFCM. Average values for improvement are 25.67%,11.55%, 
22.255%, and 21.32%(mean) with respect to FCM, FCM&COG and PSO methods consecutively.

Table 1. The total costs of the FCM, FCM&COG, PSO and RWFCM methods are compared with the hybrid method RWFCM & 
Weiszfeld (λ=1), RWFCM & Modified Weiszfeld (λ=1.8) and RWFCM & Fortified Weiszfeld (λ=1, λ=1.8) algorithms

Datasets
Noof 

Demand 
Pts

=Noofclusters FCM FCM&COG PSO(Mean, 
Minimum) RWFCM

RWFCM & 
Weiszfeld 

(λ=1)

RWFCM 
& Modified 
Weiszfeld 
(λ=1.8)

RWFCM 
& Fortified 
Weiszfeld 

(λ=1)

Bongartz 287 10 13,632 9,373 8,510﻿
7,882 7,627.66 7,488.59 7,488.59 7,488.59

Bongartz 287 20 11,163 6,652 6,356﻿
5,878 4,622.84 4,424.98 4,424.93 4,424.97

SJC3a 300 25 1,896,044 1,590,720 1,698,809﻿
1,589,846 1,435,737.81 1,403,309.56 1,403,309.56 1,403,309.56

SJC3a 300 40 1,463,476 1,175,349 1,384,343﻿
1,344,344 1,035,707.47 1,010,510.26 1,010,510.75 1,010,510.43

SJC4a 402 25 2,848,104 2,520,080 2,727,118﻿
2,617,243 2,374,352.00 2,339,707.29 2,339,698.20 2,339,706.09

SJC4a 402 40 2,387,161 1,977,533 2,337,425﻿
2,180,875 1,840,615.86 1,792,436.56 1,792,436.26 1,792,436.45

SJC324 324 20 2,371,575 2,115,075 2,014,423﻿
1,907,161 1,881,620.00 1,851,063.71 1,851,054.27 1,851,062.47

SJC324 324 40 1,582,704 1,250,084 1,447,463﻿
1,384,221 1,163,306.29 1,137,948.95 1,137,947.33 1,137,948.75

SJC324 324 60 1,324,625 962,849 1,271,042﻿
1,220,284 850,630.00 836,784,00 810,093.00 810,806.43

SJC500 500 20 5,027,370 4,827,415 4,571,051﻿
4,422,492 4,269,917.30 4,177,700.42 4,177,698.87 4,177,700.37

SJC500 500 40 3,529,296 2,975,684 3,503,689﻿
3,282,946 2,723,926.34 2,666,667.53 2,666,667.26 2,666,667.13

SJC500 500 60 2,918,302 2,400,974 3,118,047﻿
2,984,051 2,091,680.61 2,043,055.44 2,043,052.09 2043055,226

SCJ708 708 20 6,920,864 6,599,399 6,606,900﻿
6,338,001 6,017,948.00 5,952,604.78 5,952,604.78 5,952,604.78

SCJ708 708 40 5,042,815 4,226,576 4,993,834﻿
4,874,041 3,998,800.65 3,935,825.20 3,935,810.24 3,935,823.22

SCJ708 708 60 3,983,870 3,331,938 4,315,360﻿
4,078,910 2,989,036.00 2,934,786.96 2,934,584.14 2,934,483.99

SCJ818 818 20 9,867,565 8,733,462 9,103,742﻿
8,893,566 7,624,484.86 7,533,597.20 7,533,597.20 7,533,597.20

SCJ818 818 40 6,293,308 5,543,320 6,828,894﻿
6,523,902 5,250,380.22 5,136,107.75 5,136,094.41 5,136,106.95

SCJ818 818 60 5,358,010 4,147,632 5,877,620﻿
5,565,993 3,873,383.00 3,797,735.30 3,797,470.25 3,797,428.96

CPmedcap2 1481 25 116,416 115,286 123,632﻿
121,952 114,575.00 113,920.97 113,920.99 113,920.97

CPmedcap2 1481 40 89,777 88,913 98,147﻿
95,700 88,556.55 87,894.16 87,894.16 87,894.16

