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ABSTRACT

In power systems dynamics and control literature, theoretical and practical aspects of the wind 
turbine-generator system have received considerable attentions. The evolution equation of the 
induction machine encompasses a system of three first-order differential equations coupled with two 
algebraic equations. After accounting for stochasticity in the wind speed, the wind turbine-generator 
system becomes a stochastic system. That is described by the standard and formal Itô stochastic 
differential equation. Note that the Itô process is a strong Markov process. The Itô stochasticity of 
the wind speed is attributed to the Markov modeling of atmospheric turbulence. The article utilizes 
the Fokker-Planck method, a mathematical stochastic method, to analyse the noise-influenced wind 
turbine-generator system by doing the following: (i) the authors develop the Fokker-Planck model 
for the stochastic power system problem considered here; (ii) the Fokker-Planck operator coupled 
with the Kolmogorov backward operator are exploited to accomplish the noise analysis from the 
estimation-theoretic viewpoint.

Keywords
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1. INTRODUCTION

The wind energy has become one of the popular renewable sources for the generation of the electrical 
power. Three different configurations are popular in the wind power conversion technology, the 
fixed speed wind turbine-generator system, the limited variable speed wind turbine-generator system 
and variable speed wind turbine-generator system. The main components of the fixed speed wind 
turbine-generator system are wind turbine, gearboxes, squirrel cage induction generator, capacitor. 
That are connected to the grid through the transformer. This configuration allows the machine to run 
at the constant speed as well as provides stable frequency. Secondly, the limited variable speed wind 
turbine-generator system utilizes the wound rotor induction generator in place of the squirrel cage. 
This structure utilizes a power electronic converter. Thirdly, the variable speed wind turbine-generator 
system accounts for the doubly-fed induction generator with a power electronic converter (Li and Chen, 
2008). Here, some important dynamical equations for the wind turbine-generator system are described. 
Fu and Xing (2009) have developed a four-dimensional Squirrel Cage Induction Generator (SCIG) 
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model. Subsequently, a reduced-order model was developed using singular perturbation method. The 
singular perturbation method hinges on the electrical engineering assumption that stator transients 
are faster than rotor transients. Thus, the evolutions of stator transients are not accounted for and the 
evolutions of rotor transients are accounted for. Taha Hussien et al. (2017) have developed modeling 
of three phase induction motor and explain stator turns fault analysis based on artificial intelligence. 
Salima et al. (2018) have developed a Global stability of linearizing control of induction motor for 
PV water pumping application. To study the control system design using Matlab see (Moysis et al. 
2017). Gabhi et al. (2018) have developed discrete sliding mode control scheme for nonlinear systems 
with bounded uncertainties and Alain et al. (2017) have developed improved robust adaptive control 
strategy for the finite time synchronization of uncertain nonlinear systems. Feijóo et al. (2000) have 
considered a third-order deterministic equation that explains modelling of the rotor transient voltages 
behind the transient impedance. Balanathan et al. (2002) have developed a dynamic load model. That 
has ability to analyse the transient and steady state stabilities of the induction motor. To study the 
influence of the wind power dynamics on the large electrical power systems dynamics and control, 
Slootweg et al. (2003) argue the addition of wind turbine-generating systems’ models in software 
packages, especially for numerical experimentations. In this connection, especially for numerical 
experimentations of wind turbine models, two articles, i.e. Sorensen et al. (2002) and Nichita et al. 
(2002), would be also useful. Dusonchet et al. (2007) have investigated the influence of wind turbine 
mechanical characteristics. The transient voltage stability of the fixed speed wind turbine-generator 
systems were studied as well. In their investigation, the fifth-and the third-order models were the 
subject of investigations. Generally, the third-order model is a special case of the fifth-order model. 
The third-order does not account for stator transients into considerations, see Popović et al. (1998) 
and Ledesma et al. (2003). Furthermore, Martins et al. (2007) have validated the fifth-and third-
order models with measured data, which are rarely reported in literature. The preceding introductory 
descriptions of this paper suggest that the problem of analysing the wind turbine-generator system 
from the dynamical systems’ viewpoint received considerable attention in literature. Under the wind 
turbulence influence, it is reasonable to account for the stochastic character of the wind speed for 
the wind turbine-generator system in lieu of the deterministic formalism. A good discussion about 
the wind turbine-generator system under stochastic influence can be found in brief research writing, 
but a compelling paper in stochastic sense (Wang and Crow 2012). The stochastically perturbed 
dynamical system involves investigations into vector Stochastic Differential Equations (SDEs) in lieu 
of Ordinary Differential Equations (ODEs). This seems to be one of the reasons that the notion of 
stochastic processes is relatively very less introduced into ‘power systems dynamics’ literature yet.

