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ABSTRACT

Video forgery has been increasing over the years due to the wide accessibility of sophisticated video 
editing software. A highly accurate and automated video forgery detection system will therefore be 
vitally important in ensuring the authenticity of forensic video evidences. This article proposes a novel 
Triangular Polarity Feature Classification (TPFC) video forgery detection framework for video frame 
insertion and deletion forgeries. The TPFC framework has high precision and recall rates with a simple 
and threshold-less algorithm designed for real-world applications. System robustness evaluations based 
on cross validation and different database recording conditions were also performed and validated. 
Evaluation on the performance of the TPFC framework demonstrated the efficacy of the proposed 
framework by achieving a recall rate of up to 98.26% and precision rate of up to 95.76%, as well as 
high localization accuracy on detected forged videos. The TPFC framework is further demonstrated 
to be capable of outperforming other modern video forgery detection techniques available today.

Keywords
Frame Deletion, Frame Insertion, Inter-frame Forgery Detection, Precision Rate, Recall Rate, Video Forensic

INTRODUCTION

Technology advancements in computing and video processing technologies in recent years have 
enabled the emergence of newer and more sophisticated video editing software tools. With the fact 
that most of these video editing software tools can be easily accessible online at practically no cost, 
it is not surprising that criminal acts associated with video forgery such as on surveillance videos 
are increasingly becoming more prevalent nowadays.

Criminal may be using video forgery as a way to get acquitted on the basis that the video evidences 
presented in court could not prove that they have performed the crime at a particular time or place. 
In criminal court cases particularly related to sensitive or high-profile cases, it is likely that a video 
that is modified or edited even slightly will be deemed as unacceptable to be used as evidence in the 
court. It is therefore imperative that a highly accurate forgery detection system is developed to ensure 
the authenticity of the videos used as evidences in court.

Detection of video forgery can be classified into intra-frame or inter-frame forgery detection. 
In intra-frame forgery detection, the aim is to locate the forged portions or regions within the image 
associated with a particular video frame whereas in inter-frame forgery detection, the aim is to locate 
forged frames within the full video sequence (Milani et al., 2012; Kingra, Aggarwal, & Singh, 2016). 
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Criminal video forgery acts are usually associated with inter-frame forgeries especially on frame 
insertion and deletion forgeries. This is due in part to the relative ease of performing inter-frame 
forgery with any basic video editing software as compared to intra-frame forgery.

This article proposes a novel Triangular Polarity Feature Classification (TPFC) video forgery 
detection framework for video frame insertion and deletion forgeries. The proposed algorithm has 
high precision and recall rates, and is considerably less complex in the system architecture design 
compared to other more common forgery detection systems based on optical flow consistency as 
detailed in Chao, Jiang, and Sun (2013) or systems based on evaluation of coding standards that 
usually involve more complex optimization algorithms such as those detailed in Wang and Farid (2007) 
and Aghamaleki and Behrad (2016). The lower complexity associated with the proposed algorithm 
will naturally lead to the advantage of faster processing time in authenticating video evidences in 
real-world court case scenarios where it is common that a large number of videos may need to be 
authenticated under a limited time constraint. Other important criteria such as robustness, localization 
capability and threshold-less system design were also considered in the proposed framework. The good 
performance of the system together with practical considerations of having a robust, threshold-less 
and computational efficient algorithm design makes the proposed approach a welcoming addition to 
the arsenal of algorithms available today for real-world inter-frame forgery detection.

RELATED WORK

In the following subsections, a review of the existing techniques for inter-frame video forgery detection 
will be presented. These techniques are broadly aggregated into three main categories; (1) camera-
based detection techniques, (2) coding-based detection techniques and (3) content inconsistencies 
detection techniques (Milani et al., 2012; Kingra et al., 2016). Limitations and challenges associated 
with these techniques will be discussed in the last subsection.

Camera-based Detection Techniques
Camcorders will usually leave a trace or footprint in the recorded videos that could be used for video 
forgery detection. In particular, Kurosawa, Kuroki, and Saitoh (1999) demonstrated Charge Coupled 
Device (CCD) Fingerprint method for camera identification based on the usage of fixed pattern noise 
generated from dark currents on CCD chips. The video sequences however must be recorded in 
dark places for the method to work. Hsu, Hung, Lin, and Hsu (2008) performed correlation analysis 
on temporal noise residue based on Gaussian Mixture Model (GMM) technique. The approach 
however was designed to detect temporal copy-paste inpainting and may not be applicable for inter-
frame forgery detection. Kobayashi, Okabe, and Sato (2009, 2010) evaluated video authenticity by 
detecting inconsistencies in Noise Level Functions (NLFs). Limitations are that they were developed 
to detect forgery in static scene, and any alteration of brightness of forged region in the video may 
affect fitting of NLF.