Taillard 2863 25 968,287,764 748,719,913 852,102,000 
780,562,000 656,694,127 645,895,203 645,894,892 645,895,185

Taillard 2863 50 637,134,339 497,671,334 642,804,992 
602,791,270 452,711,742 443,107,998 443,107,275 443,107,922
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In the proposed method the Weiszfeld, Modified-Weiszfeld and Fortified-Weiszfeld algorithms 
were used. The results of each method slightly differed from each other. When compared total costs, 

Table 2. The percentage of cost differences of benchmark methods, given above, with the proposed hybrid method RWFCM & 
Weiszfeld using � �1 .

DATA Number of 
Demand Pts

Number of 
clusters FCM FCM & COG PSO (Mean. 

Minimum) RWFCM

Bongartz 287 10 45.07% 20.11%
12.01%

1.82%
4.99%

Bongartz 287 20 60.36% 33.48%
30.38%

4.28%
24.72%

SJC3a 300 25 25.99% 11.78%
17.39%

2.26%
11.73%

SJC3a 300 40 30.95% 14.03%
27.01%

2.43%
24.83%

SJC4a 402 25 17.85% 7.16%
14.21%

1.46%
10.60%

SJC4a 402 40 24.91% 9.36%
23.32%

2.62%
17.81%

SJC324 324 20 21.95% 12.48%
8.11%

1.62%
2.94%

SJC324 324 40 28.10% 8.97%
21.38%

2.18%
17.79%

SJC324 324 60 36.83% 13.09%
34.17%

1.63%
31.43%

SJC500 500 20 16.90% 13.46%
8.61%

2.16%
5.54%

SJC500 500 40 24.44% 10.39%
23.89%

2.10%
18.77%

SJC500 500 60 29.99% 14.91%
34.48%

2.32%
31.53%

SCJ708 708 20 13.99% 9.80%
9.90%

1.09%
6.08%

SCJ708 708 40 21.95% 6.88%
21.19%

1.58%
19.25%

SCJ708 708 60 26.33% 11.92%
31.99%

1.82%
28.05%

SCJ818 818 20 23.65% 13.74%
17.25%

1.19%
15.29%

SCJ818 818 40 18.39% 7.35%
24.79%

2.18%
21.27%

SCJ818 818 60 29.12% 8.44%
35.39%

1.95%
31.77%

CPmedcap 1481 25 2.14% 1.18%
7.86%

0.58%
6.59%

CPmedcap 1481 40 2.10% 1.15%
10.47%

0.75%
8.16%

Taillard 2863 25 33.29% 13.73%
24.20%

1.64%
17.25%

Taillard 2863 50 30.46% 10.96%
31.07%

2.12%
26.49%

Mean Value 25.67% 11.55%
21.32%

1.90%
17.40%
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RWFCM & Weiszfeld algorithm (λ=1), RWFCM & Modified Weiszfeld algorithm (λ=1.8), RWFCM 
& Fortified Weiszfeld algorithm (λ=1), and RWFCM & Fortified Weiszfeld algorithm (λ=1.8) are, 
on average, 1.899%, 2.042%, 2.038%, and 2.043% better than the original RWFCM respectively. The 
contribution of hybrid methods at higher lambda values is more than small lambda values.

The results show that hybridization with Weiszfeld algorithm can improve the results obtained 
by a non-gradient based algorithm. So, for the future research, it can be focused on hybridization 
with different algorithms.

The modified Weiszfeld algorithm uses lambda with a value between 1 and 2 (Ostresh,1978). 
Drezner (1992) suggests 1.80 as an optimum value. This value can be examined in detail by using 
meta-heuristic optimization methods that accelerate the algorithm.

Finally, with this method, the capacitated multi-facility location problems can be solved.