This paper is aimed to account for the stochastic evolution of the wind speed in lieu of the 
deterministic for the wind turbine-generator system. This paper is inspired from the fact that the 
systems and control methods under stochastic considerations contribute to the greater accuracy and 
refinements (Mumford 2000) in available results, see Sinai (1981). Here, a succinct discussion that 
the Itô stochasticity is imperative for the wind turbine-generator system. The turbulent atmospheric 
flows influences the wind speed operation, the response time of wind turbines is typically in the range 
of seconds. Thus, they are subjected to small scale turbulence. The Fokker-Planck analysis for small 
scale turbulence agree with experimental corroborations (Renner et al. 2001). From the theory of 
stochastic processes, the Fokker-Planck equation is a consequence of the Itô stochastic differential 
equation. Thus, the qualitative characteristics of atmospheric turbulence are embedded in the Itô 
stochastic correction term of the wind speed evolution equation. The major ingredient of this paper, 
which is utilized to develop the theory of this paper, is the Fokker-Planck equation. The Fokker-Planck 
equation is an influential result in the theory of stochastic processes and stochastic differential 
equations. The equation is the evolution of conditional probability density for a given initial state for 
a Markovian state vector. In Wang and Crow (2012), the ‘reduced-order’ Fokker-Planck equation for 
the two-dimensional state comprising the slip and wind speed, was the subject of investigations. In 
their analysis, the numerical experimentation for the reduced Fokker-Planck equation was accomplished 



International Journal of System Dynamics Applications
Volume 9 • Issue 1 • January-March 2020

20

under a variety of conditions. In Wang and Crow (2012), numerical simulations for the stochastic 
wind turbine system were achieved in the conditional probability sense. In contrast to Wang and Crow 
(2012), the estimation of the wind turbine-generator system for the first time using the Itô stochastic 
interpretation and Fokker-Planck equation are achieved. It is important to note that the stochastic 
evolution of the conditional expectation of the scalar function is the cornerstone formalism of 
estimation theory and stochastic processes. Notably, the Fokker-Planck equation for the wind turbine-
generator system involving the four-dimensional state vector are revisited. The four dimensional state 
vector has the following components: the wind speed, slip, two voltages behind transient impedance 
in d q−  reference frame. Furthermore, the Fokker-Planck model of the stochastic problem of 
concerned here is utilized to accomplish the noise analysis of the stochastic problem from the 
estimation-theoretic viewpoint. This paper is the first paper in the sense that this paper introduces 
the notion of the Fokker-Planck equation into power systems dynamics in a greater detail.

2. THE WIND TURBINE GENERATOR STOCHASTIC 
DYNAMICS AND ITS FOKKER-PLANCK EQUATION

The induction machine transient dynamics is described by a system of three first-order differential 
equations coupled with two algebraic equations. Furthermore, the wind turbine-generator dynamics 
accounts for the wind speed as a state variable. More precisely, the wind turbine-generator system 
becomes a multi-dimensional dynamical system, where the dimension of the state vector becomes 
four. In the stochastic framework, the wind turbine-generator system becomes a multi-dimensional 
stochastic differential system. The stochasticity is attributed to considering the wind speed as a random 
variable. The dimension of the state vector, which describes the fixed speed wind turbine-generator 
system dynamics, is four. For the sake of clarity, a schematic diagram of a wind turbine generator 
system is illustrated in a simple, but a revealing Figure 1.

A greater detail about the deterministic dynamics can be found in Kundur (1994) and Wu et al. 
(2011). The procedure is lengthy as well as this paper is not aimed to revisit the deterministic dynamics 
of the wind turbine-generator system. State directly the wind turbine-generator deterministic dynamics. 
Making the use of general theory of Induction Machines in d q−  reference frame, electromagnetic 
induction principle, we arrive at the following system of dynamical equations of the wind turbine-
generator system:

Figure 1. A wind turbine-generator system
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Note that the dot sign associated with the above set of equations denotes the time derivative. The 
wind turbine-generator system is described by a four-dimensional state vector and involves a larger 
number of system parameters. Here, we explain succinctly the notational machinery of system 
parameters of the dynamical system considered here. The terms v s e e

t d q
, , ,′ ′  denote the wind speed, 

slip and d - axis voltage behind transient impedance and q - axis voltage behind transient impedance 
respectively. The induction machine circuit parameters L L

s r
,  denote the stator and rotor inductances 

respectively. Similarly, the circuit parameters R R L
s r m dr qr
, , , ,φ φ  are stator resistance, rotor resistance, 

mutual inductance, d − axis rotor flux linkage and, q −axis rotor flux linkage the induction machine 
respectively.