Coding-based Detection Techniques
Camera coding standard can introduce self-generated artifacts that can be used to aid in the video 
forgery detection (Milani et al., 2012; Kingra et al., 2016). Particularly, Wang and Farid (2006) 
performed forgery detection on doubly compressed Moving Picture Experts Group (MPEG) video 
sequence. As MPEG videos perform compression by partitioning video frames into Group Of Pictures 
(GOP) structure, the resulting motion error from inter-frame forgery will be periodic in nature, 
occurring in all subsequent GOPs after frame insertion or deletion point. The technique however 
can only be used for fixed GOP encoding and is unable to detect deleted frames with multiple GOP 
length. Wang and Farid (2007) performed forgery detection in interlaced and deinterlaced video by 
utilizing disturbance detection techniques. The approach however is computationally costly, developed 
mainly for intra-frame forgery detection and may not work well for low quality video. Aghamaleki 
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and Behrad (2016) performed inter-frame forgery detection by utilizing quantization residual errors 
in MPEG videos based on an evaluation of spatially constrained residual errors (SCREs) of P frames. 
The algorithm however requires higher computational time due to threshold optimization algorithms 
and system performance can suffer slightly for videos with low compression rates.

Jaiswal and Dhavale (2013) utilized Support Vector Machine (SVM) (Vapnik, 1995) for MPEG 
video forgery classification. Feature vector generated in Discrete Wavelet Transform (DWT) domain 
that characterizes Prediction Error Sequence (PES) is used for SVM classification. However, there 
were no localization analysis and robustness evaluation on classifier performance and a small dataset 
was used. Gironi, Fontani, Bianchi, Piva, and Barni (2014) proposed a method based on detection of 
misalignment in the video frame structure after double encoding operation. Similar to the limitation 
in Wang and Farid (2006), this method was investigated only for fixed GOP encoding with constant 
GOP size and is unable to detect inter-frame forgery associated with addition or removal of a whole 
GOP. Further, the technique cannot precisely localize the exact forged frame location.

Shanableh (2013) proposed several machine learning approaches to detect frame deletion forgery, 
namely SVM, K nearest neighbour (KNN), and logistic regression. Eight different features were 
proposed and they were computed mainly from both P and B frames of the MPEG coding standard 
based on prediction residual energy, percentage of intra-coded macroblocks, Peak Signal to Nosie 
Ratio (PSNR) and quantization scales. Limitations with this technique however are the inability to 
specify exact locations of deleted frames and unable to detect deleted frames with multiple GOP length.

Stamm, Lin, and Liu (2012) performed video forgery detection by detecting increases in P 
frames PES associated with frame insertion or deletion. Similar to Aghamaleki and Behrad (2016), 
this method is capable of detecting both frame insertion and deletion with constant or variable group 
of pictures length. However, a comparative evaluation performed in Aghamaleki and Behrad (2016) 
demonstrated that this method is less effective for videos with high compression rates.

A clear advantage of using coding-based detection techniques is that these techniques will have 
the ability to detect the utmost perfectly constructed forgery that is visually imperceptible, as these 
techniques rely on coding format rather than the actual content of video. A common limitation 
however in most of these coding based detection techniques, such as those detailed in Wang and 
Farid (2006), Aghamaleki and Behrad (2016), Jaiswal and Dhavale (2013), Shanableh (2013) and 
Stamm et al. (2012) is that the application of these techniques tends to be restricted only to videos 
coded by a specific MPEG compression standard and therefore may not be applicable to different or 
newer video coding standards.

Content Inconsistencies Detection Techniques
Video forgery will inevitably introduce subtle changes in the physical content of the video such as 
pixel intensity level changes at frame insertion or deletion boundaries. Recently, there have been an 
increasing number of studies utilizing such video content inconsistencies to detect video forgery.

Conotter, O’Brien, and Farid (2012) performed video forgery detection via analysis of object 
ballistic motion in the video. An advantage of this technique is that forgery detection is based on 
geometry rather than pixel intensity of video content and therefore, it is less sensitive to video 
resolution and compression. The video however will need to have recorded a full projectile motion 
for the proper usage of this technique.

Chao et al. (2013) performed inter-frame video forgery detection using optical flow technique 
(Lucas and Kanade, 1981) on a frame by frame basis. Limitations associated with this approach are 
the unrealistically created forged databases, reliance on hard threshold settings for classification, no 
localization analysis on forgery and slightly higher computational cost due to the usage of iterative 
search methodology in the algorithm. Another optical flow study that was performed by Wang, 
Jiang, Wang, Wan, and Sun (2013) depends on an anomaly detection scheme to perform inter-frame 
forgery detection.
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Wang, Li, Zhang, and Ma (2014a) employed consistency of correlation coefficients of gray values 
(CCCoGV) as SVM features for inter-frame forgery detection. Another study by Wang, Li, Zhang, and 
Ma (2014b) utilized the optical flow approach in Chao et al. (2013) to perform inter-frame forgery 
classification based on SVM classifier. Limitations of both studies are that the forged databases were 
unrealistically created, and both studies focused purely on classification without localization analysis. 
Li, Zhang, Guo, and Wang (2016) utilized consistency of quotient of mean structural similarity 
(QoMSSIM) that is based on the structural similarity (SSIM) image quality metric (Lowe, 2004) to 
perform inter-frame forgery detection.