Table 3. The total costs of the RWFCM and hybrid methods the RWFCM & Weiszfeld (λ=1), RWFCM & Modified Weiszfeld 
(λ=1.8), and RWFCM & Fortified Weiszfeld (λ=1, and λ=1.8) algorithms. (λ=1.8 is suggested by Drezner,1992 and bold values 
show the lowest costs)

DATA
No of 

Demand 
Pts

No of 
clusters RWFCM

RWFCM & 
Weiszfeld) 

(λ=1)

RWFCM 
& Modified 
Weiszfeld 
(λ=1,8)

RWFCM 
& Fortified 

Weiszfeld (λ=1)

RWFCM 
& Fortified 
Weiszfeld 
(λ=1,8)

Bongartz 287 10 7,627.6646 7,488.5927 7,488.5913 7,488.5913 7,488.5913

Bongartz 287 20 4,622.8436 4,424.9768 4,424.9298 4,424.9699 4,424.9292

SJC3a 300 25 1,435,737.8102 1,403,309.5616 1,403,309.5616 1,403,309.5616 1,403,309.5616

SJC3a 300 40 1,035,707.4684 1,010,510.2616 1,010,510.7522 1,010,510.4336 1,010,508.7346

SJC4a 402 25 2,374,352.00 2,339,707.2866 2,339,698.2010 2,339,706.0928 2,339,698.1215

SJC4a 402 40 1,840,615.86 1,792,436.5558 1,792,436.2624 1,792,436.4458 1,792,436.2575

SJC324 324 20 1,881,620.00 1,851,063.7147 1,851,054.2696 1,851,062.4741 1,851,054.1880

SJC324 324 40 1,163,306.29 1,137,948.9527 1,137,947.3265 1,137,948.7486 1,137,947.2428

SJC324 324 60 850,630.00 836,784.00 810,093.00 810,806.4273 810,033.5966

SJC500 500 20 4,269,917.30 4,177,700.4155 4,177,698.8724 4,177,700.3651 4,177,698.8704

SJC500 500 40 2,723,926.34 2,666,667.5252 2,666,667.2599 2,666,667.1335 2,666,655.2172

SJC500 500 60 2,091,680.61 2,043,055.4375 2,043,052.0925 2,043,055.2255 2,043,051.91

SCJ708 708 20 6,017,948.00 5,952,604.7847 5,952,604.7847 5,952,604.7848 5,952,604.7848

SCJ708 708 40 3,998,800.65 3,935,825.2001 3,935,810.2419 3,935,823.2190 3,935,810.2383

SCJ708 708 60 2,989,036.00 2,934,786.9623 2,934,584.1381 2,934,483.9863 2,934,477.8598

SCJ818 818 20 7,624,484.86 7,533,597.2013 7,533,597.2013 7,533,597.2016 7,533,597.2016

SCJ818 818 40 5,250,380.22 5,136,107.7487 5,136,094.4131 5,136,106.9498 5,136,094.3597

SCJ818 818 60 3,873,383.00 3,797,735.3049 3,797,470.2487 3,797,428.9593 3,797,428.8265

CPmedcap2 1481 25 114,575.00 113,920.9719 113,920.9900 113,920.9730 113,920.9907

CPmedcap2 1481 40 88,556.55 87,894.1588 87,894.1588 87,894.1588 87,894.1588

Taillard 2863 25 656,694,127 645,895,203 645,894,892 645,895,185 645,894,891

Taillard 2863 50 452,711,742 443,107,998 443,107,275 443,107,922 443,107,264
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Table 4. The differences between the costs of the RWFCM and the versions of the hybrid RWFCM & Weiszfeld method (bold 
values indicate the biggest cost differences)

DATA No of 
Demand Pts No of clusters

RWFCM & 
Weiszfeld 

(λ=1)

RWFCM 
& Modified 
Weiszfeld 
(λ=1.8)

RWFCM 
& Fortified 
Weiszfeld 

(λ=1)

RWFCM 
& Fortified 
Weiszfeld 
(λ=1.8)