Furthermore, the system parameters vector ( , , , ( , ), ,s C R J
s p tot
ω ρ λ θ )T  denotes slip, synchronous 

speed, air density, power coefficient, turbine radius, and system moment of inertia respectively:
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The notation C
p
( , )λ θ  denotes performance coefficient or power coefficient λ  is a tip speed 

ratio, the ratio between the blade tip speed and wind speed, θ  is a pitch angle in degree. See Slootweg 
et al. (2003) for a greater detail. Note that Equations (1a)-(1i) constitute Equation (1).

Here, we explain how the atmospheric turbulence introduces fluctuations into the wind speed. 
The relative motion of fluid particles under the influence of turbulence can be described as Stochastic 
Differential Equations (SDEs), see the SDE of Pedrizzetti and Novikov (1994). The atmospheric 
turbulence introduces stochasticity into the wind speed, generator rotor as well as the wind energy 
power output (Milan et al. 2013, Wächter et al. 2012). See Mücke et al. (2015), Karlsen (2006, p.8), 
Friedrich and Peinke (1997) and Wang and Crow (2012, p.2) as well. That suggest stochastic models 
are imperative for the wind turbine-generator system. Friedrich et al. (2011) discussed about the 
choice of stochastic processes to model the qualitative characteristics of complex systems arising 
from diverse fields. The Markov process has proven useful to model small scale turbulence (Renner 
et al. 2001, Pedrizzetti and Novikov 1994). Analytical solution as well as numerical simulations to the 
Fokker-Planck equation for small scale turbulence agree with experimental corroborations (Renner et 
al. 2001). A N Kolmogorov constructed the third-order statistics for small scale turbulence that hinges 
on the Navier-Stokes’ equation (Kolmogorov 1941), see Kolmogorov (1962) as well. Wind turbines 
operate under the influence of the turbulent atmospheric flows and the response time of wind turbines 
is typically in the range of seconds, thus, they are subjected to small scale turbulence. Small-scale 
homogeneous isotropic turbulence has an important impact on the wind energy conversion process 
(Wächter et al. 2012). Secondly, numerical as well as actual experimentations are the indicative 
of Markov processes to model small scale turbulence. For these two reasons, a non-linear Markov 
process to model stochasticity in the wind speed is adopted, i.e.:

dv
v

v dt dB
t

t
t t

= − +β
σ

γσ β( )
2

2 	

where the terms v
t
 and B

t
 denote the wind speed and the Brownian motion. Note that the wind 

speed v
t
 is a non-linear Markov process for two reasons. (i) the above stochastic differential equation 

describes a non-linear system, which is driven by a Brownian motion and initial datum. A revealing 
and an alternative structure of the square of the stochastic wind speed v

t
 satisfies the following SDE:
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The equation is a non-linear Itô stochastic differential equation, where non-linearity is attributed 
to the coupling term y dB

t t
, y v

t t
= 2.  The output is a state variable wind speed. (ii) The above 

stochastic differential equation is an Itô stochastic differential equation and the Itô process is always 
Markov process. For this case, the wind speed is an Itô process and becomes the non-linear Markov 
process. Since formulation hinges on the Markov process and the Fokker-Planck equation, results 
hold for stochasticity of the wind turbine-generator system attributed to the small scale turbulence. 
After considering the stochastic correction term in the wind speed (Wang and Crow 2012), Equations 
(1a)-(1d) can be further recast in a formal non-linear Markovian stochastic setting as:
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Note that the term v
t
 of Equation (2a) is a Rayleigh process in the mathematical framework. 

The term v
t
 is the wind speed in the context of engineering systems as well. A connection between 

the Rayleigh process and wind speed is nicely explained in Wang and Crow (2012). Since this paper 
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is chiefly intended to analyse the stochastic system concern here in the Fokker-Planck setting, further 
discussions on Equation (2) are omitted of the paper. Note that a theoretical interpretation of the 
white noise process is the Itô setting. In the Itô setting, the term dB w dt

t t
=  is the subject of 

investigations (Kuo 2005, Kunita 2010).
The Itô SDE is a convenient form for stochastic control problems (Jazwinski 1970, Kushner 1967). 

The stochastic control perspective of dynamic systems encompasses the following: (i) estimations 
(ii) stochastic stability (iii) control algorithms.