Zheng, Sun, and Shi (2014) demonstrated a computationally efficient, threshold-less Block-wise 
Brightness Variance Descriptor (BBVD) algorithm that relies on a brightness variance descriptor 
feature denoted as RBVD  to detect inter-frame forgery. Huang, Zhang, and Thing (2017) demonstrated 
a novel Multi-Level Subtraction (MLS) framework for inter-frame video forgery detection.

Limitations and Challenges
Having described a multitude of forgery detection techniques in previous subsections, it is clear that 
every technique has its own advantages and limitations, and it is difficult to speculate which may 
be the best technique for forgery detection without referencing to some forms of system evaluation 
criteria. This subsection therefore aims to formally define seven system evaluation criteria that can 
be used to more effectively and systematically compare the different techniques, as below.

1. 	 System Performance: Good performance can be measured by high recall and precision rates 
or high classification accuracies of forged and original videos.

2. 	 Computational Efficiency: A system that is easily implementable, algorithmically simple and 
computationally efficient will typically have a much shorter processing time, thus leading to 
substantial time savings.

3. 	 Threshold-less Design: A threshold-less system design will be beneficial by eliminating human 
cognitive biases and ambiguities on the usage of correct thresholds. A common limitation with 
studies such as in Wang and Farid (2006), Gironi et al. (2014), Stamm et al. (2012), Conotter 
et al. (2012), Chao et al. (2013), Wang et al. (2013), Li et al. (2016) and Huang et al. (2017) is 
that they do rely on hard threshold settings in their detection algorithms. It is therefore unclear if 
these algorithms with the same hard threshold settings can generalize and perform well if other 
databases with different recording conditions were used.

4. 	 Localization Capability: Localization refers to the ability to determine the precise frame insertion 
or deletion boundary in forged video sequences. A common limitation with studies such as in 
Wang and Farid (2006), Jaiswal and Dhavale (2013), Shanableh (2013), Stamm et al. (2012), 
Conotter et al. (2012) and Chao et al. (2013) is that they tend to focus purely on classification 
and lack a detailed localization analysis for both frame insertion and deletion forgeries.

5. 	 Robustness Evaluation: A proper robustness evaluation of the forgery detection system will 
help in ensuring consistency of system performance under various test scenarios. For camera, 
coding and content inconsistencies-based detection techniques, robustness evaluation may refer 
to testing on different types of camera models, coding standards and video contents or recording 
conditions. For machine learning based detection technique, robustness evaluation may refer 
to usage of different compositions of training and testing databases to ensure consistency of 
classifier performance.

6. 	 Open Source Database Usage: A standardized open-source video database should ideally be 
used to ensure transparency on database usage and to facilitate a fair performance comparison 
among different techniques.

7. 	 Realistic Forgery Evaluation: For content inconsistencies detection techniques, the location 
of where frames are inserted or deleted from the original video sequence will have a substantial 
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impact on the system performance. A notable limitation with most content inconsistencies 
detection experiments as detailed in Chao et al. (2013), Wang et al. (2014a, 2014b), Li et al. 
(2016) and Zheng et al. (2014) is that the forged frames being inserted to or deleted from the 
original video were having too drastically different properties (such as different background 
environment, object alignment and brightness conditions, etc.) in comparison with neighboring 
frames of the original video at insertion or deletion point. In real-world forensic caseworks, frame 
insertion or deletion boundaries are likely to be indistinguishable visually by a lay person if the 
crime perpetrator has performed a careful editing of the video.

To the best of the authors’ knowledge, currently there is not a single existing video forgery 
detection system that is able to fulfill all the seven system evaluation criteria. While recent study 
detailed in Huang et al. (2017) was able to achieve good performance, there are certain unfulfilled 
criteria such as usage of hard thresholds and lack of detailed localization and robustness analysis. 
This article addresses these particular limitations by proposing a novel Triangular Polarity Feature 
Classification (TPFC) video forgery detection framework that will have fulfilled all seven evaluation 
criteria, by incorporating a number of system architectural modifications on the MLS framework 
detailed in Huang et al. (2017).

The authors compare the performance of the proposed framework with two of the better 
performing techniques available, i.e. the MLS system detailed in Huang et al. (2017) as discussed 
above and the BBVD system as detailed in Zheng et al. (2014). The BBVD system was able to 
satisfy all but the seventh aforementioned system evaluation criteria, where the forged databases 
were unrealistically created by random insertion of forged frames. In addition, the BBVD system also 
similarly belongs to the content inconsistencies detection technique category and was experimented 
on the same open source online database that will be employed in the proposed system. These 
multitudes of similarities therefore make the BBVD system a reasonable choice to be an additional 
baseline system for comparison. Due to space constraint, a complete overview of the MLS system 
will not be included here and readers may refer to Huang et al. (2017) for more detailed descriptions.

SYSTEM OVERVIEW

Baseline System – Block-Wise Brightness Variance Descriptor (BBVD)
The overview of the baseline BBVD system (Zheng et al., 2014) that will be employed in this article 
is depicted in Figure 1. This section provides a brief summary of the important steps required for 
BBVD feature extraction and forgery classification. The feature extraction steps are outlined below.

