
DOI: 10.4018/IJAEIS.2019100101

International Journal of Agricultural and Environmental Information Systems
Volume 10 • Issue 4 • October-December 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

1

Soybean Price Pattern Discovery 
Via Toeplitz Inverse Covariance-
Based Clustering
Hua Ling Deng, Northeast Agricultural University, Harbin, China

Yǔ Qiàn Sūn, Northeast Agricultural University, Harbin, China

ABSTRACT

The high volatility of world soybean prices has caused uncertainty and vulnerability 
particularly in the developing countries. The clustering of time series is a serviceable 
tool for discovering soybean price patterns in temporal data. However, traditional 
clustering method cannot represent the continuity of price data very well, nor keep 
a watchful eye on the correlation between factors. In this work, the authors use the 
Toeplitz Inverse Covariance-Based Clustering of Multivariate Time Series Data 
(TICC) to soybean price pattern discovery. This is a new method for multivariate 
time series clustering, which can simultaneously segment and cluster the time series 
data. Each pattern in the TICC method is defined by a Markov random field (MRF), 
characterizing the interdependencies between different factors of that pattern. Based 
on this representation, the characteristics of each pattern and the importance of each 
factor can be portrayed. The work provides a new way of thinking about market price 
prediction for agricultural products.
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INTRODUCTION

The soybean is one of the requisite grain crops in the world, and has been cultivated 
for more than 5,000 years. Due to its high nutritive value, amounts of full-fat soybeans 
are being used in the feed and food industry. In addition, since the soybean, as the vital 
economic crop, plays an important role in economics and trade around the world, the 
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soybean price index has become an important indicator of China’s economic activity. 
The instability of soybean prices will bring huge risks to farmers, governments, 
consumers, and other commercial entity involved in soybean market. Therefore, 
accurate analysis of soybean market price needs to be taken seriously.

There is a vast literature on analysis of agricultural product price. On the one hand, 
several studies examine the relationship between agricultural product price and other 
factors. For example, Harri et al. (2009) investigated the cointegration relationship 
between exchange rates, oil prices, and agricultural crop prices by k-th order Vector 
Autoregression (VAR) model. Nazlioglu et al. (2012) studied the dynamic relationship 
between world oil prices and twenty-four world agricultural commodity prices by 
panel cointegration and Granger causality methods. Ekananda et al. (2018) observed 
that the world soybean price and exchange rate may affect the domestic soybean 
prices positively and significantly in the short term by Bound Testing Cointegration 
method with Autoregressive Distributed Lag (ARDL) approach. On the other hand, 
some researchers prefer to fit time series by selecting an appropriate model to predict 
agricultural product price. For example, Assis et al. (2010) and Maizah et al. (2014) 
predicted Cocoa Bean price sequences and the prices of Malaysian crude palm oil 
by Generalized AutoRegressive Conditional Heteroskedasticity (GARCH) model 
respectively. Octavio et al. (2009) achieved a better predicted result of U.S. soybeans 
and Brazilian coffee prices by Threshold Autoregressive (TAR) model. The prediction 
methods above can provide some valuable information for decision makers. However, 
these methods either cannot overcome sensitivity to noise, or only forecast in a short-
term. To solve noisy sensitivity and short-term forecasting, agricultural product price 
sequence can be divided into several subsequences, in which each subsequence belongs 
to some defined trend or “pattern” reoccurring in the future. Once these patterns come 
under observation, seemingly unordered price data can be interpreted as a few defined 
patterns. The process of finding pattern is referred to “pattern discovery”. Pattern 
discovery try to forecast the trend of agricultural product price rather than the price 
in short-term. Due to the noise of data has less influence on the trend prediction than 
the short-terming forecasting, pattern discovery can overcome sensitivity to noise and 
forecast the trend of agricultural product price (Gionis et al., 2003).