The term w
t

 is a white noise process and the term B
t
 denotes the Brownian process. The 

Fokker-Planck equation is the cornerstone formalism to analyse the stochasticity of the wind-turbine 
generator system of this paper. The Fokker-Planck equation is a parabolic linear homogeneous equation 
of order two in partial differentiation for the transition probability density of the Itô stochastic 
differential equation. This reveals a connection between stochastic differential equations and partial 
differential equations. The Fokker-Planck operator, alternatively known as the Kolmogorov-Fokker-
Planck operator, is a linear operator. The above set of scalar dynamical equations can be recast as the 
vector Itô stochastic differential equation. Thus, the equations become (Jazwinski 1970):
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For simplified analysis, we adopt more familiar notations of SDEs, i.e.:
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t
( , )  are the system non-linearity and the dispersion matrix of the 

stochastic differential equation respectively. Note that the notation x x x x
T

1 2 3 4
, , ,( )  will be utilized 

for the state vector of the stochastic system considered here throughout the paper in lieu of the notation 
( , , , ) .v s e e
t d q

T′ ′  More importantly, Equation (3) describes the wind turbine-generator Itô SDE, the 
cornerstone formalism of this paper. Here, the dimensionality and non-linearity of the wind turbine-
generator stochastic system are explained. For linear systems, the state and system parameters can 
be decoupled that lead to the relation f x t A x

t t t
( , ) .=  More precisely, for linear cases, the matrix-

vector format arises, on the other hand, the vector interpretation holds for non-linearity. Since the 
stochastic system of the paper is non-linear, the state and system parameters cannot be decoupled, 
the system non-linearity will have vector format in lieu of the matrix, i.e. f x t f x t

t i t i
( , ) ( ( , ))= ≤ ≤1 4

. 
Secondly, the random input associated with the stochastic system is scalar, the process noise coefficient 
is a vector, i.e. G x t G t
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 in place of the matrix format. Equation 
(3) can be treated as an advanced and a refined system of dynamical equations in contrast to the 
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deterministic setting. Equation (3) describes a non-linear Itô SDE. Other ‘setting’ of stochastic 
differential systems is the Stratonovich. Interestingly, the structure of Equation (2) remains invariant 
under the both settings, since the stochasticity associated is the state-independent, see the last term 
of Equation (2a) of the paper. The non-linearity in the system dynamics considered here is attributed 
to a non-linear evolution stated in Equation (2b). The stochasticity is attributed to the random forcing 
term associated with the wind speed evolution equation, see Equation (2a). One can arrive at Equation 
(2) using the electromagnetic induction principle of electrical machinery, the concepts of stochastic 
processes. Some simplifications are coupled with assumptions that stator transients are ignored and 
the rotor circuit is short circuited. The system of stochastic differential equations utilizes the notion 
of d q−  reference frame, where the both axes are orthogonal to each other. One can arrive at the 
wind turbine-generator system dynamics using the concept of Lagrangian mechanics as well. The 
procedure involves writing down the Lagrangian of the dynamical system and subsequently, we write 
down the Euler-Lagrange equation. Here, we will not delve into Lagrangian mechanics in the context 
of the wind turbine-generator system. A brief discussion about the Lagrangian formulation in the 
context of electrical machines can be found in Pintea et al. (2011), Greets et al. (2005).

It is important to note that after considering stator transient dynamics, we are led to a six-
dimensional random state vector. That introduces the dimensional formidable complexity. The four-
dimensional system of dynamical equations has proven useful in literature for the sake of simplified 
analysis, e.g. Wang and Crow (2012). Thus, Equation (3) would be the subject of investigations in 
this paper (see Figure 2).

The structure of the wind turbine-generator system stated in Equation (3) remains invariant in 
different configurations of the wind turbine-generator system. Importantly, the additional correction 
term attributed to the rotor voltage is accounted for in variable speed machines, see Feijóo et al. (2000). 
On the other hand, the rotor voltage vanishes for fixed speed machines. Secondly, the dimension of 
the state vector will be same in fixed and variable speed machines.

The Fokker-Planck equation, a parabolic linear homogeneous equation, is a systems and control 
method in the theory of stochastic control. For a good access about the Fokker-Planck equation, 
see Bierbaum et al. (2002), Risken (1984), Sharma (2008), and Chow et al. (2007). After applying 
‘the Kolmogorov-Fokker-Planck equation for Markov processes (Karatzas and Shreve 1988) to the 
randomly perturbed system of the paper, we get:
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Figure 2. A wind turbine generator system SDE diagram
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The Kolmogorov backward operator ′L (.)  for the Itô SDE is the adjoint of the forward operator
L(.).  The Kolmogorov backward operator ′L (.)  becomes:
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Making the use of the Kolmogorov-Fokker-Planck operator of Equation (5a), Kolmogorov 
backward operator, Equation (5b), and the definition of the evolution of the conditional expectation 
of the scalar function of the state x

t
,  we arrive at exact evolutions of conditional mean and variance. 