1. 	 Partition the video into sub-sequence groups of 15 frames in length with an overlapping of 5 
frames.

2. 	 Perform block partition for each frame within the sub-sequence group into 4 4�×  blocks as 
denoted by B b b b b b

i
= …{ , , , , ,

1 2 3 16
}, with b

i
 represents the ith  block of the frame.

Calculate the ratio of BBVD for each sub-sequence group based on (1) as defined below
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where R
BBVD

 denotes ratio of BBVD evaluated for each corresponding block between first and last 
frames in each sub-sequence group. M  and N  denote total number of row and column of pixel 
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values within each block. ∆B
sblock

, Bf
ij

 and Bl
ij

 denote pixel gray value difference and pixel gray 
value associated with the corresponding block from first and last frames of sub-sequence group 
respectively. B

ave
 is defined in (2) and denotes average pixel gray value associated with pixels in 

current block from the first frame of each sub-sequence group.
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4. 	 Calculate the average value R
BVD

 for the R
BBVD

 values for all the 4 4�×  blocks accordingly 
using (3).

R R
BVD

i
BBVD

=
=
∑
1

16 1

16

	 (3)

For the classification of video forgery, the 3σ  rule used for gross error detection from probability 
theory was employed. This 3σ  rule is mathematically expressed in (4) below

P z− < − <( ) =3 3 0 9974σ µ σ . 	 (4)

where z N~ ,¼Ã2( )  with ¼ and Ã representing the mean and standard deviation of z  respectively.
The steps required to perform video forgery classification for the BBVD system are outlined 

as below.

Generate the series of R
BVD

 values, R R R R
BVD BVD BVD BVDN1 2 3
, , …{ }  that represent the whole video 

sequence and determine mean  µ
BVD

and standard deviation  σ
BVD

of the R
BVD

 series as in (5) 
and (6):
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where N  denotes the total number of R
BVD

 values in the video.
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2. 	 If there is a value greater than 3σ
BVD

 in the R
BVD

 series, then the video is classified as forged 
video; otherwise the video is classified as normal video.

Proposed System – Triangular Polarity Feature Classification (TPFC)
A system overview of the proposed TPFC framework is illustrated in Figure 2. As the TPFC framework 
is an enhancement built on the MLS framework (Huang et al., 2017), a review of MLS framework 
will first be outlined and followed by discussions on the three system stages in the TPFC framework.

Figure 3 presents an overview of the MLS framework where light-colored frames represent the 
original video frames, and dark–colored frames represent the inserted forged frames for frame insertion 
forgery or the remaining frames after deletion for frame deletion forgery. The frame insertion or 
deletion boundary is located between the light-colored frames and dark-colored frames accordingly. 
To effectively characterize and detect this forged boundary location, three levels of subtraction of 
pixel gray values are implemented as illustrated in Figure 3. In the first level subtraction of pixel gray 
values, any pair of adjacent light-colored frames (i.e. frames within the original video) or any pair 
of adjacent dark-colored frames (i.e. frames within the forged insertion video or within the remaining 
frames of a forged deletion video) will exhibit a higher degree of similarity than those exact two 

Figure 1. Baseline block-wise brightness variance descriptor (BBVD) video forgery detection framework (Zheng et al., 2014)
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frames (i.e. one light-colored frame from original video, and one dark-colored frame from forged 
video) at the frame insertion or deletion boundary. This effectively implies that the first level of 
subtraction will return a small value (i.e. as represented by the symbol δ  in Figure 3) for those 
adjacent pairs of purely light-colored or dark-colored frames but will return a much larger value (i.e. 
as represented by the symbol ε  and circled in first level subtraction of Figure 3) for those exact two 
frames (one light-colored frame and one dark-colored frame) at the frame insertion or deletion 
boundary. Note that the symbols ε  and δ  in Figure 3 refers to the average pixel difference calculated 
between two video frames.

In the second level subtraction of pixel gray values, two prominent subtracted values (i.e. δ ε−  
and ε δ−  as illustrated in Figure 3) will be obtained near the forged boundary by simply subtracting 
adjacent values of the first level subtraction.

In the third level subtraction of pixel gray values, one particularly prominent subtracted value 
of − +2 2ε δ  will be obtained at the forged boundary by simply subtracting adjacent values obtained 
from second level subtraction. In contrast, subtraction of pixel gray values associated with frames 
beyond the forged boundary (i.e. using all light-colored frames or all dark-colored frames) will result 
in a very small value η that is close to zero. The absolute value of − +2 2ε δ  will be close to the 
value of 2ε  as ε  is much larger than δ . This implies that third subtraction level of MLS framework 
is capable of creating a stark contrast in pixel difference by amplifying pixel difference ε . caused 
by forged boundary by roughly twice in magnitude while diminishing pixel difference δ  at other 
locations away from the forged boundary to a very small value that is close to zero.

Having described the inner workings of MLS framework, the subsequent three stages of the 
TPFC framework will be described in detail below.

Figure 2. Proposed triangular polarity feature classification (TPFC) video forgery detection framework
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Stage 1: Triangular Polarity Detector (TPD)

In the first stage of the TPFC framework, a novel forgery boundary search mechanism named 
Triangular Polarity Detector (TPD) is employed. The searching mechanism relies on detection of a 
triangular shaped polarity signs of the pixel difference gray values in each of the three subtraction 
levels as illustrated in Figure 4. Considering that the ε  value at the forged boundary is having a 
positive polarity sign, the values δ ε−  and ε δ−  at the second level of subtraction will have negative 
and positive polarity signs respectively as ε  is a larger number than δ  in terms of magnitude. 
Similarly, the values of − +2 2ε δ  and ε δ−  in the third subtraction level will have negative and 
positive polarity signs respectively. The polarity signs for all three subtraction levels associated with 
the forged boundary are captured in the triangle as illustrated in Figure 4.

Stage 2: Extraction of Discriminative Features

The second stage of detection process involves extraction of discriminative features from MLS 
framework at forged boundary location obtained via TPD search mechanism as discussed in the first 
stage of detection. Three discriminative features were extracted as detailed in Figure 5. The steps 
required to extract the first feature x

1
 is detailed below.

1. 	 Locate the two circled terms δ ε−  and ε δ−  from the second subtraction level in Figure 5.
2. 	 Denoting the absolute value of these two terms as A

1
 and A

2
 where A

1
= −δ ε  and A

2
= −ε δ , 

calculate the mean of A
1
 and A

2
 and denote this as m  as defined in (7).

Figure 3. Multi-Level Subtraction (MLS) forgery detection framework (Huang et al., 2017)
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m
A A

=
+

1 2

2
	 (7)

3. 	 The feature x
1
 can be computed by taking ratio of the absolute difference of A

1
and A

2
to the 

mean m  as in (8).

x
A A

m1

1 2=
−

	 (8)

Note that the by substituting (7) into (8) the feature x
1
 can also be expressed in (9) below.

x
A A

A A1

1 2

1 2

2=
−

+
	 (9)

The discriminative property of this feature can be observed by evaluating numerator and 
denominator terms in (9) for forged and normal videos. For frame insertion or deletion videos at 
forged boundary location, the numerator term A A

1 2
− will have a small value as both A

1
and A

2
 

will have similar magnitudes while denominator term A A
1 2
+  will have a large value as ε  is much 

larger than δ . The resulting ratio of a small-valued numerator to a large-valued denominator will 
result in an even smaller value close to 0. This implies that feature x

1
 will be small if the video has 

Figure 4. Triangular Polarity Detector (TPD) for the case of subtracting values of the second and third subtraction levels from 
left to right
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inter-frame forgery. For the case of normal videos, as there is no forged boundary, the location 
determined by TPD search mechanism will have a much smaller ε  value relative to the ε  value 
obtained from a real insertion or deletion boundary in a forged video. Since ε  is much smaller in 
this case, this means that the individual terms A

1
 and A

2
 will also be small. This will result in 

numerator term A A
1 2
−  to be small as well, however the denominator term A A

1 2
+  will be reduced 

to a much smaller value relative to the denominator value obtained for the case of forged video. Since 
the denominator is having a much smaller value, overall this will have the effect of increasing the 
feature x

1
 value to a larger value compared with the case of forged video.

Similarly, the steps required to extract the second feature x
2

 is detailed below.

1. 	 Locate the two ε δ−  terms from the third subtraction level in Figure 5.
2. 	 Denote the absolute value of these two terms as A

1
 and A

2
 where A

1
= −ε δ  and A

2
= −ε δ . 

By similar reasoning, feature x
2

 can also be expressed as in (10) and will have similar behavior 
to feature x

1
 by having small value for forged videos and large value for normal videos.

x
A A

m

A A

A A2

1 2 1 2

1 2

2=
−

=
−

+
	 (10)

Lastly, the steps required to extract the third feature x
3

 is detailed below.

1. 	 Locate the two terms − +2 2ε δ  and η  from the third subtraction level in Figure 5.
2. 	 The feature x

3
 can be computed by taking ratio of absolute value of η  to the absolute value of 

− +2 2ε δ  as in (11).

x
3 2 2
=
− +

·

ε δ
	 (11)

At the forged boundary location in a forged video, the numerator term η  will have a small value 
while denominator term − +2 2ε δ  will have a large value as ε  is much larger than δ . The resulting 
ratio of a small-valued numerator to a large-valued denominator will result in an even smaller value 
close to 0 . This implies that feature x

3
 will be small if the video has inter-frame forgery. For the 

case of normal videos, the location determined by TPD search mechanism will have a much smaller 
ε  value in comparison to the ε  value obtained from a real insertion or deletion boundary in a forged 
video as discussed previously. As ε  is much smaller in this case, the denominator term − +2 2ε δ  
will also be smaller. This will then have the effect of increasing the feature x

3
 value to a larger value 

compared with the case of forged video.