Bongartz 287 10 139.0719 139.0733 139.0733 139.0733

Bongartz 287 20 197.8668 197.9138 197.8737 197.9144

SJC3a 300 25 32,428.2486 32,428.2486 32,428.2486 32,428.2486

SJC3a 300 40 25,197.2068 25,196.7162 25,197.0348 25,198.7338

SJC4a 402 25 34,644.7134 34,653.7990 34,645.9072 34,653.8785

SJC4a 402 40 48,179.3042 48,179.5976 48,179.4142 48,179.6025

SJC324 324 20 30,556.2853 30,565.7304 30,557.5259 30,565.8120

SJC324 324 40 25,357.3373 25,358.9635 25,357.5414 25,359.0472

SJC324 324 60 13,846.0000 40,537.0000 39,823.5727 40,596.4034

SJC500 500 20 92,216.8845 92,218.4276 92,216.9349 92,218.4296

SJC500 500 40 57,258.8148 57,259.0801 57,259.2065 57,271.1228

SJC500 500 60 48,625.1725 48,628.5175 48,625.3845 48,628.7000

SCJ708 708 20 65,343.2153 65,343.2153 65,343.2152 65,343.2152

SCJ708 708 40 62,975.4499 62,990.4081 62,977.4310 62,990.4117

SCJ708 708 60 54,249.0377 54,451.8619 54,552.0137 54,558.1402

SCJ818 818 20 90,887.6587 90,887.6587 90,887.6584 90,887.6584

SCJ818 818 40 114,272.4713 114,285.8069 114,273.2702 114,285.8603

SCJ818 818 60 75,647.6951 75,912.7513 75,954.0407 75,954.1735

CPmedcap2 1481 25 654.0281 654.0100 654.0270 654.0093

CPmedcap2 1481 40 662.3912 662.3912 662.3912 662.3912

Taillard 2863 25 10,798,924 10,799,235 10,798,942 10,799,236

Taillard 2863 50 9,603,744 9,604,467 9,603,740 9,604,466
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Table 5. The percentages of performance of the methods in Table 4 with respect to the RWFCM

DATA No of 
Demand 
Pts

No of 
clusters

RWFCM RWFCM& 
Weiszfeld  

λ =( )1
RWFCM& 
Modified Weiszfeld 

λ =( )1 8.

RWFCM& 
Fortified Weiszfeld 

λ =( )1
RWFCM& Fortified 
Weiszfeld 

λ =( )1 8,

Bongartz 287 10 7,627.6646 1.823% 1.823% 1.823% 1.823%

Bongartz 287 20 4,622.8436 4.280% 4.281% 4.280% 4.281%

SJC3a 300 25 1,435,737.8102 2.259% 2.259% 2.259% 2.259%

SJC3a 300 40 1,035,707.4684 2.433% 2.433% 2.433% 2.433%

SJC4a 402 25 2,374,352.00 1.459% 1.46% 1.459% 1.46%

SJC4a 402 40 1,840,615.86 2.618% 2.618% 2.618% 2.618%

SJC324 324 20 1,881,620.00 1.624% 1.624% 1.624% 1.624%

SJC324 324 40 1,163,306.29 2.18% 2.18% 2.18% 2.18%

SJC324 324 60 850,630.00 1.628% 4.766% 4.682% 4.773%

SJC500 500 20 4,269,917.30 2.16% 2.16% 2.16% 2.16%

SJC500 500 40 2,723,926.34 2.102% 2.102% 2.102% 2.103%

SJC500 500 60 2,091,680.61 2.325% 2.325% 2.325% 2.325%

SCJ708 708 20 6,017,948.00 1.086% 1.086% 1.086% 1.086%

SCJ708 708 40 3,998,800.65 1.575% 1.575% 1.575% 1.575%

SCJ708 708 60 2,989,036.00 1.815% 1.822% 1.825% 1.825%

SCJ818 818 20 7,624,484.86 1.192% 1.192% 1.192% 1.192%

SCJ818 818 40 5,250,380.22 2.176% 2.177% 2.176% 2.177%

SCJ818 818 60 3,873,383.00 1.953% 1.96% 1.961% 1.961%

CPmedcap2 1481 25 114,575.00 0.571% 0.571% 0.571% 0.571%

CPmedcap2 1481 40 88,556.55 0.748% 0.748% 0.748% 0.748%

Taillard 2863 25 656,694,127 1.644% 1.644% 1.644% 1.644%

Taillard 2863 50 452,711,742 2.121% 2.122% 2.121% 2.122%

AVERAGE:       1.899% 2.042% 2.038% 2.043%
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