Suppose the vector system non-linearity f x t
t
,( ) , and the diffusion coefficient matrix GG x tT

t
( , )  

are bounded continuous. Consider the vector system non-linearity has bounded continuous triple 
derivatives. The diffusion coefficient matrix GG x tT

t
( , )  has bounded continuous double derivatives. 

The following conditional mean and variance evolution equations will be useful for the noise analysis 
of the non-linear wind turbine-generator system of this paper:

d x t f x t P
f x t

x x
dt

i i t pq
p q

i t

p q

( ) ( ( , )
( , )

)
,

= +
∂

∂ ∂
∑1
2

2

	 (6a)

dP
ij
= (

( , )
P
f x t

x
ip

j t

pp

∂

∂
∑ +

∂

∂
∑P

f x t

x
jp

i t

pp

( , )
	

+
∂

∂ ∂ ∂
∑1
2

3

P P
f x t

x x x
ip qr

j t

p q rp q r

( , )

, ,

+
∂

∂ ∂ ∂
∑1
2

3

P P
f x t

x x x
jp qr

i t

p q rp q r

( , )

, ,

	

+( ) ( , )GG x tT
ij t

+
∂

∂ ∂
∑1
2

2

P
GG x t

x x
dt

pq

T
ij t

p qp q

( ) ( , )
)

,

	 (6b)

where the state x x t
t i
= ( )( )  and the vector system non-linearity f x t f x t

t i t
( , ) ( , )= ( )  and 

x E x t x t
i i t
= ( ( ) , ),

0 0
P x x x x
ij i i j j
= − −( )( ) . The notation ' '  denotes the action of the 

conditional expectation operator E  on random variables. For deterministic initial states, the operator 
E  becomes the expectation in lieu of the conditional expectation.

A proof of the exact estimation equations and a special case of the exact estimation equations, 
Equations (6a)-(6b), is explained in the Appendix. Equations (6a)-(6b) are available in recently 
published papers as well, see Sharma (2008) and Equations (1)-(2) of Patel and Sharma (2014). The 
main intend to analyse the multidimensional stochastic system considered here in the Fokker-Planck 
setting in lieu of filtering framework. The Fokker-Planck setting is useful for the noise analysis of 
stochastic systems with ‘valueless’ observations. On the other hand, the filtering framework is useful 
for the noise analysis of stochastic systems with ‘useful’ observations.
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Note that Equation (6) comprises Equations (6a)-(6b). The system of equations, Equations 
(6a)-(6b), has ability to account for the contributions of linear terms, square non-linearity as well as 
third-order non-linearity completely. That preserves some of the qualitative characteristics of further 
higher-order non-linearities.

After combining Equations (3) and (6), we get the following set of coupled conditional moment 
evolution equations. The conditional mean evolution d x

t
and the variance evolutions dP

t
, for the 

stochastic problem of concern here, are:

d x A x P dt
t t t
= ( , ) 	 (7a)

dP B x P dt
t t t
= ( , ) 	 (7b)

where:

A x P A x P
t t i t t i

( , ) ( , ) ,= ( )
≤ ≤1 4
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( ( , ))B x P
ij t t i

j
1 4
1 4
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The diagonal elements of the matrix B x P
t t

( , )  of Equation (7b) are the following:

B x P P
x

P
x

t t11 11
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It is important to note that the terms i i v v P P
ds qs ds qs e m
, , , , ,  are the system parameters of the 

stochastic system of this paper. The system parameter vector ( , , , , , )i i v v P P
ds qs ds qs e m

T  can be estimated 
using the algebraic Equations, (1e)-(1h), action of the expectation operator on random variables as 
well as Taylor expansions of non-linear functions with Gaussian assumptions. Note that the expectation 
operator is a linear operator. As a result of these, we get the following system of parameter estimation 
equations:

′ = = − + ′ +e x R i X i v
d s ds s qs ds3

	 (8a)

′ = = −e x R i
q s qs4

− ′ +X i v
s ds qs

	 (8b)

P x i x i
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3 4
	

= − − − −x i P x i P
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+ + ′ − −R i X i i v i P
s qs s ds qs qs qs x iqs
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s ds ds ds x ids
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P R C x
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ρπ λ θR C x P x

p
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Note that notations must be carefully chosen for multi-dimensional systems. The electrical and 
mechanical power termsP P

e m
,  are different from the variance term notations P

x ids3
 and P

x iqs4
, where 

P
x ids3
= −x i x i

ds ds3 3
, P
x iqs4
= −x i x i

qs qs4 4
. Equations (7a) and (7b) in combination with 

Equations (8a)-(8d) are the estimation results of the paper, which are not available in literature. That 
can be utilized for the state trajectory estimation of the stochastic system of the paper. More precisely, 
this paper can be treated as an application of an appealing non-linear stochastic method to an appealing 
stochastic system with random input signal. For understanding analysis of non-linear stochastic 
differential systems involving stochasticity in input signals as well as system parameters, Ku and Lin 
(1971) will be also useful.

Remark 1: Importantly, the wind generator power output is a stochastic power signal. Here, we 
explain an approach of Wächter et al. (2012), which exploits a stochastic model for the evolution 
of the wind generator power output in the Langevin setting. The stochastic power evolution for 
the fixed wind speed is:

dP

dt
D P v D P vt

t t t t t
= +1 2( , ) ( , )Γ 	

where P
t

 is a stochastic process, D P v
t t

1( , )  is a drift term of the stochastic differential equation and 
D P v

t t
2( , )  is the diffusion coefficient. This remark explains briefly the relation of the wind speed 

stochastic model to the stochastic power signal in the conditional expectation sense. The above can 
be recast in the Itô framework Kunita (2010), i.e.:

dP D P v dt D P v dt
t t t t t t
= +1 2( , ) ( , )Γ = +D P v dt D P v dB

t t t t t
1 2( , ) ( , ) 	

The Fokker-Planck equation for the above stochastic wind power evolution for the scalar case 
becomes:
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∂
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∂

∂
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where the term p P v
t t
( )  is a conditional probability density of the stochastic power for a given 

stochastic wind speed. The above Fokker-Planck equation is a convenient form to estimate the 
stochastic wind power. It is worth to note that the above relation holds under the condition that the 
stochastic power obeys the evolution equation stated in Wächter et al. (2012) for given wind speed, 
where the wind speed SDE obeys Equation (2a) of this discussion.

Remark 2: An alternative mathematical approach to achieve the estimation of the stochastic wind 
turbine-generator system is multi-dimensional Itô differential rules. Multi-dimensional Itô 
differential rules do not involve the notion of conditional probability density. Action of the 
conditional expectation operator on the stochastic evolution of the scalar function of the state 
vector leads to the conditional moment. In system theory, the scalar function has interpretation as 
the energy function, Lyapunov function. On the other hand, Fokker-Planck methods encompass 
the notion of conditional probability density, conditional expectation and conditional moment 
evolution equation. Thus, the Fokker-Planck approach of this paper is revealing greater insights 
into the stochastic system.

3. NUMERICAL SIMULATIONS

Here, we simulate the stochastic dynamics of the wind turbine-generator system by exploiting 
Equations (1a)-(1h) of the paper. That assume the structure of a vector stochastic differential equation. 
Subsequently, the random state trajectories are compared with the unperturbed state trajectories of 
the stochastic system considered here. To demonstrate the difference between the trajectories of 
random state and unperturbed state, we exploit two different sets of initial data and system parameters. 
Notably, the first set of numerical simulation data is utilized for numerical experimentations for a 
relatively low power rating machine. On the other hand, the second set of data is intended for numerical 
experimentations for a larger power rating machine. Furthermore, the strength of stochastic 
perturbations is same in the both sets of data. This criterion is adopted for the numerical experimentation 
to reveal the stochastic influence on lower and larger power rating machines. Since the noise-influenced 
wind turbine-generator system involves a multi-dimensional stochastic differential equation structure, 
numerical experimentations become quite difficult. However, this paper attempts to accomplish the 
numerical experimentations for two different sets of data. First, we demonstrate numerical simulations 
for the random state trajectories and subsequently, the estimated state trajectories. Here, we utilize 
the following first set of initial data and system parameters for the machine rating of 4 718. :MW

V V F Hz P
r

= = =6600 60 3, , , R R
s r
= =0 04530 0 08015. , . ,Ω Ω X

r
= 1 1325. Ω 	

X X R m
s s
= ′ = =42 5753 1 8779 63. , . , ,Ω Ω x V T

4 0
0 1108 33 1 4215( ) . , . sec= ′ = 	

J kg m rad kg m
tot s
ω ρ2 2 2 2 3100 16 1 225= =. / sec , . / 	

x m s x x V
1 2 3
0 12 0 0 008845 0 5040 11( ) / , ( ) . , ( ) .= = − = 	

i A i A P W
ds qs e
( ) . , ( ) . , .0 585 37 0 199 84 3171817 85= − = − = 	

γ = 1, σ β= = −10 2 1m s/ , sec , C
p
( , ) .λ θ = 0 3563 	

The set of system parameters of a smaller power rating machine can be found in Li et al. (2006) 
in per unit interpretation as well. For more clarity, we have utilized the dimensional interpretation in 
lieu of the dimensionless per unit interpretation. Note that the solid line (-) trajectories of Figures 
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3-6 denote the state trajectories resulting from the noise-free dynamics of the stochastic system 
considered here. The stochastic correction term of Equation (2a) is ignored. On the other hand, the 
dotted line (--) trajectories of Figures 3-6 denote the stochastically-influenced state trajectories of 
the wind turbine-generator system. That are the consequence of Equations (2a)-(2d) of the paper. 
The difference between the solid line and dotted line trajectories, Figures 3-6, suggests that the 
stochastic influence is considerable in three states, slip, the d − axis voltage behind transient 
impedance and the q −axis voltage behind transient impedance. It is important to observe that the 
noise-free state trajectories follow the noise-influenced state trajectories. However, the stochastic 
correction term introduces modifications into the random state trajectories.

Here, we simulate the random state dynamics of a larger power rating machine. The second set 
of initial data and system parameters for numerical simulations of the machine rating of 10MW ,  a 
larger power rating machine, is the following:

V V F Hz P
r

= = =8076 55 60 3. , , , R R
s r
= =0 03921 0 01245. , .Ω Ω 	

X X X R m
r s s
= = ′ = =0 3685 38 0484 0 7533 85. , . , . ,Ω Ω Ω 	

Figure 3. A comparison between unperturbed and stochastic trajectories of the state x1

Figure 4. A comparison between unperturbed and stochastic trajectories of the state x2
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J kg m rad kg m
tot s
ω ρ γ2 2 2 2 31000 16 1 225 1= = =. / sec , . / , 	

σ β λ θ= = =−10 2 0 41641m s C
p

/ , sec , ( , ) . 	

x m s x x V
1 2 3
0 12 0 0 0096 0 6459 12( ) / , ( ) . , ( ) . ,= = − = x V T

4 0
0 788 49 8 1064( ) . , . sec= ′ = 	

i A i A P W
ds qs e
= − = − =1034 56 233 52 6866475 37. , . , . 	

The set of system parameters of the larger power rating machine in per unit interpretation can 
be found in Tamura (2012), see Li et al. (2006) as well. Similar to the first set of data, we adopt 
the dimensional interpretation of system parameters as well. Note that the solid line (-) of Figures 
7-10 denotes the state trajectories resulting from the noise-free dynamics of the stochastic system 
considered here in which the stochastic correction term of Equations (2a)-(2d) is ignored. On the 
other hand, the dotted line (--) trajectories of Figures 7-10 denote the stochastically-influenced state 
trajectories of the wind turbine-generator system. Similar qualitative characteristics of the random 
state vector of the wind turbine-generator system are demonstrated using the second set of initial 
data and system parameters as well. Numerical simulations demonstrated in Figures 3-6 and Figures 
7-10 suggest that stochastic considerations are imperative for larger and lower power rating wind 
turbine-generator systems.

Figure 5. A comparison between unperturbed and stochastic trajectories of the state x3

Figure 6. A comparison between unperturbed and stochastic trajectories of the state x4
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The estimated state trajectories are compared with unperturbed state trajectories. The dotted line 
(--) trajectories of Figures 11-13 illustrate the estimated state trajectories. On the other hand, the solid 
line (-) trajectories denote the unperturbed trajectories. The estimated state trajectories are bounded 
continuous that demonstrate the effectiveness of the state estimation as well as the parameter estimation 
equations of the paper. The estimation equations of the paper, (6a)-(6b), have ability to preserve 
qualitative characteristics of linear terms, square non-linearity as well as cubic non-linearity of non-
linear stochastic differential systems completely. That preserve some of the qualitative characteristics 
of higher-order non-linearities as well. Note that the state estimation equations coupled with the 
parameter estimation equations, Equations (7a)-(7b) and Equations (8a)-(8d), are specific case of 
Equations (6a)-(6b). Thus, ‘the state estimation equations coupled with the parameter estimation 
equations’ are effective for state trajectory estimations of the stochastic system of the paper.

Here, we explain succinctly the qualitative characteristics of the state x
2

 of the stochastic system 
of the paper. Note that the state x

2
 denotes the stochastic evolution of the slip of the wind turbine-

generator system. For the given set of data and system parameters, the most probable slip trajectory 
of the induction machine is the bounded continuous. This confirms the general theory of induction 
machines that the slip of the machine in the generating mode takes finite negative values on the real 

Figure 7. A comparison between unperturbed and stochastic trajectories of the state x1

Figure 8. A comparison between unperturbed and stochastic trajectories of the state x2
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Figure 9. A comparison between unperturbed and stochastic trajectories of the state x3

Figure 10. A comparison between unperturbed and stochastic trajectories of the state x4

Figure 11. A comparison between unperturbed and estimated trajectories of the state x2
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line. Thus, the numerical simulation suggests the efficacy of the conditional moment equations of 
the paper. The estimated trajectories of the voltage stochastic states of the machine can be explained 
using similar arguments as well. Thus, further discussions are omitted.

4. CONCLUSION

The main achievement of this paper is to develop a Markovian stochastic dynamics of the wind 
turbine-generator system. The Markovian stochastic dynamics is attributed to small scale atmospheric 
turbulence influence on the wind turbine-generator system. Subsequently, we have accomplished 
a Fokker-Planck analysis of the stochastic wind energy system as well, which is not available in 
literature. The numerical simulations demonstrated in Figures 3-6 as well as Figures 7-10 reveal that 
the differences between the unperturbed and perturbed state trajectories become considerable for lower 
as well as larger power rating machines. Thus, this paper suggests that stochasticity considerations are 
imperative in lieu of deterministic considerations. This paper confirms the universality of small scale 
turbulence (Schumacher et al. 2014) by embedding the qualitative characteristics of the small-scale 
turbulence in the wind speed evolution equation via the Itô stochastic correction term.

More precisely, we have accomplished the noise analysis of the wind turbine-generator system 
from the estimation-theoretic viewpoint by exploiting the Fokker-Planck approach of stochastic 
processes. The Fokker-Planck model is an advanced, a refined mathematical method of stochastic 

Figure 12. A comparison between unperturbed and estimated trajectories of the state x3

Figure 13. A comparison between unperturbed and estimated trajectories of the state x4
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processes. That has found its striking applications in deriving estimation algorithms, stability 
conditions and control laws as well as achieving stochastic bifurcation analysis of stochastic differential 
systems. The Fokker-Planck method accounts for stochastic correction terms, on the other hand, 
classical methods do not.

The estimation equations for the state vector of the wind turbine-generator system, Equations 
(7a)-(7b) coupled with Equations (8a)-(8d), will be useful for the control of the state vector 
x v s e e
t t d q

T= ′ ′( , , , )  of the wind turbine-generator system as well.
For these reasons, it is believed that this paper will have lasting influence not only in power 

systems dynamics literature, that will be of interest to turbulence dynamists pursuing their research 
in non-linear vector SDEs arising from diverse fields, e.g. fluctuating aerodynamics, and underwater 
vehicle dynamics.
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APPENDIX

Equation (4) describes the Fokker-Planck equation of the Itô stochastic differential system. The 
alternative interpretation of the Fokker-Planck equation in the matrix-vector format is:

dp tr
f x t p
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The Fokker-Planck operator L(.)  that acts on the conditional probability density for Markov processes 
can be stated alternatively as:

L(.)= −
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Importantly, the Fokker-Planck operator has the adjoint property, i.e. the Kolmogorov backward 
operator is the adjoint of the Fokker-Planck operator. The Kolmogorov backward operator ′L (.)  for 
the Itô stochastic differential system is:
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Alternative interpretation of the backward operator of Equation (A1) is:
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Making the use of the Kolmogorov forward operator, backward operator as well as the definition of 
the evolution d x

t
ϕ ( )  of conditional moment (Diaconis, 1987), we get:
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After considering ϕ( )x x
t i
=  as well as ϕ( )x x x

t i j
= , we get the exact conditional mean and 

conditional variance evolutions, i.e.:

d x f x t dt
i i t
= ( , ) 	 (A2a)
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dP x f x f f x f x GG x t dt
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The Appendix Equations (A2a) and (A2b) can be regarded as a system of two coupled first-order 
exact differential equations. After considering the high-order partials of the system non-linearity 
f x t
i t
( , )  and the diffusion coefficient GG x tT

ij t( ) ( ),  as well as Gaussian assumptions, we are led to 

Equations (A2a)-(A2b) of the paper, i.e.:
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Q. E. D	

A good discussion about the above system of equations can be found in Sharma (2008) as well. That 
introduces different notations and interpretations.

Remark 3: The K L expansion has proven useful to decompose a stochastic process in a finite interval 
on the real line as an infinite linear combination of orthogonal functions in L a b2[ , ].  In this paper, 
a multi-dimensional non-linear stochastic differential equation driven by the Rayleigh process 
is the subject of investigations. Since the closed-form solution to the non-linear stochastic 
differential equations is not possible, the matrix-vector case arises, and decomposing the Rayleigh 
process in an infinite linear combination will introduce formidable complexity. Thus, the KL 
expansion to the estimation of non-linear dynamic systems is very scarce.
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