Pattern discovery from time series is of fundamental importance. Particularly with 
the development of sensors, time series has become an important class of temporal 
data objects and they can be easily obtained from many applications, e.g., daily 
temperatures, levels of pollution, human heartbeats, and prices of agricultural products. 
Different from the traditional discrete database, time series data are characterized 
by their continuity. Therefore, when they can be focused as fragments rather than as 
individual data points, interesting patterns can be discovered.

For the problem of pattern discovery in time series, one of the most popular 
techniques being employed is clustering since clustering methods can seek out the 
similarity and distinction between data, namely, different patterns in the data. Most 
previous studies in time series clustering are restricted to univariate time series. For 
example, Golay et al. (1998) applied the fuzzy c-means algorithm to univariate time 
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series in order to study the human brain activity. Tak-chung Fu et al. (2001) proposed 
the self-organizing map (SOM) based pattern discovery scheme that cooperates with a 
new pattern matching scheme for discover the pattern of stock price. They tested SOM 
algorithms on a few Hong Kong Stock Exchange listed stocks’ time series. In practical 
problems, however, multivariate time series data are actually complex and related: 
when a car is moving, for example, the data of sensors such as Gas Pedal Position, 
Vehicle Velocity and Brake Pedal Position may codetermine whether the current car 
are turning or speeding up. These characteristics makes various algorithms have been 
proposed to cluster multivariate time series data of different types (Liao, 2005).

The algorithms that addressed multivariate time series include Košmelj et al. 
(1990), Kakizawa et al. (1998), Ramoni et al. (2000), etc. Most of these studies 
assume that there is no cross-correlation between factors and simplify the overall joint 
distribution by assuming conditional independence between factors. Moreover, these 
methods have no idea to explain the cluster results. In the conference on Knowledge 
Discovery and Data Mining, Hallac et al. (2017) proposed a new method of model-
based clustering, the Toeplitz Inverse Covariance-based Clustering (TICC), which 
is the main method we are going to use. Hallac defined each cluster by a correlation 
network, or Markov random field (MRF), describing the interdependencies between 
different observations. In this manner, TICC can output the key factors affecting each 
category by MRF which is also the unique in this approach. Procacci et al. (2018) 
identified the state of financial markets based on the TICC model. Their experiment 
is equally proof that the method is efficient and reliable in identifying and predicting 
accurate and interpretable structures in multivariate, non-stationary financial datasets. 
To the best of our knowledge, our research is the first to apply TICC method to the 
field of agricultural price analysis.

In this paper, a clustering methodology based on Toeplitz matrix is proposed for 
discover the agricultural products market price pattern. As an application, this study 
evaluated the price pattern of soybean market over the Heilongjiang province. The 
remainder of this paper is organized as follows: In Sect. 2, we mainly introduce the 
mathematical model which used in this article. In section 3, we show how variables 
and data are selected based on our experimental. In Sect. 4, we offer a detailed analysis 
and empirical evaluation of our ideas. Finally, in Sect. 5, we provide conclusions and 
directions for future work.

MATHEMATICAL MODEL ON SOYBEAN 
PRICE PATTERN DISCOVERY

Just like static data clustering, the choice of multivariate time series clustering 
algorithm depends both on the characteristics of data available and the practical 
problem. In the most case, the market price of soybean will be also affected by other 
factors (such as the purchase price of soybean, the futures price of soybean oil, etc.), 
which forms a set of multivariate time series data. These data are characterized by 
continuity, correlation, and time-invariant. To achieve this clustering, it is necessary 
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to simultaneously segment and cluster multivariate data. This seems more difficult 
than traditional time series segmentation, since multiple segments can belong to the 
same cluster.

Compared with the traditional clustering, TICC is a new type of model-
based multivariate time series clustering method, which can find the accurate 
and interpretable structure in the data. TICC descr ibes each cluster with 
different MRFs and solved the problem of simultaneous segmentation and 
clustering through alternating minimization, using a variation of the expectation 
maximization (EM) algorithm.

