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ABSTRACT

In the guise of artificial neural networks (ANNs), genetic/evolutionary computation algorithms 
(GAs/ECAs), fuzzy logic (FL) inference systems (FLIS) and their variants as well as combinations, 
the computational intelligence (CI) paradigm has been applied to nuclear energy (NE) since the 
late 1980s as a set of efficient and accurate, non-parametric, robust-to-noise as well as to-missing-
information, non-invasive on-line tools for monitoring, predicting and overall controlling nuclear 
(power) plant (N(P)P) operation. Since then, the resulting CI-based implementations have afforded 
increasingly reliable as well as robust performance, demonstrating their potential as either stand-alone 
tools, or - whenever more advantageous - combined with each other as well as with traditional signal 
processing techniques. The present review is focused upon the application of CI methodologies to 
the - generally acknowledged as - key-issues of N(P)P operation, namely: control, diagnostics and 
fault detection, monitoring, N(P)P operations, proliferation and resistance applications, sensor and 
component reliability, spectroscopy, fusion supporting operations, as these have been reported in the 
relevant primary literature for the period 1990-2015. At one end, 1990 constitutes the beginning of 
the actual implementation of innovative, and – at the same time – robust as well as practical, directly 
implementable in H/W, CI-based solutions/tools which have proved to be significantly superior to 
the traditional as well as the artificial-intelligence-(AI)derived methodologies in terms of operation 
efficiency as well as robustness-to-noise and/or otherwise distorted/missing information. At the 
other end, 2015 marks a paradigm shift in terms of the emergent (and, swiftly, ubiquitous) use of 
deep neural networks (DNNs) over existing ANN architectures and FL problem representations, thus 
dovetailing the increasing requirements of the era of complex - as well as Big - Data and forever 
changing the means of ANN/neuro-fuzzy construction and application/performance. By exposing 
the prevalent CI-based tools for each key-issue of N(P)P operation, overall as well as over time for 
the given 1990-2015 period, the applicability and optimal use of CI tools to NE problems is revealed, 
thus providing the necessary know-how concerning crucial decisions that need to be made for the 
increasingly efficient as well as safe exploitation of NE.
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1. INTRODUCTION

Nuclear energy (NE, Weinberg, 1994) amounts to the energy that is required in order for an atom to 
retain its stability, i.e. for the protons and neutrons that comprise the nucleus of the atom to remain 
bound to each other. NE is released when

(1)  the nucleus of an atom is split into smaller nuclei (nuclear fission, NFi),
(2)  the nuclei of two or more atoms are integrated into a larger nucleus (nuclear fusion, NFu),

where, in both cases, the released neutrons of the nuclei of the atom(s) involved in the process 
are vital not only for producing NE, but also for sustaining the chain reaction. In a nutshell:

(1)  the difference in mass (and, thus, energy) between the original and resulting nuclei causes the 
release of significant amounts of NE (especially when compared to the size of the interacting 
elements), which - following collection and conversion - can be used for turning turbines, and 
consequently driving generators to produce electricity 1;

(2)  the neutrons released from these nuclei sustain the NFi/NFu phenomena.

The practical exploitation of NE has become of particular interest since the last century2, with - to 
date - NFi constituting the main means of energy production. The last 20 years have further brought 
about a shift in nuclear (power) plant (N(P)P) construction and operation, with the focus moving 
away from building new and towards maintaining existing N(P)Ps. Consequently, special emphasis 
has been placed upon the need for (i) comprehensive plant life management (PLiM) and (ii) cost-
effective as well as reliable instrumentation & control (I&C), both of which are crucial not only for 
avoiding a forced shut-down due to unavailability, but also for maintaining optimal functionality of 
the ageing N(P)Ps.

Control, diagnostics and fault detection, monitoring, N(P)P operations, proliferation and resistance 
applications, sensor and component reliability, spectroscopy and – finally - fusion supporting 
operations have been established as key-issues of safe, maximally efficient real-time adjustable 
N(P)P operation (Ma & Jiang, 2011). Complementary to the traditional signal and image/sound 
processing techniques that have been applied to these key-issues, the computational intelligence (CI) 
(Pedrycz, 1997) paradigm - which was put forward in the early 1990s as a set of computationally 
effective, adaptive, resistant-to-noise as well as to missing and/or partly erroneous information - has 
provided alternative on-line/real-time, robust, non-invasive methodologies for monitoring, controlling 
and predicting N(P)P operation. For the last 25 years, the resulting CI-based implementations and 
applications have afforded prompt, reliable as well as robust response to these key-issues, thus 
demonstrating the potential of CI either as a superior stand-alone tool, or - whenever advantageous 
- in combination with traditional signal and/or image processing/analysis techniques.

The present review communicates the application of CI methodologies to the aforementioned N(P)
P key-issues, as reported in the relevant primary literature of the major publication and dissemination 
media (listed in alphabetical order):

(1)  Annals of Nuclear Energy (ANE), published by Elsevier,
(2)  Fusion Science and Technology (FST), Nuclear Science & Engineering (NSE) and Nuclear 

Technology (NT), all three published by the American Nuclear Society (ANS), and
(3)  Progress in Nuclear Energy (PNE), also published by Elsevier

journals for the period 1990-2015. A crucial decision has been made not to extend the present 
review beyond 2015 as the transition from 2015 to 2016 brought about an important paradigm shift 
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in terms of CI tools used, namely in the application of deep neural networks (DNNs, Bengio (2009)) 
for upscaling the proposed solutions to significantly harder, more complex situations as well as to 
the concurrent efficient processing of significantly more numerous data, something that was not 
considered possible till then. By exposing the most representative and/or successful CI-based tool(s) 
for each key-issue, an understanding of the particular strengths of the used tools - as relating to NE - is 
afforded. It is observed that, despite the superior performance (solutions and implementations) offered 
by CI-based implementations over more conventional signal processing methodologies (which has 
more often than not been demonstrated on real data) for the specific period, the resulting CI-based 
implementations are – as a rule - not translated into stand-alone practical/commercial tools.

The remainder of this review is organised as follows: Section 2 describes the key-issues of N(P)P 
operation that are discussed in more detail in the following sections, followed by a brief description 
of the CI paradigm and the main methodologies that appear in the relevant literature for tackling each 
key-issue; Section 3 tabulates and critically reviews the research and trends reported in the primary 
literature for the various combinations of N(P)P key-issues and exponents of the CI paradigm, as 
observed for the period 1990-2015; finally, Section 4 summarises the findings, proposes future 
directions and concludes the review.

2. N(P)P OPERATION AND THE CI PARADIGM - A BRIEF EXPOSITION

2.1. N(P)P Energy Production and Maintenance/Safety Issues
N(P)Ps produce around 15% percent of the world’s electricity, thus significantly surpassing the 
alternative - conventional (fossil fuels such as petroleum, coal and gas) as well as renewable (solar, 
wind, wave etc.) - means of energy generation, while further demonstrating significant advantages in 
terms of operational cost, efficiency and cleanliness. However, N(P)P monitoring and scheduling must 
be vigilantly managed, while – even more importantly - nuclear fuel (both operational and exhausted) 
must be carefully handled and guarded as it remains radioactive for long and may seriously damage 
the flora, the fauna and the environment if released or mishandled.