Stage 3: Support Vector Machine (SVM) Classification
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Finally, the third stage will utilize the extracted features to perform video forgery classification 
on the basis of SVM (Vapnik, 1995). The concept of SVM is to devise a separation hyperplane that 
optimally separates two classes of training samples with the largest margin of separation and it can 
expressed as in (12) below:

f t K d
i

L

i i
x x x

i( ) = ( )+
=
∑
1

α , 	 (12)

where represent the class labels, and are the learned constant with and . represents the total 
number of support vectors with and denoting the input test vector and the support vector respectively. 
Support vectors are those training data points that lie closest to the hyperplane. The SVM performs 
classification of any input test vector by determining if the value of is above or below a threshold. 
The kernel function can be used to map data in the input space to a higher dimensional kernel feature 
space such that the data becomes linearly separable in the kernel feature space. There are numerous 
kernel functions associated with SVM; one of the more popular choices is the Radial Basis Function 
(RBF) kernel as expressed mathematically in (13) below:

K x x exp x x
i i

,( ) = − −






γ
2

	 (13)

where ³ > 0� is the adjustable RBF parameter (Chang & Lin, 2011). In this study, SVM with 
RBF kernel was employed via a publicly available toolkit named LIBSVM (Chang and Lin, 2011) 
and the RBF parameter empirically defined at the value of 0.001.

Figure 5. Feature extraction process where three discriminative features are calculated at forged boundary locationi



International Journal of Digital Crime and Forensics
Volume 12 • Issue 1 • January-March 2020

26

To summarize, the steps required to perform video forgery detection based on the TPFC framework 
are as below:

1. 	 Generate the required three levels of subtraction based on the MLS framework for the whole 
video sequence.

2. 	 Sort the values generated at the third subtraction level from the highest to the lowest in terms of 
magnitude.

3. 	 Perform TPD check for each of the sorted third subtraction level values starting from the highest 
magnitude.

4. 	 Once TPD check has returned a frame boundary location, determine the corresponding location 
in the video and perform extraction of the three discriminative features.

5. 	 Perform SVM training and classification accordingly on the basis of the three extracted 
discriminative features.

EXPERIMENTAL PROCEDURES AND DATABASES

The video database employed is the Recognition of Human Actions Database (Schuldt, 2004). This 
database is open-source and was used by numerous past video forgery detection studies such as those 
in Chao et al. (2013), Wang et al. (2014a, 2014b), Li et al. (2016), Zheng et al. (2014) and Huang et 
al. (2017). It contains six classes of actions (i.e. boxing, handclapping, hand waving, jogging, running 
and walking) performed by 25 human subjects under four different recording conditions, S1-S4 with 
S1: outdoor, S2: scaled version of S1, S3: outdoor with different clothing and S4: indoor. Videos were 
recorded over static homogenous background in AVI format with 25 frames per second.

Frame Insertion Forgery Dataset
For frame insertion experiment, a total of 100 videos associated with the 25 human subjects from 
each of the walking, jogging and running action classes in all 4 conditions (S1, S2, S3, and S4) were 
used. Each video in the database has 4 sets of enter-exit frame number markings that indicate when 
the person enters and exits the camera viewing range for a total of 4 times. To create an appropriate 
frame insertion database, the second or third set of enter-exit markings from each human subject 
video was replaced with the corresponding second or third set of enter-exit markings from another 
human subject video in the same action class and condition.

From the generated insertion database, a total of 600 forged videos were randomly selected for 
the experiments. The replacement of frames was performed to be forensically realistic such that there 
is no abrupt appearance or disappearance of human subject in the forged video. In addition, excluding 
one missing video in the database, a total of 599 normal videos from all 25 human subjects in all 
action classes and conditions were utilized to form a database of normal videos.

Frame Deletion Forgery Dataset
For frame deletion experiment, video associated with all six action classes under all conditions were 
used. To create a frame deletion video database, the second or third set of frame sequence according 
to the provided enter-exit markings for each video was removed. From the generated deletion database, 
a total of 600 forged videos were randomly selected for the experiments. Similar to the insertion 
forgery experimental setup, the 599 normal videos were used to form a database of normal videos.

Experiment Setup
For the TPFC framework, three-fold cross-validation was performed. The videos in forged and normal 
databases were divided into three sets. One set of forged and normal videos were used for testing 
while the remaining sets were used for training during cross-validation to examine the robustness of 
the SVM classification performance.
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Localization accuracy of the TPFC framework can be calculated for each test video by determining 
if the frame location where the three discriminative test features x x x x= 


1 2 3

, ,  were extracted 
matches exactly to the ground truth label of the actual frame insertion or deletion boundary location. 
Furthermore, localization accuracy can similarly be calculated for the baseline BBVD system by 
evaluating if sub-sequence group number that contains the maximum RBVD value also contains the 
ground truth frame insertion boundary location.

To comparatively evaluate the TPFC system performance, results for BBVD framework (Zheng et 
al., 2014) and MLS framework (Huang et al., 2017) were both evaluated under the same experimental 
database setting to facilitate a fair comparison between the three different forgery detection frameworks. 
While the BBVD system relies on an adaptive threshold-based algorithm for forgery detection, the MLS 
framework detailed in Huang et al., 2017 is a hard threshold based detection system with threshold 
percentages α and β to characterize the forged frame boundary. An additional evaluation on the effect 
of varying these threshold percentages α and β on MLS system performance was also performed.

EVALUATION METRICS

Recall and precision rates were used as performance metrics, as expressed in (14) and (15) below:

R
N

N Nr
c

c m

=
+

×100% 	 (14)

R
N

N Np
c

c f

=
+

×100% 	 (15)

where N
c
 denotes the number of correctly detected normal and forged videos, N

m
 denotes the 

number of missed video forgeries and N
f

 is the number of falsely detected video forgeries.

EXPERIMENTAL RESULTS AND DISCUSSIONS

Comparison of Experimental Results Between the BBVD and TPFC Frameworks
Experimental results for frame insertion and deletion forgeries evaluated for the BBVD and TPFC 
frameworks are tabulated in Table 1 and 2 respectively.

For the BBVD system evaluated in the frame insertion experiment, 419 frame insertion videos 
were correctly detected out of a total of 600 frame insertion videos. A total of 482 normal videos 
were correctly detected out of a total of 599 normal videos. The number of correctly detected video 
forgeries N

c
, number of missed video forgeries Nm and number of falsely detected video forgeries 

N
f

 were 901, 181 and 117 respectively. For localization accuracy, 359 videos out of a total of 419 
detected frame insertion videos were correctly localized at the precise frame insertion boundary. For 
the BBVD system evaluated in the frame deletion experiment, 129 frame deletion videos were correctly 
detected out of a total of 600 frame deletion videos. N

c
, N

m
 and N

f
 were 611, 471 and 117 

respectively. For localization accuracy, only 22 videos out of a total of 129 detected frame deletion 
videos were correctly localized at the precise frame deletion boundary.

For the proposed TPFC system, SVM classification and localization accuracies are presented in 
Table 1 for frame insertion experiment and Table 2 for frame deletion experiment.
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Results outlined in Table 1 and 2 demonstrated the TPFC framework is able to outperform the 
BBVD framework with improvement in classification accuracy of up to 26.84% and 43.00% for 
frame insertion and deletion forgeries respectively. High recall and precision rates at 98.26% and 
95.76% respectively for frame insertion experiment and 80.60% and 89.76% respectively for frame 
deletion experiment were also exhibited by TPFC framework. Moreover, substantial improvement in 
localization accuracy of TPFC framework of up to 14.32% and 74.16% was also observed for frame 
insertion and deletion forgeries respectively.

One of the contributing factors in good TPFC system performance is associated with the highly 
discriminative features as demonstrated in feature distribution plots in Figure 6. Images illustrated in 
first column of Figure 6 shows features distribution extracted from normal database (i.e. containing 
599 normal videos), whereas images in the second and third columns plot the corresponding features 
distribution extracted from frame insertion database (i.e. containing 600 frame insertion videos) and 
frame deletion database (i.e. containing 600 frame deletion videos), respectively. These plots indicate 
that feature values were relatively smaller for tampered videos than the normal videos. This high 
feature separation between the two classes therefore translates to good classification performance.

Comparing the features distribution between frame insertion and frame deletion videos, it can 
be noticed that extracted features from frame insertion videos have consistent smaller values. This 
can be attributed to the fact that frame deletion videos generally have higher correlation (i.e. lower 
pixel difference) between neighboring frames at the frame deletion boundary as compared with 
neighboring frames at the frame insertion boundary from frame insertion videos. Thus, it is generally 
more challenging to detect forgery in frame deletion videos compared to frame insertion videos 

Table 1. Results for frame insertion forgery detection

BBVD (%) TPFC (%) Improvement (%)

Class i f ica t ion  accuracy  on  forged  v ideos 69.83 96.67 26.84

Class i f icat ion accuracy on normal  videos 80.47 91.66 11.19

Recall rateR
r 83.27 98.26 14.99

Precision rateR
p 88.51 95.76 7.25

Loca l i z a t i on  accu racy  on  fo rged  v ideos 85.68 100.00 14.32

Table 2. Results for frame deletion forgery detection

BBVD (%) TPFC (%) Improvement (%)

Class i f ica t ion  accuracy  on  forged  v ideos 21.50 64.50 43.00

Class i f icat ion accuracy on normal  videos 80.47 83.14 2.67

Recall rate R
r 56.47 80.60 24.13

Precision rate R
p 83.93 89.76 5.83

Loca l i z a t i on  accu racy  on  fo rged  v ideos 17.05 91.21 74.16
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through comparison derived from pixels intensity as can be observed in Table 1 and 2 where higher 
recall and precision rates were exhibited in frame insertion detection experiments.

Another key contribution to good TPFC system performance is the effectiveness of MLS 
framework in detecting sudden inconsistency of pixel intensity at forged boundary. Figure 7 and 8 
show comparisons between the R

BVD
 plots and MLS third level subtraction plots of two frame 

insertion videos. Both tampered videos in Figure 7 and 8 utilized the same original video, but were 
inserted with different video segments at the same start and end boundaries, i.e. frame numbers 152 
and 225 respectively.

Figure 7 shows that while BBVD system failed to detect any forgery in the video, the MLS 
framework was able to identify the forgery and frame insertion boundaries. In Figure 8, both BBVD 
system and MLS framework were able to classify the video as forged however with distinctive 
characteristics. As illustrated in both Figure 7 and 8, the third subtraction level of MLS framework 
has the beneficial effect of boosting the signal amplitudes at forged boundaries while at the same 
time diminishing signal amplitudes at all other normal frame locations. This is in contrast to the 
behaviour of R

BVD
 feature values illustrated in the corresponding plots where although the BBVD 

framework was able to correctly classify the frame inserted video as a forged video, there were other 
undesirable R

BVD
 signal peaks at other locations where frame insertion has not occurred as well. It 

should be noted that BBVD algorithm runs on a block-based approach, and instead of the frame 
number, sub-sequence group numbering which is a multiple of 10 frames is labelled on the x-axis in 
Figure 7 and 8 (left images).

The effectiveness of MLS framework in modeling of the forged boundaries significantly helps in 
ensuring an accurate TPD forged boundary search in the first stage and highly discriminative feature 
extraction in the second stage of the TPFC framework.

Figure 6. Distribution plots of extracted TPFC features, x x x
1 2 3
, ,  from normal database (column 1), frame insertion database 

(column 2) and frame deletion database (column 3)
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Comparison of Experimental Results Between the MLS and TPFC Frameworks
Experimental results for frame insertion and deletion forgeries evaluated for the MLS and TPFC 
frameworks are tabulated in Table 3 and 4 respectively. Various settings for both threshold percentages 
α and β at 1%, 5% (i.e. setting used in Huang et al., 2017) and 50% were evaluated.

With the increase of threshold percentages, classification accuracy results from Table 3 and 
4 exhibited a tendency to increase on forged videos and a tendency to decrease on normal videos. 

Figure 7. R
BVD

feature values from BBVD system that failed forgery detection using the 3σ rule (left image) and the corresponding 
third level subtraction feature values from MLS framework (right image)

Figure 8. R
BVD

feature values from BBVD system that successfully detect forgery (left image) and the corresponding third level 
subtraction feature values from MLS framework (right image)
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Correspondingly, a similar trend of increasing recall rate with a decreasing precision rate was 
also observed with the increase of threshold percentages in Table 3 and 4. Furthermore, the MLS 
results from Table 3 and 4 indicated a strong dependency on threshold settings with the possibility 
of classification accuracies on forged and normal videos reaching as low as 9.83% and 80.63% 
respectively, and for recall and precision rates reaching as low as 54.84% and 88% respectively. 
These sharp increasing/decreasing trends suggested a high dependency of MLS performance to the 
threshold settings. Without an automatic approach in determining the optimal threshold settings, 
manual selection of threshold settings based purely on human judgement will be prone to error due 
to human bias and ambiguity. Further, optimal threshold setting may differ according to different 
database content or recording conditions, making the task of manually determining the optimal setting 
an inconvenient and challenging one. This therefore presents a clear advantage of TPFC framework 
over the MLS framework in that the TPFC framework is a threshold-less system with an overall better 
system performance in comparison with MLS system as shown in Table 3 and 4.

CONCLUSION

This article has investigated a novel TPFC video forgery detection framework on a specific set of 
forged video databases constructed to be closely representative to real-world forensic casework 
applications. The TPFC framework was demonstrated to achieve high recall and precision rates as 

Table 3. Results for frame insertion forgery detection

MLS (%)
TPFC (%)

Threshold percentages α and β 1 5 50

C l a s s i f i c a t i o n  a c c u r a c y  o n  fo r g e d  v i d e o s 71.00 91.17 96.83 96.67

C l a s s i f i c a t i o n  a c c u r a c y  o n  n o r m a l  v i d e o s 99.83 97.66 80.63 91.66

Recall rateRr 85.48 95.53 98.25 98.26

Precision rateRp 99.90 98.78 90.17 95.76

L o c a l i z a t i o n  a c c u r a c y  o n  f o r g e d  v i d e o s 100.00 100.00 100.00 100.00

Table 4. Results for frame deletion forgery detection

MLS (%)
TPFC (%)

Threshold percentages α and β 1 5 50

C l a s s i f i c a t i o n  a c c u r a c y  o n  fo r g e d  v i d e o s 9.83 39.17 61.33 64.50

C l a s s i f i c a t i o n  a c c u r a c y  o n  n o r m a l  v i d e o s 99.83 97.66 80.63 83.14

Recall rateRr 54.84 69.20 78.58 80.60

Precision rateRp 99.85 98.32 88.00 89.76

L o c a l i z a t i o n  a c c u r a c y  o n  f o r g e d  v i d e o s 98.31 95.32 90.22 91.21
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well as high localization accuracy. Practical aspects such as threshold-less design, system robustness 
and efficiency were also considered.

As future works, a higher number of MLS subtraction levels of pixel gray values beyond the three 
levels of subtraction that were used currently could be explored. This will lead to the possibility of 
creating more complex and discriminative features and thus improving the detection of forged frame 
boundary. Another research avenue could involve the partitioning each video frame into smaller 
blocks of pixels as multiple individual inputs to the TPFC framework. A weighted combination of 
the various TPFC system outputs could then be used as the final system result. Moreover, different 
modeling approaches apart from SVM could also be evaluated within the TPFC framework.
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