For simplicity of notation, we consider a time series of T sequential observations, 
x x x x x

T
= [ , , , ]

1 2 3
� , where x R

i
n∈  is the i-th n-dimensional time series data. However, 

instead of looking at x
t
 separately, we intercept a short subsequence of size w  though 

TICC algorithm is relatively robust to the selection of this window size parameter, 
x x x x
i i w i i
= − + −[ , , ]

1 1
� , where x R

i
nw∈ . We take this new sequence as X X X X X

T
= [ , , , ]

1 2 3
� . 

The operation of the TICC can cluster these T observations into K clusters or states, 
where the set of observations of cluster j is denoted as P j k

j
, , ,= 1 2� . In addition, 

each cluster defined by a Gaussian inverse covariance Θ ∈ ×Rnw nw  or MRF, describing 
the interdependencies between different variates in a typical time sequence of that 
cluster. Note that Θ

i
 is composed of w w×  submatrix, each of which is n n× . Here, 

the submatrix of the PQ position describes the covariance inverse matrix between 
time P and time Q. In other words, Θ

i
 is a partitioned Toeplitz matrix that can be 

expressed in the following form:
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TICC cluster by solving two key problems in turn: Assign points to clusters, where 
we will use a dynamic programming (DP) algorithm, and Up-date Cluster Parameters, 
where we solve the Toeplitz graphical lasso problem using an algorithm based on the 
alternating direction method of multipliers (ADMM).

Assign Points to Clusters
Given Θ

j
, the cost of assigning X

t
 into cluster j  is equivalent to the negative 

logarithmic likelihood:
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In addition, considering the continuity of the observations, smoothness penalty 
parameter β  is imposed when the adjacent data is not belong to the same cluster:

E i i
i i

i i
( , )
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+ =
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A typical Assembly-Lines-Scheduling problem is comprised by these two costs, 
which can be solved efficiently by dynamic programming algorithm. Dynamic 
programming (usually referred to as DP) is a powerful technique for solving 
complex problems by decomposing them into a set of simpler subproblems, solving 
each of those subproblems just once, and using memory-based data structures 
(arrays, maps, and so on) to store their solutions. (Bellman, 1957). The core of 
the algorithm lies on only considering the cost of the i −1 th observation value 
when assigning the i th observations.

Algorithm 1. Assign points to clusters

1:  given β > 0, −ℓℓ(i, j) parameters
2:  initialize PrevCost = list of K zeros.
3:             CurrCost = list of K zeros. 
4:             PrevPath = list of K empty lists. 
5:             CurrPath = list of K empty lists. 
6:  for i = 1, . . ., T do
7:        for j = 1, . . ., K do
8:              MinIndex = index of minimum value of PrevCost. 
9:              if PrevCost[MinIndex] + β > PrevCost[j] then 
10:                 CurrCost[j] = PrevCost[j] −ℓℓ(i, j). 
11:                 CurrPath[j] = PrevPath[j].append[j]. 
12:       else
13:                 CurrCost[j] = PrevCost[minIndex] + β − ℓℓ(i, j). 
14:                 CurrPath[j] = PrevPath[minIndex].append[j]. 
15:       PrevCost = CurrCost. 
16:       PrevPath = CurrPath. 
17: FinalMinIndex = index of minimum value of CurrCost. 
18: FinalPath = CurrPath[FinalMinIndex]. 
19: return FinalPath.

Update Cluster Parameters
Once each point has been assigned, we can update the inverse covariances of each 
cluster by minimizing its negative logarithm likelihood summation, which can be 
written as follows:
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Here, E
1
 is independent of j  and can be rewritten as its equivalent problem:
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as the trace:
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where S  is the covariance matrix calculated by P
j
. Add another one regularization 

parameters: λ , which determines the sparsity level in the MRFs characterizing 
each cluster:

E
3 1
=|| ||λ �Θ 	

where λ  is the weight matrix, �  is the matrix multiplication, and Θ  is a block Toeplitz 
matrix (Gray, 2011).

It is necessary to develop a fast method for solving it efficiently. By transforming 
the problem into the following form, we can use the alternating direction method of 
multipliers (ADMM) to achieve this idea, a distributed convex optimization approach 
that has been shown to perform well at large-scale optimization tasks (Boyd et al., 
2011; Parikh at al., 2014):

min log det ( )imize tr S Z− + ⋅ +Θ Θ λ �
1
	

subject to     ZΘ = 	

where Z is a block Toeplitz matrix.

Algorithm 2. Update cluster parameters

1: initialize Cluster parameters Θ; cluster assignments P.
2: repeat
3:       E-step: Assign points to clusters → P.
4: until Stationarity.
   return (Θ, P).
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We can implement the TICC algorithm by a Python solver.1 TICC solver 
breaks the T timestamps into segments where each segment belongs to one of 
the “ k ” clusters. The total number of segments is defined by the smoothness 
parameter “ β ”. It does so by running an EM algorithm where TICC alternately 
assigns points to clusters using a DP algorithm and updates the cluster parameters 
by solving a Toeplitz inverse covariance estimation problem. In short, the solver 
takes as input a T-by-n data matrix, the window size “w”, the number of clusters 
“k” and some necessary parameters, then returns an array of cluster assignments 
for each time point. Simultaneously, we can get a dictionary with keys being the 
cluster_id (from 0 to k-1) and the values being MRFs of each cluster. Below, we 
will demonstrate our experiment and analysis in two sections.

EXPERIMENTS

Heilongjiang accounts for about 60 percent of China’s soybean acreage, producing 
1.5 million tonnes a year, about 11% of the country. In this section, we attempt to 
model the common patterns of soybean price in Heilongjiang province. In Hallac’s 
literature, TICC method has shown good performance when compared with several 
state-of-the-art baselines such as Gaussian Mixture Model (GMM) and Dynamic Time 
Warping (DTW). To provide a complete evaluation of the models, Hallac validated 
TICC approach by comparing TICC to several state-of-the-art baselines in a series of 
synthetic experiments and an automobile sensor dataset respectively. And the finding 
was that compared to other several well-known time series clustering approaches, 
TICC not only has high accuracy, but also significantly outperforms the baselines 
in scalability and interpretability. For these reasons, our algorithms which named 
Toeplitz Inverse Covariance-based Clustering (TICC) can be applied to find price 
pattern properly. The main experimental steps are as follows:

Step 1: Choose the factors.
Step 2: Data acquisition and processing.
Step 3: Run the TICC to cluster.
Step 4: Comprehensive analysis.

According to previous research, quite a few factors will affect the change of soybean 
market price together due to their different characteristics and the requirement of 
society (Liu et al., 2005; Massimo et al., 2013; Wang, 2016). We finally selected 4 
factors as the independent variables of the experiment after tests and analysis: soybean 
purchase price, corn market prices, soybean and soybean-oil futures prices. We cluster 
the multiple time series and map the clustering results to the soybean market price, 
and we will find that there are truly similar patterns to repeat in some periods.

Our database is obtained from the Dalian Commodity Exchange (http://www.dce.
com.cn/DCE/DCE_PAGE_KEY/index.html), Heilongjiang Agricultural Information 
(http://www.hljagri.gov.cn/ddw/scbj/), the Zhujiage network (http://www.zhujiage.

http://www.dce.com.cn/DCE/DCE_PAGE_KEY/index.html
http://www.dce.com.cn/DCE/DCE_PAGE_KEY/index.html
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com.cn/special/hlj_dadoujiage.html) by writing a web crawler which is a program 
can automatically retrieve web content. Here, it is worth taking a moment to flag the 
fact that the data on the page could be partially missing. To get through this, we used 
Lagrange interpolation method to fill the missing data. Lagrange interpolation is a 
mathematical method which tries to construct an appropriate function that can pass 
through several known points, and then use the function to find the unknown points 
on the interval. The Scipy library in python has a Lagrange function that makes it 
easy to do this task.

In a previous work, we introduced the parameters of TICC, it can be selected by 
a precise method such as Bayesian information criterion (BIC) or cross-validation 
(Hastie et al, 2009). We pick the number of clusters using BIC, and we do the trick 
when K = 4. We run TICC with a window size of 3 day. Thus, in this experiment, we 
have 358 price data of a 4-dimensional time series. After a few minutes of running, 
we will get a CSV and a TXT file, containing an array of clustering results and a MRF 
for each cluster respectively, as indicated in the code. All the cases have been run on 
a PC with win7 of operating system and a 2.4-GHz-based processor.

RESULTS AND DISCUSSIONS

We can see in Figure1 that TICC divides the entire timeline into five segments where 
the first (2016.7.15-2016.9.12) and third (2017.3.28-2017.5.26) segment belong to 
the same cluster. Therefore, we can expect that the soybean market can be represented 
four patterns in this timeline, although we are insensible of what these four models 
represent at present. Furthermore, we notice that the two segments that are both in 
Pattern 1 are not in the same month. That means the patterns of soybean price is not 
affected by season to some extent.

Recall that we define each cluster by a sparse Gaussian inverse covariance matrix 
Θwhich illustrates the conditional independency structure between the variables 
(Friedman et al., 2008). Here, we also give the definition matrix for each cluster shown 
in Tables 1-4.

Note that the inverse covariance matrix of a different cluster have a different value 
between any two factors. Actually, the number of ij  positions in the matrix refers to 
the relationship between concurrent values of i  and j . Here, the A

0
 sub-block 

represents the intra-time partial correlations, so A
ij0

 refers to the relationship between 
concurrent values of factors i and j. Similarly, A

ij1
 shows how factor i at some time t 

is correlated to sensor j at time t + 1, and A
2

 shows the edge structure between time 
t and time t + 2(Figure2). For example, the order of the four values is 18.1207, 3.2406, 
11.4418, and 6.8134 in A

0
, which represents the order of autocorrelation of variables 

is factor 1, 3,4, 2 (soybean purchase price, soybean futures prices, soybean-oil futures 
prices, and corn market prices, respectively). The number 0.071 and 0.625 means that 
the variable 4 has a relationship with the variable 2.3, and the variables 3 and the 
variable 4 are more closely related.
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Table 1. Pattern 1

Figure 1. Multiple time series and clustering results. Each curve represents a set of data.
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Table 2. Pattern 2

Table 3. Pattern 3
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Table 4. Pattern 4

Figure 2. TICC method segments a time series into a sequence of states, or “clusters” (i.e., 1, 2, 3 or 4). 
Each cluster is characterized by a correlation network, or MRF, defined over a short window of size w. This 
MRF governs the (time-invariant) partial correlation structure of any window inside a segment belonging 
to that cluster. When w = 3 , the visual diagram structure of MRFs is shown in the figure. The dotted line 
in the figure indicates that there has some relationship between the two nodes.
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In order to analyze the soybean market pattern, we shall presently review some 
of the economic theories. The phenomenon of recurrent fluctuation between boom 
and depression in the economic activity is called Business Cycle (or Trade Cycle). 
Generally speaking, a cycle consists of four stages: Boom, Recession, Depression 
and Recovery. In which that Recession is a transition from Boom to Depression, the 
recovery is the phase of the transition from Depression to Boom. According to the 
theory of Business Cycle, it is inevitable that economic expansion and contraction 
will occur periodically. In particular, when the economy begins to falter, commodity 
prices fall and so does market demand. When economies reach prosperity, prices rise 
and production increases rapidly (Edward, 1986). Similarly, soybean price fluctuations 
can be explained well by the Business Cycle theory.

Next, we analyze the 4 clusters outputted by TICC to understand and interpret 
what state of the market they each refer to. Each cluster has a multilayer MRF 
network defining its structure. To analyze the result, we use complex network 
analysis to determine the relative “importance” of each node in the network. We plot 
the betweenness centrality score of each node in Table 5. We see that each of the 4 
clusters has a unique “feature”, with different factors having different points in each 
cluster. For example, the pattern1 has a non-zero score in only two of the four factors: 
Soybean Futures and Soybean-Oil Futures. As such, we would expect this cluster to 
refer to state in recession since the cash market volatility are volatile. Similarly, the 
scores of pattern2 are the most evenly, and it can be predicted that the soybean market 
is in a boom stage. We also see that the maximum and minimum values of cluster 3 
and cluster 4 are quite different, so we can expect them to be in the transition state 
of pattern 1 and pattern 2, where cluster 3 is heavily affected by corn market and the 
soybean market is in a depression period. As such, a reasonable hypothesis according 
to the business cycle theory might be that the clusters refer to 1) recession, 2) boom, 
3) depression, 4) recovery.

To validate that our experiment is interpretable, we now need to map the results 
back to the soybean market price to identify the accuracy of pattern. So we plot Figure3, 
coloring the timestamps according to their cluster assignments. Analyzing this graph, 
we empirically discover that each of the three clusters has their own characteristics 
and the recurring patterns do have some similarities. From this, we can perceive that 
our clustering is effective. Our experimental results support our claim that TICC 

Table 5. Betweenness centrality for each factor in the four patterns. This score can be used as a proxy 
to show how “important” each factor is, and more specifically how much it directly affects the other 
factor values.

Soybean Purchase Corn Market Soybean Futures Soybean-Oil Futures

Pattern 1 0 0 5.833 10.33

Pattern 2 5.166 7.833 13.333 6.666

Pattern 3 6.233 37.198 1.833 13.733

Pattern 4 9.166 5.666 0 13.166
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allows a time series of prices to be several typical patterns, and these patterns may 
recur over a certain period of time. The theoretical model fits the experimental well. 
Along this line of thinking, we can predict the direction of market prices by studying 
the transition probability of various models in the future.

CONCLUSION AND FUTUREWORK

In the context of this study, the empirical data showed that performance of the TICC 
methodology can discover soybean price pattern in a certain extent. We cluster each 
subsequence based on its correlation structure and define each cluster by a multilayer 
MRF to find various patterns in the data. Economic theory under each pattern has also 
been discussed. Furthermore, we mapped the results of the pattern discovery to the 
timeline of soybean market prices and found that our research was indeed explicable. 
Our study is an alternative approach in financial planning, as it allowed to detect and 
predict prices of agricultural products. Studying the pattern of agricultural products 
can enable us to grasp the price trend of market accurately, and then take effective 
measures to slow down the fluctuation of soybean market, which has important 
practical significance for stabilizing the production of agricultural products in China, 
increasing the output value of animal husbandry, and promoting the development of 
agricultural economy. In addition, pattern discover can be considered as one of the 
most important components in time series data mining systems. Using the a priori data 

Figure 3. Schematic diagram of soybean market price in the same period
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mining objective pattern, an optimal model will be chosen for short-term forecasting 
in the near future.

Under certain conditions and constraints, the paper only presents one repetitive 
pattern (Pattern 1) since we do not have much amount of price data. We believe when 
the data large enough to be used, we can receive more recurring pattern, even the 
relationship between the various patterns. This paper was in fact the first to apply the 
multi-time series clustering method to the field of agricultural product price analysis. 
Nevertheless, further works should be performed to learn how to accurately predict 
future prices based on Pattern Discovery. The properties that are discussed in this 
work, unquestionably, are receiving more and attention from other fields.
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