2.2. The CI Paradigm
Historically, the artificial intelligence (AI) paradigm (Jackson, 1985) constitutes the first mature 
step towards endowing computer programmes with intelligent-like behaviour. AI uses a symbolic 
representation (Newell & Simon, 1976) of the problem and employs techniques such as search, 
constraint propagation and rule-based inference for providing solutions (appropriate combinations of 
compatible values for the sets of symbols which collectively represent both the problem-at-hand and 
its states) to complex problems that cannot be tackled via standard computer programming. Although 
AI achieved significant breakthroughs in the 1970s and early 1980s - with a variety of AI-based 
problem solving methodologies being still applied to diverse domains (including NE), bottleneck 
problems soon became apparent as the scale of the problems increased, rendering the attainment of 
a solution an extremely time- and resource- consuming process.

Consequently, a paradigm shift toward swarm intelligence (SI, Bonabeau et al., 1999) and CI 
(Siddique & Adeli, 2013) occurred; by operating at the hyper- and sub-symbolic levels (Stamou et 
al., 1999), both SI and CI, respectively, overcome the AI-related bottlenecks to a significant degree.

SI is based on the collaboration and communication between simple “agents” where, although each 
agent is marginally capable of independently finding a solution to the problem at hand, the implicit 
communication between agents helps the ensemble to improve upon their individual solutions and 
to converge upon a (near-)optimal solution to the problem. Two representative exponents of SI are:

(a) Ant colony optimisation (ACO, Dorigo & Stützle, 2004), where the pheromone-based aspects 
of (i) trail creation by each ant of the colony, (ii) indirect communication between the ants of the 
colony via the levels of pheromone concentration deposited over the foraging area and (iii) gradual 
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pheromone trail evaporation, are exploited during foraging of the ant colony for improving its food-
collection performance. The repeated foraging/foodsource discovery of each ant and the concurrent 
pheromone laying and evaporation promote convergence of the entire colony upon a/the shortest trail 
to the closest and/or richest foodsource3.

(b) Particle swarm optimization (PSO, Kennedy & Eberhart, 1995), where a swarm of “particles” 
navigates a given space in search of foodsources. Although along similar lines to ACO, the core 
of PSO is particle positioning: each movement of every particle is concurrently influenced by the 
(currently) best4 positions of (i) each particle and (ii) the entire swarm, whereby the movements of 
(each member of the) entire swarm collectively implement convergence to the shortest path to the 
richest foodsource.

Complementary to SI, the aim of CI is to mimic the means by which crucial aspects of natural 
(mainly - but not exclusively - human) intelligence are implemented. The focus is upon both form and 
function, with inspiration provided by the distributed, redundant and dynamic nature of information 
encoding in the brain and central nervous system, thus promoting (a) the on-line adjustment of 
its behavioural and structural characteristics in order to better fit the changing environment; (b) 
generalization capabilities and robustness, which collectively allow the accurate, efficient/swift 
reaction - and avoidance of bottlenecks - under conditions of noisy, partly erroneous (conflicting) 
and/or missing input information, as well as under partial damage of the brain or the central nervous 
system. These aspects of intelligence (and optimal survival) are translated into the following three 
main CI paradigms:

(A) Artificial neural networks (ANNs) (Rumelhart & McClelland 1987), where natural 
“intelligent” function emerges from the simulation of the form and function of groups of interconnected/
interacting biological neurons that are located in the brain and the central nervous system. Information 
is concurrently learnt and encoded in: (i) the collective activation patterns (firing levels or rates) 
of ensembles of neurons (rather than in the neurons per se); and (ii) the strengths and signs of the 
connections between neurons. A significant variety of ANN architectures has been implemented, 
simulating different aspects of biological neural ensembles that are found in various areas of the brain 
and/or in different biological organisms, including (in alphabetical order)

• Auto-associative ANNs (Kramer, 1992)
• Back-propagation (BP) ANNs (Rumelhart et al., 1986) - also known as feedforward ANNs or 

multi-layer perceptrons (MLPs)), including its variants and extensions
• Cellular NNs (CNNs, Chua & Yang, 1988)
• Deep NNs (DNNs, Bengio, 2009)
• Dynamic NNs (DynNNs, Sinha et al., 2000)
• General regression NNs (GRNNs or GRANNs, Specht, 1991)
• Hopfield NNs (Hopfield, 1982)
• Interactive activation & competition NNs (IAC ANNs, McClelland & Rumelhart, 1981)
• Linear vector quantization (LVQ, Kohonen, 1995)
• Radial basis function ANNs (RBFs, Broomhead & Lowe, 1988)
• Recurrent NNs (RNNs, Pearlmutter, 1989)
• Self organising maps (SOMs, Kohonen, 1982)
• Spiking NNs (SNNs, Gerstner, 2001).

(B) Robust and accurate reasoning/decision-making accomplished via fuzzy logic (FL) inference 
systems (FLIS, Zadeh, 1965). Unlike the - standard in mathematics and logic - crisp representation 
of a variable that stands for a given concept or property5, FL assigns a degree of belief (i.e. graded 
membership) to the variable. By introducing degrees of acceptance of/belief in any notion, the resulting 
problem representation/framework mimics biological intelligent reasoning and behaviour. Especially 
when such a fuzzy representation spans over a number of interrelated concepts, the processes of 
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inference and deduction become especially robust, general and flexible in expressing as well as in 
exploiting partial (non-crisp) and/or noisy/partially missing concepts/notions, very much alike to 
those expressed in natural language. Additionally, by being more human-like in expression and, thus, 
also more easily understood, this kind of inference is acceptable by humans (e.g. N(P)P operators).

In more detail, and unlike crisp logic, FL expresses the degree (of membership) to which the 
property represented by a given variable is true in a graded (fuzzy) manner, communicated by a value 
within the interval [0 1], where the degree of membership of the variable over the entire range of 
values is usually continuous and may take a variety of shapes, depending on the problem definition 
and the properties of the variable6.

FL uses fuzzy inference rules (of the IF-THEN form), which may be either of the Mamdani 
(Mamdani, 1974) or of the Takagi-Sugeno (Takagi & Sugeno, 1985) type, where (for more information, 
the interested reader is referred to Zadeh (1965)):

• The input(s) to a fuzzy rule of either type of fuzzy inference must be fuzzy - or fuzzified, if 
originally crisp - variable(s)

• T-norms are used for combining the fuzzy variables in the fuzzy rules via fuzzy “and”, “or” and 
“not” logical operators

• The outputs (consequents) are fuzzy variables for the Mamdani type and crisp values for the 
Takagi-Sugeno type
The choice of type of fuzzy rule used by a FLIS depends on the characteristics of the problem as 

well as the desired form of the final output. Some important distinguishing characteristics 
between the two types of FLIS are that:
(1)  the Mamdani-type is easier to interact with and the fuzzy output is easier to understand, whereas 

the Takagi-Sugeno-type requires significant know-how for setting the T-norm coefficients
(2)  the Takagi-Sugeno-type is more efficient than the Mamdani-type, with the continuous 

output space being not only directly optimizable but also more easily amenable to 
analysis (and understanding of the underlying phenomenon and its characteristics

(3)  Genetic algorithms (GAs, Goldberg, 1989) are inspired by the ability of living beings 
to adapt to the changing conditions of their environment, e.g. temperature, humidity, 
radiation, salinity, predators, surrounding flora and fauna etc. Individuals with traits that 
render them better equipped to protect themselves, to attain food and to appeal to the other 
sex, tend to live longer and to produce more offspring. The traits promoting longevity and 
reproductive superiority are – more often than not - passed on to their offspring, who either 
continue to change over time in order to adapt to changing conditions, or are superseded 
by other (currently) “fitter” individuals of the population. The CI-derived survival-of-the-
(currently)”fittest” paradigm is translated into GAs as a means of swiftly attaining a (near-)
optimal solution to a given problem. While crossover (combinations of genes from different 
individuals) and mutation (occasional random changes in the genes of the individuals) allow 
the population to remain diverse and are especially important if the problem constraints 
and/or requirements change over time, selection controls the diversity of the population to 
such a degree as to ensure the inclusion of a critical mass of fit individuals in the evolving 
population. The repeated application of the three GA operators causes a gradual change in 
the make-up of the population by the inclusion of more individuals of higher fitness, while 
also allowing the repeated adaptation and convergence to a new solution under changing 
conditions (e.g. constraints) of the problem, thus eventually producing a (near-)optimal 
solution to the current conditions of the problem-at-hand.

As GAs tend not to be able to consistently scale up to problems of increasing complexity or of 
a decision-making nature, GA-variant evolutionary (computation) algorithms (EC, EAs or ECAs) 
have been - and continue to be - developed (e.g. Fogel, 1995; Chiong et al., 2012).
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3. THE CI PARADIGM APPLIED TO N(P)PS – AN 
INVESTIGATION PER N(P)P KEY-ISSUE

The CI-related research performed (and reported in the relevant literature) during the period 1990-
2015 on the aforementioned N(P)P key-issues is critically discussed independently for each exponent 
of the CI paradigm collectively over all key-issues, and independently for each key-issue, in both 
cases reported both separately per publication medium and collectively over all publication media. 
For conciseness and homogeneity in terms of numbers of publications and NE areas covered by the 
five journals considered here, the publications appearing in the three ANS journals are collectively 
referred to as ANS.

3.1 Publication Profile - Coverage per CI Paradigm
3.1.1. ANNs
As depicted in Figure 1, the research output concerning the use of ANNs is – in general – evenly 
distributed over the period 1990-2015 for each of the three journals. No ANN publications appear in 
ANE in 1990, 1992-1993, 1999 and 2004 (a total of five years), suggesting the rather timid inauguration 
of non-purely signal processing techniques in NE, especially until the mid-1990s, yet the steadily 
increasing use of ANNs in NE from then on. PNE follows a similar – yet more intermittent7 - path. 
As far as ANS publications are concerned, ANN-related research activity appears earlier than for 
either ANE or PNE, yet with no publications in 1990 and then again in 2000, 2005-2006, 2008, 2011-
2012 and 2014 (8 years). The majority of ANN-related research appears in ANE (52%), with ANS 
and PNE covering 36% and only 12% of the total research output, respectively. There seems to be 
a rather significant gap between the publication media at hand concerning the percentage coverage 
of the aforementioned paradigm, with ANE being the most suitable medium for the publication 
of ANN-related research and tool development. It is also noted that, although the research interest 
in ANNs appears quite prominent in the eve of the new millennium, some time-gaps occur which 
it is not straightforward to explain, especially given the potential of ANNs to implement effective 
performance for – practically - all N(P)P operation key-issues. Overall, the applicability of ANNs 
is boosted by their formal, mathematical-based justification of convergence and stability underlying 
their construction, as well as by their clear and explicit architecture, i.e. features that facilitate the 
deployment of this paradigm in a rather straightforward and adequate manner.

3.1.2. FL
FL-related research publications are - in general – intermittent over the period 1990-2015, both when 
considered independently per journal and over the three journals (Figure 2). The journals peak at 
different times (18% in 2013, 38% in 2005 and 15% in 1994 for ANE, PNE and ANS, respectively) 
and do not share their periods of no-FL-related research output (1990-1993, 1997-2002, 2004, 2006-
2008, 2011-2012 for ANE, 16 years overall; 1990-2000, 2002, 2006-2008, 2011 and 2013-2014 for 
PNE, 18 years overall; 1991-1993, 1995, 2001-2003, 2005, 2009 and 2013 for ANS amounting to 
10 years overall). The majority of FL-related research results are found in ANS (46%), with 30% and 
24% of publications appearing in PNE and ANE, respectively.

It is evident that the FL paradigm does not have the same diffusion as ANNs concerning the N(P)
P key-issue; this is due to the fact that the application of the FL-based paradigm for appropriately 
formulating (i.e. representing) the problem to be solved relies heavily on the expertise of the 
programmer/engineer in assembling a correct, complete and well-coordinated set of fuzzy rules. 
The FL-based system is strongly application-dependent and – even then – remains problem-instance-
specific, with the characteristic (in FL) (a) trial-and-error-based selection of fuzzy variable membership 
functions and (b) linguistic expressions for binding together the fuzzy rules, often lacking a sound 
theoretical basis. As a result, considerable effort may be needed for establishing the optimal shapes 
of the membership functions as well as the appropriate number, shapes and limits of the created fuzzy 
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Figure 1a. Yearly percentage (% over the period 1990-2015) of purely ANN-related publications from ANE

Figure 1b. Yearly percentage (% over the period 1990-2015) of purely ANN-related publications from PNE
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Figure 1c. Yearly percentage (% over the period 1990-2015) of purely ANN-related publications from ANS

Figure 1d. All journals ANN



International Journal of Energy Optimization and Engineering
Volume 9 • Issue 1 • January-March 2020

35

Figure 2a. Yearly percentage (% over the period 1990-2015) of purely FL-related publications from ANE

Figure 2b. Yearly percentage (% over the period 1990-2015) of purely FL-related publications from PNE
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Figure 2c. Yearly percentage (% over the period 1990-2015) of purely FL-related publications from ANS

Figure 2d. All journals: FL control
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rules. The observed lower diffusion of the FL paradigm is shared across all publication media, with 
significant time-gaps of FL-related published research overall, and ANE being the least preferred 
medium of publication of the FL-based implementations and tools. PNE demonstrates the largest time 
gaps of FL-related publications (as also observed for ANNs). The ANS publications lie somewhere 
in-between with a more balanced representation of FL-based implementations.

3.1.3. GAs
Illustrated in Figure 3, ANS constitutes the major medium of publishing GA-related research (50% of 
the relevant literature), followed by PNE and ANE (31% and 19%, respectively). The three journals 
demonstrate a temporal difference in GA-related publication activity, (A) totaling 12, nine and three 
years of GA-related publications, respectively (namely 1995-1998, 2001-2002, 2006, 2008-2011, 2014 
for ANS; 2003, 2005, 2008 and 2010-2015 for PNE; and 2006, 2013 and 2014 for ANE), (B) with 
publication peaking in 2006 for ANS, 2011 for PNE and 2013 for ANE, with 19, 20 and 50% of the 
total publications, respectively. GAs have been mostly implemented from 2000 onwards, with only 
sporadic research published in the second half of the 1990s in the ANS journals. The rather small 
diffusion of this technique can be attributed to the fact that GAs have to be specifically formulated 
in order to efficiently address problems relating to N(P)P key-issues.

Still, the research interest in the GA paradigm has grown in the last 15-20 years; it appears that the 
increasing availability of computational resources (such as process power, memory) has afforded the 
necessary resources to this more computationally demanding paradigm for the generation of optimal 
solutions within more viable execution-times. Especially for on-line and real-time applications, the 
aspect of execution time has to be taken into account since CI-tools in general (and on-line operating 
GAs, more specifically) are dependent on an appropriate representation of the optimization problem 
for delivering timely/efficient and consistently (near-)optimal solutions. As also observed in FL, 
reliably near-optimal and – at the same time - efficient solutions require an in-depth understanding 
(and appropriate representation/codification) of the problem to be solved.

3.2. Publication Profiles - Coverage per Key-Issue
3.2.1 Control
As shown in Figure 4, the research output concerning N(P)P control issues makes its appearance - and 
also ceases to be used - earliest in ANS for all three exponents of the CI paradigm. ANE constitutes 
the preferred journal for ANN-related research in control, with both PNE and ANS being chosen 
for FL-based implementations and applications; still, PNE remains - by far - the preferred means 
of publication for GA-based solutions to N(P)P control issues. It can also be deduced from Table 1 
that ANN-based tools outnumber both FL- and GA-based applications, thus revealing a preference 
for this technique as far as control problems are concerned. The most implemented ANN-based 
architecture is BP (14 out of 26 research outputs, Table 1(a)), followed by combinations of BP with 
other architectures and CI methodologies. It is worth noting that simulated data have been utilized in 
22 out of 26 ANN research outputs. The same applies to all (12, Table 1(b)) FL and to the majority 
(5 out of 8, Table 1(c)) of GA implementations. Clearly, significantly more research effort must be 
invested to real data for validating the effectiveness of (and, thus, further boosting confidence in) 
the non-parametric CI paradigm.

As far as ANNs are concerned, the main focus of published research has been primarily on 
power (level) control, followed by reactivity compensation and load-following operations. A plethora 
of input information is utilised for attaining a satisfactory level of performance, such as thermo-
hydraulic (e.g. temperature, pressure, mass flow of several critical components) and neutron-derived 
parameters (e.g. neutron flux and diffusion). There seems to be no apparent relationship between 
the nature of the provided information/data and the ANN architecture employed, whereby no insight 
can be derived as to what kind of information/parameters/measurements are best suited to each 
application, or which CI paradigm (and particular methodology) is better-suited to the application/
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Figure 3a. Yearly percentage (% over the period 1990-2015) of purely GA-related publications from ANE

Figure 3b. Yearly percentage (% over the period 1990-2015) of purely GA-related publications from PNE
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Figure 3c. Yearly percentage (% over the period 1990-2015) of purely GA-related publications from ANS

Figure 3d. All journals: GA



International Journal of Energy Optimization and Engineering
Volume 9 • Issue 1 • January-March 2020

40

continued on following page

Table 1. Key-issue: Control; CI paradigm: ANNs (a), FL (b), GAs (c) combinations (d)

journal year type of ANN Authors Data Reactor

(a)

NT 1992 BP & SOM Guo and Uhrig, 1992 Real N.A.S.

NT 1995 GFNN Park and Cho, 1995 Simulated N.A.S.

FST 1996 4L Albanese et al., 1996 Simulated ITER

ANE 1998 BP Dubey et al., 1998 Simulated PHWR

ANE 1998 BP Dubey et al., 1998 Simulated AHWR

NT 1998 BP Garis et al., 1998 Simulated PWR

NSE 1999 BP Accorsi et al., 1999 Simulated PWR

NSE 1999 BP & GPT Lysenko et al., 1999 Simulated PWR

NT 1999 BP Seong et al., 1999 Simulated PWR

NT 2001 LOGFNN Uluyol et al., 2001 Simulated PWR

ANE 2002 BP Akkurt and Colak, 
2002 Simulated PWR

NSE 2002 BP Seong et al., 2002 Simulated PWR

ANE 2003 RNN Boroushaki et al., 2003 Simulated VVER 320

PNE 2004 BP Mazrou and 
Hamadouche, 2004 Real LWR

ANE 2005 BP Arab-Alibeik and 
Setayeshi, 2005 Simulated PWR

ANE 2005 RNN Boroushaki et al., 2005 Simulated VVER 320

ANE 2006 BP Souza and Moreira, 
2006 Real LWR

NSE 2007 CNN Boroushaki et al., 2007 Simulated 5 MW thermal pool-type cubic research reactor 
core

ANE 2007 MLP Jang et al., 2007 Simulated Soluble boron-free

FST 2007 RBNN Vitela, 2007 Simulated D-T fueled tokamak

ANE 2011 BP Lin and Chang, 2011 Simulated PWR - KSNPs

ANE 2014 B-spline kernel NN Abharian and Fadaei, 
2014 Simulated TRR

ANE 2014 BP Bayram et al., 2014 Simulated N.A.S.

ANE 2014 MFLNN Coban, 2014 Simulated LWR

ANE 2014 BP Sarkar et al., 2014 Real PHWR

ANE 2015 BP Marklund and Michel, 
2015 Simulated PFR

(b)

NT 1994 FLC Hah and Lee, 1994 Simulated PWR

NT 1997 FLC Lin et al., 1997 Simulated ABWR

NT 1998 FLC Lin and Yang, 1998 Simulated ABWR

NT 1999 FLC Kavaklioglu and 
Upadhyaya, 1999 Simulated PWR & BWR

ANE 2003 FLC Marseguerra and 
Zio, 2003 Simulated PWR

PNE 2004 Fuzzy Rule-Based 
System

Guimaraes and Lapa, 
2004 Simulated PWR

NSE 2004 FLC Liu et al. 2004 Simulated PWR

PNE 2005 FL Adda et al., 2005 Simulated Research reactor

PNE 2005 FLC Benitez-Read et al., 
2005 Simulated TRIGA Mark III
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data at hand; this may also explain why considering the research outputs in chronological order 
does not reveal any particular temporal trend in dominant ANN architectures. It is also worth noting 
that the adoption of specific ANN architectures and training algorithms (e.g. FFNs trained with 
BP, or its variants) dovetails their application to other scientific areas. As expected, the quality of 
the data used in the implementations plays a pivotal role to the level of performance attained by 
the various ANN-based systems.

Similar remarks apply to the reported FL and GA applications, with the main goal of control 
remaining the consistent attainment of the desired (safe yet efficient) power level, coupled with 
control of the feed-water level and rod positions. Again, there is no evidence of any FL- or GA-based 
technique being better suited to a particular kind of data, with the data “quality” and completeness 
requirement (in terms of signal as well as relevant parameters) holding strong.

Finally, the published combinations (Table 1(d)) of the aforementioned CI paradigms (i) strive 
to tackle the inherent drawbacks and weaknesses of the constituent methodologies, while (ii) fully 
exploiting the advantages of each method, with the resulting combinations revealing promising results.

3.2.2. Diagnostics and Fault Detection
ANE constitutes the preferred medium of CI-oriented research for diagnostics and fault detection, 
followed by ANS. ANNs constitute the prevalent CI paradigm for this key-issue (27 research outputs, 
Table 2(a)), with FL being used less often (12 research outputs, Table 2(b)). The total absence of 

journal year type of ANN Authors Data Reactor

PNE 2012 FLC Alireza and Shirazi, 
2012 Simulated LWR

ANE 2013 FLC Li and Zhao, 2013 Simulated PWR

ANE 2013 FLC Rojas-Ramirez et 
al., 2013 Simulated TRIGA Mark III

(c)

NSE 2001 GA Marseguerra and 
Zio, 2001 Experimental Xenon-Controlled

PNE 2003 GA Marseguerra et al., 
2003 Simulated PWR

PNE 2005 GA Domingos et al., 2005 Simulated PWR

ANE 2006 GA Lee and Lin, 2006 Simulated BWR

PNE 2010 Michálek et al., 2010 Real VR-1

PNE 2012 QEA Nicalau et al., 2012 Real PWR

ANE 2013 GA Karahroudi et al., 2013 Simulated VVER-1000

PNE 2013 IAGA & LQG & PID Li and Zhao, 2013 Simulated PWR

(d)

NT 2000 ANFIS Lin and Shen, 2000 Simulated PWR

ANE 2005 ANN&FL Zhao et al., 2005 Simulated PWR

NSE 2007 FL&GA Marseguerra et al., 
2007 Simulated PWR

ANE 2008 ANFIS Khorramabadi et 
al., 2008 Simulated PWR

PNE 2010 ANN&GA Coban, 2010 Simulated TRIGA Mark II

ANE 2011 ANFIS Lali and Setayeshi, 
2011 Simulated N.A.S.

PNE 2013 ANN&FL&GA Oliveira and Almeida, 
2013 Simulated PWR

Table 1. Continued
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Figure 4a. Yearly percentage (% over the period 1990-2015) of purely control-focused publications using the ANN exponent

Figure 4b. Yearly percentage (% over the period 1990-2015) of purely control-focused publications using the ANN exponent
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Figure 4c. Yearly percentage (% over the period 1990-2015) of purely control-focused publications using the FL exponent

Figure 4d. Yearly percentage (% over the period 1990-2015) of purely control-focused publications using the FL exponent
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Figure 4e. Yearly percentage (% over the period 1990-2015) of purely control-focused publications using the GA exponent

Figure 4f. Yearly percentage (% over the period 1990-2015) of purely control-focused publications using the GA exponent
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the GA exponent is most probably due to the relative difficulty to represent and manipulate such 
problems in the form of interacting genes and chromosomes. ANS constitutes the earliest medium of 
publication for the two CI exponents, with PNE and (especially) ANE starting off later but remaining 
consistent over time. Regarding the ANN architectures, 18 out of 27 research outputs are deployed 
with BP ANNs (including BP extensions and variants), which is most probably due to their simplicity 
and robustness of operation as well as their superior approximation performance and prediction 
accuracy. Simulated data are utilized in the majority of control-oriented research (Table 2(a-b)), with 
18 and nine (out of a total of 27 and 12, respectively) ANN and nine FL-based publications. The 
Diagnostics and Fault Detection (D-FD) key-issue is closely related to that of Control, which can 
be explained by the focus of both key-issues on the assessment of N(P)P operation per se and/or its 
critical components. Especially concerning ANNs, there is no apparent trend in the (preferred) choice 
of ANN architecture over time. The same is true of the FL paradigm as well as their combinations 
(Table 2(c)), the only exception being – perhaps - a preference for FL-based problem formulations 
as far as sensor validation applications are concerned.

3.2.3. Monitoring
ANNs constitute the prevalent tool for providing viable solutions to the monitoring key-issue (49 
research outputs, Table 3(a)), with their application persisting throughout the entire 1990-2015 
period. Research results for the other two CI exponents appear significantly later (1996 and 2006, 
respectively), with implementations remaining quite limited (seven FL-related research outputs against 
two FL-GA-combinations and only two GA implementations), as shown inTable 3(b-c)), especially 
for GAs. Derived from Table 3(a), the BP architecture and its variants remain the most preferable 
(28 out of a total of 49 research outputs). Different architectures, like RBF networks, have also been 
deployed, primarily for tackling problems expressed as classification tasks. The same applies to FL, 
with monitoring handled as a classification problem. Again, the utilization of simulated data instead 
of real measurements is prevalent, (amounting to 39 out of 49, and 5 out of 7, outputs in ANNs and 
FL, respectively (Table 3(a),(b)), a finding that is “reversed” in CI combinations where real data is 
used (in 6 out of 9 outputs, Table 3(d)). The most prevalent approach for CI combinations is based 
on ANN-based fuzzy inference systems (ANFIS), with only two pieces of research utilizing GAs 
coupled with ANNs.

As observed for the Control and Diagnostics key-issues, the data used pertain to thermo-
hydraulic parameters (temperature, pressure, mass flow), neutron flux, neutron noise etc.; this is not 
surprising, since both key-issues are closely related to monitoring. It is also observed, primarily in 
the most recent years, that a considerable amount of Cellular and RBF neural networks are utilized 
on neutron-type measurements. Although interesting, a formal theoretical investigation as well as a 
justification of the appropriateness/suitability of such a type of data for/to these ANN architectures 
needs to be performed.

3.2.4. N(P)P Operations
ANNs and GAs are preferred over the FL exponent (25 research outputs for ANNs, 21 research outputs 
for GAs and only 8 for FL, Table 4(a-c)), with ANN-related research publications occurring mostly in 
ANE and the other two CI exponents appearing mostly in ANS, which also hosts the earliest relevant 
literature for all exponents. As seen in Table 4(a), 14 out of 25 ANN-derived research outputs are 
based on the BP architecture and its variants. The most interesting fact regarding the N(P)P Operations 
key-issue is the extensive use of GA methods, especially when compared to the Control, Diagnostics 
and Monitoring key-issues (as shown above), a finding that is due to the fact that the structure and 
formulation underlying GAs is more appropriate for this type of problems. Although, once more, the 
prevalence of simulated data is evident, the types of utilized data are more diverse for this key-issue, 
since they are highly case-study dependent.
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continued on following page

Table 2. Key-issue: Diagnostics & Fault Detection; CI paradigm: ANNs (a), FL (b), combinations (c)

journal year Type of ΑΝΝ Authors Data Reactor

(a)

NT 1991 BP Roh et al., 1991 Simulated PWR

PNE 1992 BP Marseguerra et al., 1992 Simulated N.A.S.

NT 1992 RMLP Parlos et al., 1992 Simulated N.A.S.

NSE 1994 DNANN Basu and Bartlett, 1994 Simulated BWR

NT 1994 BP Kim and Bartlett, 1994 Simulated PWR

ANE 1994 BP Marseguerra and Zio, 1994 Simulated N.A.S.

NSE 1994 Boltzmann machine Marseguerra and Zio, 1994 Simulated N.A.S.

NT 1994 ABP Parlos et al., 1994 Simulated N.A.S.

ANE 1994 Perception-based Racz and Kiss, 1994 Real VVER 1000

NT 1995 PNN Tal et al., 1995 Simulated PWR

ANE 1996 BP Fantoni and Mazzola, 1996 Simulated BWR

NT 1996 MLPBP Fantoni and Mazzola, 1996 Simulated BWR

NSE 1996 MLPBP Marseguerra et al., 1996 Real PWR

NSE 1996 FFNN Pazsit et al., 1996 Real PWR

ANE 1996 MLP Yan and Upadhyaya, 1996 Real ORNL

PNE 2001 BP & Other Keyvan, 2001 Real EBR-II

ANE 2005 BP Kim et al., 2005 Real N.A.S.

PNE 2005 MLP Lee and and Seong, 2005 Simulated N.A.S.

ANE 2005 AANN Marseguerra and Zoia, 2005 Experimental N.A.S.

ANE 2005 AANN Marseguerra and Zoia, 2005 Simulated BWR

ANE 2006 AANN Marseguerra and Zoia, 2006 Simulated BWR

ANE 2010 Bootstrapped ANN Zio et al., 2010 Simulated GFR

PNE 2011 MLP & RBP & WT Hadad et al., 2011 Real VVER 1000

ANE 2012 MLP Elnokity et al., 2012 Simulated ETRR-2

PNE 2013 BP Dzwinel et al., 2013 Simulated IBR-2

ANE 2013 ANN-PSVR Liu et al., 2013 Real N.A.S.

PNE 2014 BP Hosseini and Vosoughi, 2014 Simulated VVER 1000

(b)

NT 1990 FL & PDM Holbert and Upadhyaya, 1990 Real PWR & EBR-II

NSE 1994 FL Holbert et al., 1994 Simulated N.A.S.

ANE 1994 Fuzzy Signed 
Disgraph Method

Park and Seong, 1994 Real Kori-2 NPP

ANE 1996 Fuzzy Logic Heger et al., 1996 Simulated N.A.S.

NT 1999 FLC Mironidis et al., 1999 Simulated PWR

PNE 2003 Fuzzy Logic Kinelev et al., 2003 Simulated VVER-1000

PNE 2005 Fuzzy Logic Garcia et al., 2005 Simulated PWR

NSE 2006 FLC Marseguerra et al., 2006 Real CANDU 6

ANE 2009 Fuzzy decision tree Zio et al., 2009 Simulated PWR
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journal year Type of ΑΝΝ Authors Data Reactor

ANE 2010 Fuzzy Logic Zio et al., 2010 Simulated N.A.S.

ANE 2014 Fuzzy Logic Purba, 2014 Simulated N.A.S.

ANE 2015 Fuzzy decision tree Purba et al., 2015 Simulated? N.A.S.

(c)

NT 1996 Other Hines et al., 1996 Real PWR

NT 1997 ANN&FL Erbay and Upadhyaya, 1997 Real PWR

NT 1997 ANFIS Hines et al., 1997 Real N.A.S.

PNE 2003 ANN&FL Liu et al., 2003 Simulated N.A.S.

PNE 2003 ANFIS Upadhyaya et al., 2003 Simulated PWR

ANE 2007 ANFIS Guimaraes and Lapa, 2007 Simulated LWR

PNE 2014 ANFIS Liu et al., 2014 Simulated N.A.S.

Table 2. Continued

Table 3. Key-issue: Monitoring; CI paradigm: ANNs (a), FL (b), GAs (c) combinations (d).

journal year type of ANN Authors Data Reactor

(a)

ANE 1991 BP Kostic, 1991 Experimental PWR

NT 1993 BP Cheon and Chang, 1993 Simulated BWR

NSE 1993 BP Kim et al., 1993 Simulated PWR

NT 1993 BP Kim et al., 1993 Simulated PWR

NSE 1994 FFNN Arul, 1994 Simulated FBTR

NT 1994 MLPBP Kavaklioglu and Upadhyaya, 1994 Real PWR

NT 1994 ANN Thomas and Adams, 1994 Real PWR

ANE 1995 BP Kozma and Nabeshima, 1995 Real HOR

PNE 1995 BP Vallejo and Barrio, 1995 Simulated N.A.S.

NT 1995 BP Van Der Hagen, 1995 Simulated BWR

FST 1996 MLPBP Yoshino et al., 1996 Simulated ITER

ANE 1997 RBF Ikonomopoulos and Hagen, 1997 Simulated PWR

ANE 1997 BP Kim and Chang, 1997 Simulated PWR

FST 1997 Various Windsor et al., 1997 Simulated COMPASS-D

ANE 1998 MLP Ikonomopoulos and Endou, 1998 Real FBR

NSE 1998 BP Tambouratzis et al., 1998 Simulated BWR

PNE 1999 MLP Hessel et al., 1999 Simulated VVER 400

NSE 1999 BP Marseguerra and Mazzarella, 1999 Simulated PWR

ANE 1999 BP Tambouratzis and Antonopoulos-Domis Simulated BWR

ANE 2000 BP Ishitani and Yamane, 2000 Simulated N.A.S.

FST 2001 MLFFNN Sengupta ang Ranjan, 2001 Simulated SST-1

ANE 2002 IAC ANN Tambouratzis and Antonopoulos-Domis, 2002a Simulated BWR
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journal year type of ANN Authors Data Reactor

ANE 2002 BP Tambouratzis and Antonopoulos-Domis, 2002b Simulated BWR

ANE 2003 RBF Lee and Chang, 2003 Simulated PWR

ANE 2003 MLP Mola et al., 2003 Simulated PWR

PNE 2003 Ruan et al., 2003 Experimental OECD Halden Reactor

ANE 2003 BP & 2 RNN Seker et al., 2003 Simulated HTTR

NSE 2004 NRNN Suteau et al., 2004 Simulated PWR

PNE 2005 BP & WT Figedy and Oksa, 2005 Simulated WWER 440 / WWER 1000

ANE 2006 MLP Jiang et al., 2006 Real CONSORT - Research Reactor 
Of Imperial College

ANE 2007 RNN Cadini et al., 2007 Simulated simplified nuclear reactor

ANE 2007 CNN Hadad and Pirouzmand, 2007 Simulated SSR

PNE 2007 DynNN Mo et al., 2007 Simulated N.A.S.

ANE 2008 BP & SVM Bae et al., 2008 Simulated Yonggwa NPP Unit 3

ANE 2008 CNN Hadad et al., 2008 Simulated N.A.S.

ANE 2009 CNN Boroushaki, 2009 Simulated BWR

NT 2009 Autoadaptive Dumonteil, 2009 Simulated N.A.S.

ANE 2009 BP Montes et al., 2009 Simulated BWR

ANE 2010 GRNN Tambouratzis and Pàzsit, 2007 Real KURRI

ANE 2011 CNN Pirouzmand and Hadad, 2011 Simulated N.A.S.

ANE 2012 BP & SVM Cai, 2012 Simulated N.A.S.

ANE 2012 CNN Pirouzmand and Hadad, 2012 Simulated N.A.S.

PNE 2013 RBF Jiang et al., 2013 Simulated N.A.S.

NT 2013 FFNN Sarkar et al., 2013 Real PHWR

ANE 2014 BP Jingjing et al., 2014 Simulated N.A.S.

ANE 2014 RBF Peng et al., 2014 Simulated ACP 100

ANE 2014 RBF Xia et al., 2014 Simulated PWR

NT 2015 BP Angelo, 2015 Experimental N.A.S.

FST 2015 ANN Carli et al., 2015 Simulated ITER

ANE 2015 RBF Peng et al., 2015 Simulated ACP 100

(b)

NT 1996 FL Muramatsu and Ninokata, 1996 Simulated LMFBR

PNE 2003 FIS Marseguerra et al., 2003 Simulated PWR

PNE 2005 Fuzzy 
Classifier Zio and Baraldi, 2005 Simulated PWR

ANE 2005 Fuzzy 
Classifier Zio, E., Baraldi, P., 2005 Simulated PWR

PNE 2009
Fuzzy 
Cognitive 
Map

Espinosa-Paredes et al., 2009 Simulated BWR

FST 2010 FL Murari et al., 2010 Real N.A.S.

PNE 2015 FIS Deol and Gabbar, 2015 Case Study PNGS

Table 3. Continued
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An increasing variety of ANN architectures, other than BP, appears in recent years (Table 4(a)), 
with this trend – however - not being as intense as for the monitoring key-issue. Other than fuel 
management as well as loading and reactor design, the range of N(P)P operations tackled has expanded 
in time, covering aspects of operations with radiation dose absorption and variation, operation guidance 
systems, prediction and control of nuclear power generation, signal encryption etc.

A similar time-based pattern is evident for GA applications (Table 4(c)), with some quite 
innovative variants appearing in recent years. The vast majority of GA-based research has focused 
upon solving critical optimization issues, with only one piece of research dedicated to classification. 
In a similar fashion, the CI combinations (Table 4(d)) favour ANN/GA combinations over ANFIS 
systems, something that is unlike what has been observed for the key-issues of Control, Diagnostics 
and Monitoring.

3.2.5. Proliferation and Resistance Applications
Only three relevant publications appear in the 1990-2015 relevant literature, the first based on ANNs 
and published in ANE in 1996, with the other two employing FL and appearing in ANS in 2007 and 
2012, respectively (Table 5).

3.2.6 Sensor and Component Reliability
The relevant literature is scant, represented by three quite recent relevant publications, two using 
ANNs and published in ANE in 2009 and 2015, and one being FL-oriented and appearing in ANS 
in 2014 (Table 6). It will be of interest to observe how this key-issue evolves in the future.

3.2.7. Spectroscopy
A total of five relevant publications (Table 7) appear in the relevant literature. The two publications in 
ANE (appearing in 2012 and 2013) are based on ANNs, with one of the remaining three publications 
appearing in ANS and employing GAs (2009) and two employing FL (2011 and 2015).

journal year type of ANN Authors Data Reactor

(c)

NSE 2006 MOGA Marseguerra et al., 2006 Simulated PWR

ANE 2013 LSSVR & 
PSO Jiang and Zhao, 2013 Simulated liquid-cooled nuclear reactors

(d)

NT 1993 ANN&FL Ikonomopoulos et al., 1993 Real PWR

PNE 1995 ANFIS Kozma et al., 1995 Real HOR

NT 1999 ANFIS Lin and Lin, 1999 Simulated Taiwan Power Company 
Maanshan Compact Simulator

NT 1999 ANFIS Na, 1999 Real N.A.S.

PNE 2004 ANFIS Marseguerra et al., 2004 Simulated PWR

PNE 2006 ANN&GA Mol et al., 2006 Simulated PWR

NT 2007 ANN&GA Lee and Lin, 2007 Real BWR

PNE 2009 ANFIS Oliveira and Schirru, 2009 Real PWR

ANE 2011 ANFIS Costa et al., 2011 Real PWR

Table 3. Continued
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Table 4. Key-issue: N(P)P Operations; CI paradigm: ANNs (a), FL (b), GAs (c), combinations (d).

journal year type of ANN Authors Data Reactor

(a)

NT 1992 MLP & SOSLA Bartlett and Uhrig, 1992 Simulated N.A.S.

NSE 1993 Barto-Sutton Jouse and Williams, 1993 Simulated PWR

NT 1993 ANN Ohga and Seki, 1993 Simulated BWR

NT 1994 RMLPBP Parlos et al., 1994 Simulated BWR

NT 1994 MLPBP Reifman and Vitela, 1994 Simulated PWR

NT 1995 RNN Wacholder et al., 1995 Simulated N.A.S.

NT 1997 BP Keyvan et al., 1997 Real N.A.S.

ANE 2001 ANN-OLL Jang et al., 2001 Simulated PWR

ANE 2002 BP Khajavia et al., 2002 Simulated PWR

ANE 2002 HNNA Sadighi et al., 2002 Simulated PWR

ANE 2003 BP Faria and Pereira, 2003 Simulated PWR

NSE 2003 MLPBP Oritz and Requena, 2003 Simulated BWR

ANE 2007 MLP Mo et al., 2007 Simulated PWR

ANE 2008 MLP Kucuk, 2008 Simulated N.A.S.

ANE 2008 Bootstrapped ANN Secchi et al., 2008 Simulated RBMK-1500

PNE 2009 BP Hedayat et al., 2009 Simulated NRR

ANE 2011 GRNN Mol et al., 2011 Real Argonauta 
research reactor

PNE 2012 BP Aghina et al., 2012 Simulated PWR

ANE 2012 BP Mirvakili et al., 2012 Simulated VVER 1000

ANE 2012 HNNA Pazirandeh and Tayefi, 2012 Simulated VVER 1000

NT 2013 MINN Vu et al., 2013 Simulated N.A.S.

NT 2015 Levenberg-Marquardt Chatzidakis et al., 2015 Simulated N.A.S.

ANE 2015 MLP Leniau et al, 2015 Simulated PWR-MOX

ANE 2015 RNN Ortiz-Servin et al., 2015 Simulated BWR

PNE 2015 MLP Thiolliere et al., 2015 Simulated Subcrticica 1

(b)

NT 1994 FP Yu et al., 1994 Simulated BWR

ANE 1995 Fuzzy TS Park and Seong, 1995 Simulated N.A.S.

NT 2000 FAR Eisenhawer et al., 2000 Simulated N.A.S.

PNE 2001 Fuzzy Moon and Kang, 2001 Previous study 
(Shin et al, 1994) N.A.S.

PNE 2005 Fuzzy Logic Fiordaliso and Kunsch, 2005 Simulated N.A.S.

NT 2007 FIS & Tabu Martin Del Campo, et al., 2007 Simulated BWR

FST 2008 FL Anghel, 2008 Real CANDU

PNE 2010 Fuzzy Logic Eustaquio de Vasconcelos et al., 2010 Simulated N.A.S.

(c)

NT 1995 CIGARO DeChaine and Feltus, 1995 Simulated PWR

NSE 1996 CIGARO DeChaine and Feltus, 1996 Simulated PWR
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journal year type of ANN Authors Data Reactor

NSE 1996 MOGA Parks, 1996 Simulated PWR

NT 1997 GA Omori et al., 1997 Simulated LWR

NT 1998 GA Aumeier and Forsmann, 1998 Simulated N.A.S.

NSE 2002 GA 2 stage Kobayashi and Aiyoshi, 2012 Simulated BWR

FST 2006 GA An et al., 2006 Simulated EAST

ANE 2006 NIGA Yilmaz et al., 2006 Real PWR

NT 2006 GA Yilmaz et al., 2006 Simulated PWR

NT 2008 GA Mansilla, 2008 Simulated VHTR

PNE 2008 NIGA Pereira and Sacco, 2008 Simulated PWR

NSE 2010 GA &PEBBED Gougar et al., 2010 Simulated RBR

FST 2010 GA Santos and Cantos, 2010 Real TJ-II stellarator

PNE 2011 GA François et al., 2011 Simulated BWR

NT 2011 GA & RANS Lee and Kim, 2011 Simulated PBMR

PNE 2011 Enhanced Integer 
Coded Norouzi et al., 2011 Real PWR

ANE 2013 Parallel Integer 
Coding Norouzi et al., 2013 Simulated TRR & BNPP

NSE 2014 GA&CAFCA Passerini et al., 2014 Real LWR

PNE 2014 DE Sacco and Hendreson, 2014 Simulated cylindrical 3-enrichment-
zone reference reactor

ANE 2014 GA & SI/GA Zameer et al., 2014 Real CHASN UPP Unit 1

PNE 2015 EHS Poursalehi, 2015 Real KWU PWR & VVER-440

(d)

NSE 1993 ANN&FL Kim et al., 1993 Simulated N.A.S.

NT 1995 Other Chang et al., 1995 Simulated PWR

ANE 2003 ANN&GA Erdogan and Geckinli, 2003 Real PWR

NSE 2004 ANN&GA Ortiz and Requena, 2004 Real BWR

ANE 2005 ANN&GA Huo and Xie, 2005 Simulated N.A.S.

ANE 2005 GA&FL Marseguerra et al., 2005 Simulated N.A.S.

ANE 2006 ANN&GA Gozalvez et al., 2006 Simulated N.A.S.

NSE 2007 ANN&GA Ortiz et al., 2007 Real BWR

ANE 2008 ANN&GA Fadaei and Setayeshi, 2008 Simulated VVER-1000

ANE 2008 ANFIS Jeong et al., 2008 Simulated N.A.S.

NSE 2009 ANN&FL Ortiz et al., 2009 Simulated BWR

ANE 2010 ANN&GA Fadaei et al., 2010. Simulated IR-40

ANE 2012 ANFIS Jeong et al., 2012 Simulated N.A.S.

ANE 2012 ANN&GA Khoshahval and Fadaei, 2012 Real PWR

ANE 2014 Other Castillo et al., 2014 Simulated BWR

NSE 2015 Other Burr et al., 2015 Simulated LWR

ANE 2015 Other Otiz-Servin et al., 2015 Simulated BWR

Table 4. Continued
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3.2.8. Fusion
The relevant literature on this key-issue is scant, with only one relevant ANN-based piece of research 
published in ANS in 2010 (Table 8).

3.3. Combinations
The combinations of CI approaches for a number of key-issues are also (briefly) discussed in the 
following, as they provide some pointers as to the construction of efficient as well as accurate 
decision-making tools.

Table 5. Key-issue: Proliferation & Resistance Operations; CI paradigm: ANNs (a), FL (b).

journal year type of ANN Authors Data Reactor

(a)

ANE 1996 BP Antonopoulos-Domis and Tambouratzis, 1996 Simulated N.A.S.

(b)

FST 2007 FL Wu et al., 2007 Experimental N.A.S.

NT 2012 TrFNs Otsuka, 2012 Simulated N.A.S.

Table 6. Key-issue: Sensor and Component Reliability; CI paradigm: ANNs (a), FL (b), combinations (c).

journal year type of ANN Authors Data Reactor

(a)

ANE 2009 ANN-SOM Tambouratzis and Pázsit, 2009 Real KURRI

ANE 2015 BP Yu et al., 2015 Simulated AP 1000 NPP

(b)

NT 2014 FL & DFM & 
ATHEANA

Pinto et al., 2014 Real PWR

(c)

PNE 2006 ANFIS Guimaraes et al., 2006 Simulated N.A.S.

Table 7. Key-issue: Spectroscopy; CI paradigm: ANNs (a), FL (b), GAs (c).

journal year type of ANN Authors Data Reactor

(a)

ANE 2012 BP Medhat, 2012 Experimental N.A.S.

ANE 2013 BP Akkoyun, 2013 Experimental HIFE reactions

(b)

NT 2011 FL Alamaniotis et al., 2011 Simulated N.A.S.

NT 2015 FL &SVR Alamaniotis et al., 2015 Experimental N.A.S.

(c)

FST 2009 GA Yu et. Al, 2009 Simulated Tore Supra Tokamak
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3.3.1. Combinations of CI Approaches Grouped by Publication Medium
A variety of combinations between the three exemplars of the CI paradigm have been successfully 
implemented. ANFIS and ANN-GAs constitute the prevalent CI-combinations, appearing mainly in 
ANE, but also in PNE and ANS (43%, 25% and 27% of the relevant literature, respectively), with 
FL/GA combinations being less popular. CI-combinations involving ANFIS, ANNs and FL as well 
as ANNs and GAs are the norm (81%, 91% and 74%, respectively), revealing complementary areas 
covered by each publication. Combinations of methodologies such as heuristic optimization and data 
mining, which appear in the ANE and ANS journals under the title “Other”, do not strictly fit into 
the CI-paradigm; the reason they are shown here is that their occurrence (13% and 20% of the related 
publications, respectively) may very well point towards an evolving paradigm shift.

3.3.2. Combinations of CI Approaches per Key-Issue, Grouped per Publication Medium
An examination of the frequency of occurrence of combinations of exemplars of the CI paradigm 
reveals different traits for the three journals: while the N(P)P Operations key-issue ranks first in 
ANE and ANS (69% and 40%, respectively), monitoring is the most prevalent key-issue for PNE 
(37%). Both the Fault Detection & Diagnostics and the Control key-issues demonstrate the highest 
occurrence in the PNE journal. Finally, the ANS publications are the most consistent in terms of the 
overall distribution of key-issues.

4. CONCLUSION

The presented review has covered the application of CI tools (namely, artificial neural networks, 
fuzzy logic and genetic algorithms) to key-issues of NE and N(P)P (i.e. control, diagnostics and 
fault detection, monitoring, N(P)P operations, proliferation and resistance applications, sensor 
and component reliability, spectroscopy, fusion supporting operations), collected over the major 
scientific/research publication media (Annals of Nuclear Energy, Fusion Science and Technology, 
Nuclear Science & Engineering, Nuclear Technology, Progress in Nuclear Energy) for the period 
1990-2015. Trends have been observed and uncovered overall as well as per key-issue, per journal 
and per CI exemplar, with the best - and some of the less successful - combinations pinpointed and 
critically discussed.

It is observed that CI has been gradually acknowledged as a highly promising, effective, accurate, 
robust tool for/approach towards safe and efficient N(P)P operation, which not only compares 
favourably to traditional approaches in the relevant literature, but can – furthermore - be combined 
with these approaches for the seamless implementation of integrated environments and tools. It 
seems that a closer collaboration between nuclear engineers and CI scientists/researchers would be 
conducive to assuring both the appropriate choice of CI methodology and its more formally correct 
application (in terms of representation, set-up, implementation, cross-validation). To this aim the 
utilisation of real cases/data would further improve the confidence in CI methods, thus facilitating the 
actual (on-site) deployment of the resulting tools. It would also be interesting to compare the presented 
findings with findings relating to the same key-issues, yet implemented using artificial as well as 
swarm intelligence methodologies, showing – perhaps – the advantages derived from combining all 
three “intelligence” paradigms, expressed via an increase in the efficiency and accuracy of attaining 

Table 8. Key-issue: Fusion; CI paradigm: ANNs

journal year type of ANN Ref1 Data Reactor

FST 2010 RNN Murari et al., 
2010 Simulated N.A.S.
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a solution, something that is especially important when using the uncertain, inaccurate and/or partial 
information available in real on-line N(P)P signals.

A future review shall demonstrate the paradigm shift that has occurred in the post-2015 era 
following the fruition of the bid-data paradigm and the increasingly extensive use of CI for the 
actual implementation of stand-alone/commercial tools based on DNNs. This may well also suggest 
the increasing appreciation of - and confidence in - the non-parametric nature of CI-based tools and 
implementations over the more traditional engineering/formal-analysis-based, parametric signal-
processing methods and approaches.
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2  Pile-1 (CP-1) was the world’s first nuclear reactor, built in Chicago, U.S.A. in 1942; Calder Hall was the 
first NPP, built in Windscale, U.K. in 1956.

3  The optimal (shortest) trail takes on the form of a piece-wise assembly of parts of the most heavily 
pheromone-laid individual pheromone trails.

4  i.e. nearest to the/a foodsource.
5  where each variable either has or does not have the property, as given by the values of 1or 0, respectively, 

thus representing full membership or absolute non-membership to the property, i.e. the “true” or” false” 
status of a concept.

6  with no and full membership being expressed by the values of 0 and 1, respectively. For instance, the 
“height” continuous variable, which takes on values within – say - [0.30 2.50]cm in crisp logic, can 
be represented in FL via the “very short’, “short”, “average”, “tall”, “very tall” properties/(as-a-rule 
overlapping) fuzzy intervals such that each value of height is represented by a certainty/belief in every 
property, expressed via a set of values between 0 and 1 for no- and -full-membership to each corresponding 
property. By appropriately representing the variables of interest, the combination of FL-based rules over 
a number of fuzzy variables provides the inference task with continuity, noise-resistance and robustness, 
while further providing the operator with a transparent as well as more easily modifiable understanding 
of the inference process.

7  with no related research reported for the years 1990-1991, 1993-1994, 1996-1998, 2000, 2002, 2006, 
2008 and 2010 (12 years overall)
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APPENDIX A: SUPLIMENTAL FIGURES

Figure 5a. Yearly percentage (% over the period 1990-2015) of purely diagnostics and fault detection-focused publications using 
the ANN exponent



International Journal of Energy Optimization and Engineering
Volume 9 • Issue 1 • January-March 2020

72

Figure 5b. