
DOI: 10.4018/IJAEIS.2019100103

International Journal of Agricultural and Environmental Information Systems
Volume 10 • Issue 4 • October-December 2019

﻿
Copyright © 2019, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

﻿

37

A Bayesian Probability Model Can 
Simulate the Knowledge of Soybean 
Rust Researchers to Optimize 
the Application of Fungicides
Gregory Vinícius Conor Figueiredo, Instituto Federal do Paraná, Campus Telêmaco Borba, 
Paraná, Brazil

Lucas Henrique Fantin, Universidade Estadual de Londrina, Londrina, Brazil
 https://orcid.org/0000-0002-5632-3007

Marcelo Giovanetti Canteri, Universidade Estadual de Londrina, Londrina, Brazil

José Carlos Ferreira da Rocha, Universidade Estadual de Ponta Grossa, Santos Andrade, Brazil

David de Souza Jaccoud Filho, Universidade Estadual de Ponta Grossa, Santos Andrade, Brazil

ABSTRACT

Asian rust is the main soybean disease in Brazil, causing up to 80% of yield reduction. 
The use of fungicides is the main form of control; however, due to farmer’s concern 
with outbreaks many unnecessary applications are performed. The present study 
aims to verify the usefulness of a probability model to estimate the timing and the 
number of fungicides sprays required to control Asian soybean rust, using Bayesian 
networks and knowledge engineering. The model was developed through interviews 
with rust researchers and a literature review. The Bayesian network was constructed 
with the GeNIe 2.0 software. The validation process was performed by 42 farmers and 
10 rust researchers, using 28 test cases. Among the 28 tested cases, generated by the 
system, the agreement with the model was 47.5% for the farmers and 89.3% for the 
rust researchers. In general, the farmers overestimate the number. The results showed 
that the Bayesian network has accurately represented the knowledge of the expert, and 
also could help the farmers to avoid the unnecessary applications.
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INTRODUCTION

Asian soybean rust (ASR), which is caused by the fungus Phakopsora pachyrhizi Syd 
& P. Syd, is the most devastating soybean disease in tropical and subtropical regions. 
The disease causes annual losses of approximately 2 billion USD in Brazil (Godoy et 
al., 2016). The yield losses caused by the disease are directly related to the progression 
and severity linked to biotic and abiotic factors such as environmental conditions, such 
as temperature and humidity (Melching et al., 1989; Tsukahara et al., 2008; Alves et 
al., 2011; Igarashi et al., 2014).

Fungicides are the main disease control strategy that have been effectively adopted 
by farmers. Due to the destructivity capacity of fungus, unnecessary applications are 
often performed, but missing applications also occur (Godoy et al., 2009). Additionally, 
increased fungicide applications can promote selection of resistant populations (van 
den Bosch et al., 2014). One method of safely and sustainably managing the aggressive 
potential of the disease is to use forecasting systems, which can indicate the infection 
risk and appropriate time for fungicide application.

In this context, several authors have proposed the development of expert systems 
to support decision making as well as the detection, diagnosis, and management of 
the disease (Alves et al., 2011; Fantin et al., 2019; Igarashi et al., 2016; Zhu et al., 
2013). The expert system represents and rationalizes the knowledge of a domain to 
solve problems and provide information (Montazer et al., 2009), encoding the relevant 
knowledge in a formal model known as a knowledge base.

In the model estimating fungicide application to control Asian rust, uncertainty can 
arise from yet unknown processes and factors. Probability theory provides a strategy to 
manage uncertain knowledge, and in this context, the formalism of Bayesian networks 
has been employed to develop knowledge-based systems. Studies that have applied 
Bayesian networks include those focused on the treatment and reuse of wastewater 
(Carvajal et at., 2015; Beaudequin et al., 2016), modelling to understand and prognose 
the pathogen behaviour and the epidemiology of infectious diseases (Zhu et al., 2013; 
Yin et al., 2015), and genetic estimation in animals that are most susceptible to certain 
pathogens in livestock (Özkan et al., 2016).

The Bayesian network can be represented by a directed acyclic graph in which 
the nodes represent the variables of the problem and the arcs are the conditional 
dependency relationships between the connected nodes. Thus, X={X_1…X_n} is a 
set of categorical random variables, and E is a set of statements indicating a binary 
relationship that informs the direct conditional dependence between pairs of variables. 
Russell and Norvig (2003) summarize the Bayesian network in a graph G=(X,E), in 
which each element X is a node in the network and each arc (X_i,X_j) belongs to E. 
The set of parents of X in G is denoted by parents (X).

The present study aims to verify the potential for using a probability model 
constructed with expert knowledge to estimate the need for fungicides and the number 
of applications required to control ASR using the formalism of Bayesian networks 
and knowledge engineering.
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METHODOLOGY

The model was constructed in the following three steps: (I) modelling to diagnose the 
disease, determined by relevant variables to predict an ASR epidemic; (II) adaptation 
of the created model into a qualitative model to estimate fungicide application; and 
(III) construction of the quantitative model. All of the developmental stages were 
performed using GeNIe version 2.0 (Druzdzel, 1999).

Qualitative Model
The qualitative model was created to formalize objectives and identify the variables 
and objects of the domain. The process was conducted through interviews with the 
expert “A”. The interview was carried out after the 2013 soybean season and led to 
a graph of a Bayesian network for Asian rust. The variables and objects proposed by 
expert A were analysed by experts B, C, and D. The defined variables were adapted 
via an iterative process, with the insertion and removal of variables at each step, 
which resulted in the Bayesian network for estimating the application of fungicides 
to control ASR, as shown in Figure 1.

For descriptive purposes, the model can be divided into two subnetworks: 
subnetwork 1 concerns the first fungicide application, and subnetwork 2 concerns 
the additional applications. The variable of interest in subnetwork 1 refers to the first 
application (A1) and is directly influenced by WF, PS, PF, CC, D, and PSC (Table 1).

Based on Andrade and Andrade (2002) and Tsukahara et al. (2008), the weather 
forecast (WF) variable direct influences variable A1 because it forecasts the temperature 
and humidity which are essential requirements for the initiation and development of 
the disease. The same principle was used for variable PS, given that, according to 
Furtado et al. (2009) and Xavier et al. (2017), the phenological stage of the plant also 

Figure 1. Graph of a Bayesian network (subnetwork 1 and 2) model obtained from an expert to estimate 
fungicide applications to soybean crops to control Asian rust
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directly affects infection and development of the disease; thus, it influences decision 
making regarding fungicide application.

Although the variables CC, D, and PSC directly influence variable A1, they are 
also influenced by other variables. CC is influenced by the variable R. Thus, R directly 
influences CC and indirectly influences A1. The same principle applies to the variable 
for Asian rust detection (D), which indicates whether the disease has been detected 
in the crop and is directly influenced by the variables ONP, VM, and SCT. The “pre-
seeding conditions” (PSC) variable is mainly influenced by the variables SP and I. 
PSC represents the elements that characterize favourable conditions the development 
of the disease before sowing.

Subnetwork 2 (Figure 1 and Table 2) is intended to simulate the decision of 
the expert “A” in relation to the additional fungicide applications, that is, the 
applications performed because the protection period of the first application ends. 

Table 1. Variables of the Bayesian model for estimating fungicide application to soybean crops to control 
Asian rust, subnetwork 1

Name Description

A1 First fungicide application Decision regarding the execution of the application

SCT Spore collection trap Indicates that spores were found in the trap

R Rain Incidence of rain in the region

AC Aerial current from west to east Aerial current from Paraguay to Paraná

CC Climate conditions Conditions favourable for Asian rust

WR Winter rain Rain in the off-season period

PSC Pre-seeding conditions Favourable conditions before the beginning of seeding

D Detection Methods for detecting Asian rust

PS Phenological stage Verifies the initial phenological states of the soybeans

SP Seeding period Verifies whether the seeding was performed during the 
recommended period

FA1 Fungicide used in the first application Chemical group of the fungicide used in the application

FR Frost Incidence of frost in the off-season

I Inoculum Presence of inoculum before seeding

IP Inoculum coming from Paraguay Evidence of inoculum coming from Paraguay

ISP Inoculum in spontaneous plants Presence of the inoculum in spontaneous plants in the off-season

VM Presence of the inoculum in spontaneous 
plants in the off-season Most common method of identifying rust in a plantation

ONP Occurrence in neighbouring plantations Evidence of Asian rust in neighbouring plantations

OP Occurrence in Paraguay Evidence of inoculum in Paraguay

PF Profile of the farmer Profile of the soybean farmer (innovative or conservative)

WF Weather forecast for the next five days Forecast of favourable conditions in the next 5 days

SS Soybean and second crop Soybeans in the off-season

FA Fallowing in the region Presence of fallowing in the off-season period
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In this subnetwork, most of the variables and influences are similar to those in the 
subnetwork of the first application. However, in this case, the subnetwork has two 
special types of nodes: deterministic and noisy-MAX. Deterministic or noisy-OR is 
represented by situations in which the response variable is influenced bt independent 
variables and can assume two values (Neapolitan, 2013). The noisy-MAX enables 
the development of structures with more than two conditions influencing the variable 
response. The structure is considered the generalization of noisy-OR (Zagorecki 
and Drusdezel, 2013).

Quantitative Model
The quantitative model of the Bayesian network aimed to define how much one variable 
influences another; however, even variables that are not influenced by any other are 
subject to quantification of their values. The variables WF, R, ONP, VM, SCT, PS, 
PF, SP, FA, SS, WR, FR, OP, and AC were not influenced by any other variable in 
the model. The a priori distributions for these variables were assumed to be uniform 
because the prototype was not developed for use at a specific location or on a specific 

Table 2. Variables of the Bayesian model for estimating additional fungicide applications on soybean 
crops to control Asian rust, subnetwork 2

Name Description

A2 Second fungicide application Decision regarding the execution of the 
application

A3 Third fungicide application Decision regarding the execution of the 
application

D12 Difference between the first and the 
second application Difference, in days, between the applications

D23 Difference between the second and the 
third application

MS Maturation stage Verifies the final phenological states of the 
soybeans

FA2 Fungicide used in the second application Chemical group of the fungicide used in the 
application

PA1 Residual period for the product used in the 
first application

Period during which the fungicide will be having 
an effect

PA2 Residual period for the product used in the 
second application

WA1 Week of first application Week of the cycle in which the application was 
performed

WA2 Week of second application

WA3 Week of third application

TC Tolerance of the cultivar Indicates if the cultivar is genetically tolerant to 
Asian rust
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date, meaning that the values were assumed only as a record of evidence. The variables 
used are shown in Table 3.

The tables of conditional probability (TCPs) for the other variables indicate the 
values determined by experts A, B, C, and D during the interviews in which they 
described expectations based on their experiences. Tables 4a, 4b, and 4c show the 
TCPs for the variables A1, A2, and A3. The other nodes developed for the network—
with the exception of MS, D12, and D23—were also probabilistic.

The MS node is influenced by disjunctive conditions; thus, it was inserted 
into the Bayesian network as noisy-MAX. The distribution was performed based 
on the degree to which the soybeans filled out. Until stage R6, the grain is still in 
formation and can be in the R5.5 stage (the last before R6) with a degree of grain 
fullness between 76% and 100%. According to EMBRAPA (2013), in stage R6, the 
grain will be complete. The distribution of values for this node was constructed in 
such a manner to show the following:

P MS untilR WA= ∨ ≤( ) =6 2 15 1 0. 	

Table 3. Variables and their respective values adopted in the Bayesian network model for estimating the 
application of fungicides to soybean crops to control Asian rust

Abbreviation Values Abbreviation Values

A1 no, yes FR a little, a lot

A2 no, yes I low, high

A3 no, yes IP absent, present

SCT absent, present ISP low, high

R a little, normal, a lot VM negative, positive

AC no, yes ONP no, yes

CC unfav, fav OP no, yes

WR dry, normal, rainy PF conservative, innovative

PSC unfav, fav PA1 withinPeriod, 
outsidePeriod

D absent, present PA2 withinPeriod, 
outsidePeriod

D12 lessthan14days, between 14&21days, more than 
21days WF withinPeriod, 

outsidePeriod

D23 lessthan14days, between 14&21days, more than 
21days WA1 1 ... 17

PS beforeFlowers, fromFlowersOnward WA2 1 ... 17

MS untilR6, fromR6Onward WA3 1 ... 17

SP early, normal, late SS no, yes

FA1 triazolEstrob, carbEstrob TC susceptible, tolerant

FA2 triazolEstrob, carbEstrob FA no, yes
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P MS untilR WA= ∨ ≤( ) =6 3 15 1 0. 	

P MS fromR onward WA( ) .= ∨ > =6 2 15 1 0 	

and:

P MS fromR onward WA( ) .= ∨ > =6 3 15 1 0 	

Table 5 shows the conditional probability for the variable MS. The LEAK value 
represents the probability of reaching the R6 stage, even without all evidence available 
(Zagorecki and Druzdzel, 2004).

The nodes D12 and D23 are deterministic and do not have a TCP. Thus, the values 
of these nodes were determined from the difference between the weeks of fungicide 
application, which generates value considered to be the residual period for the product 

Table 4. Conditional probability for the (a) first application, (b) second application, and (c) third 
application variables for the Bayesian network model for estimating fungicide application to soybeans to 
control Asian rust

First Application (a)

D Absent Present

PS beforeflowers FromfloweringOnwards

PF Conservative Inovative

CC Unf. Fav

WF Unf. Fav. Unf. Fav.

PSC Unf. Fav. Unf. Fav. Unf. Fav. Unf. Fav.

No 1 0 1 0.8 0.3 0.2 0.7 0.5 0.3 0 0

Yes 0 1 0 0.2 0.7 0.8 0.3 0.5 0.7 1 1

Second Application (b)

TC Susceptible Tolerant

PA1 WithinPeriod OutsidePeriod WhitinPeriod OutsidePeriod

No 1 1 1 1

Yes 0 0 0 0

Third Application (c)

TC Susceptible Tolerant

MS UntilR6 FromR6onward UntilR6 FromR6onward

PA2 WithinP. OutsideP. WhitinP. OutsideP. WithinP. OutsideP. WhitinP. OutsideP.

No 1 1 1 1 1 1 1 1

Yes 0 0 0 0 0 0 0 0

Fav=favourable; Unf=Unfavourable; Whithin; P=WhitinPeriod; Outsidep=OutsidePeriod
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applied. The algorithms with the logic for the representation of these values are shown 
in Figure 2.

Validation
The Bayesian network for defining fungicide application to control Asian rust was 
tested and validated for the state of Paraná in the southern region of Brazil using the 
2013 knowledge of fungicide application. The Bayesian model test was performed 
with 42 farmers and 10 ASR researchers. The test was composed of test cases, which 
represent the conditions or situations (i.e., rain, detection of Asian rust) used for 
decision making regarding fungicide application.

The performance of test cases occurred in three steps. For the first step, the test 
cases used were proposed by expert A and were also generated by GeNIe 2.0 software. 
The test cases of the first step were conducted by experts B, C, and D. In the second 
step, the number of test cases increased according to situations proposed by experts B, 
C, and D. Based on the test cases proposed in the first and second steps, the software 
generated different combinations of test cases. The test case was conducted by 10 rust 
researchers and 42 farmers.

Figure 2. Algorithm with the logic for the representation of the values used in the Bayesian network model 
for estimating fungicide application to soybean crops to control Asian rust

Table 5. Table of conditional probability (TCP) for the “maturation stage” (MS) variable for the Bayesian 
network model for estimating fungicide application to soybeans to control Asian rust

WA2 WA3 LEAK

1 ... 15 16 17 1 ... 15 16 17

untilR6 1 0 0 1 0 0 0.7

fromR6onward 0 1 1 0 1 1 0.3

WA2: weeks after the second application
WA3: weeks after the third application
LEAK: the value that represents the probability of reaching the R6 stage, even without the presence of all of the evidence.
untilR6: the plants in the phenological stage by R6 (EMBRAPA, 2013).
fromR6Onward: the plants in the phenological stage in or after R6 (EMBRAPA, 2013).
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RESULTS AND DISCUSSION

First Stage
The test cases for validation expressed situations that had previously been faced by 
expert A, who was responsible for constructing the model, and additional situations 
faced by experts B, C and D. The information on such cases was included in the 
network that was implemented in GeNIe 2.0 software. The result of each proposed 
case was assumed by the model as a hypothesis of maximum posterior probability for 
the variables of interest—A1, A2, and A3.

As expected, experts B, C, and D approved the results. Using an example of expert 
B proposing a test case to decide on the first fungicide application, the following set 
of evidence was informed:

1. 	 R: normal; (see Table 3);
2. 	 IP: present.

Given the evidence provided, the result displayed by the system for variable A1 
was yes with a probability of 0.878 and no with a probability of 0.122, as shown in 
Figure 3.

Assuming the Bayesian decision rule of maximum posterior probability, the 
decision reported by the system indicated the performance of the first fungicide 
application, in accordance with the choice of the expert. The results can be 
explained by the combination of the evidence of rain (Del Ponte et al., 2006; 
Tsukahara, et al., 2008), leaf moisture (Igarashi et al., 2014), and inoculum 
(Minchio et al., 2016).

Figure 3. Probabilities for A1 variable (first application of fungicide), given the evidence for R (rain) and IP 
(inoculum coming from Paraguay), for the Bayesian network model for estimating the fungicide application 
to soybean crops to control Asian rust
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Second Stage
Subsequently, in the second stage of testing, experts B, C, and D proposed another 
eight test cases with different combinations of evidence. The responses informed by 
the system for the variables of interest (A1, A2, or A3) agreed with the decisions of 
experts B, C, and D and the proposed cases. According to Tsukahara et al. (2008), 
effective disease control is mainly related to the timing of application. In addition 
to promoting disease effective control, performing applications at the correct time 
and in the correct number also contributes to issues such as reducing the appearance 
of fungicide-resistant populations (Godoy, 2012; van den Bosch et al., 2014), which 
in turn reduces the number of applications and environmental damage. Problems of 
reduced sensitivity to the fungicides used in disease control have been observed by 
Xavier et al. (2015), Reis et al. (2015), Klosowski et al. (2016), Schmitz et al. (2014), 
and Simões et al. (2018), who noted the need to apply fungicide with caution.

Third Stage
In the third stage of testing, the software generated different combinations of input 
variables. The input and output variables were selected, and the system was responsible 
for determining different combinations of values. Each test case was shown to the 10 
rust researchers and 42 farmers to verify whether their answers were consistent with 
those generated by the system.

The validation script of the test cases was as follows:

•	 The general description of the model to each of the rust researchers;
•	 The exhibition of model implementation in GeNIe 2;
•	 The performance of tests for decision making regarding each of the possible 

applications;
•	 The presentation of the TCPs for each variable, when of interest to the expert.

The outputs generated for each test case—which had the variables A1, A2, and 
A3 as targets—were considered by the rust researchers. In total, GeNIe generated 
28 test cases. The rust researchers’ decisions showed the agreement of 89.3% with 
the model in relation to their expectations. However, the farmers’ decisions showed 
47.5% agreement.

The low agreement of farmers can be attributed to the limited information available 
to them. Usually, the application decision by farmers is based on the date and does not 
consider the parameters and favourable variables for disease occurrence. Thus, this 
practice can result in unnecessary applications. The present study demonstrated that 
using the formalism of Bayesian networks to construct an expert system is effective for 
predicting the need for fungicides and the number of applications required to control 
ASR. Thus, instead of setting a date and number of fungicide applications (which 
is often overestimated), it was possible to make accurate decisions about the timing 
and the number of applications to control ASR with the model. The same result was 
obtained by Carmona et al. (2015) in a study that developed a scoring system to aid 
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the applications to control late season soybean diseases. This possibility indicated the 
potential for reducing environmental damage caused by the excessive use of fungicides 
as well as improving economic factors and sustainability for producers due to the 
reduction in unnecessary applications.

The interviews conducted with experts A, B, C, and D enabled knowledge 
engineering, which culminated in the construction of a validated formal model. The 
tests conducted showed that the model accurately simulated the need for fungicide 
applications. The knowledge engineering used in the model accurately represented 
the experts’ thinking in relation to fungicide applications to control ASR in the 
state of Paraná. However, some variables have been changing during the seasons 
resulting less agreement with the model. Thus, frequent updates to incorporate 
more knowledge variables such as “nutritional balance”, as noted by Gaspar et al. 
(2015), the “maturation group of the soybean cultivar” which indicates the time at 
which the crop will be in the field (Moreira et al., 2015), and “fungicide resistance” 
(Klosowski et al., 2016; Schmitz et al., 2014; Simões et al., 2018; Xavier et al., 
2015) which influences the chemical group used and time between applications 
(Jørgensen et al., 2017; van den Bosch et al., 2014) could increase the accuracy of 
fungicide application requirement simulations.

CONCLUSION

Based on what has been stated, it can be concluded that the Bayesian network 
system simulates expert knowledge to assist in decision making regarding the need 
for fungicide applications. Considering that the number of fungicide applications is 
generally overestimated, the system has potential to reduce environmental damage 
caused by the excessive use of fungicides and to generate savings for producers due 
reduced unnecessary applications.
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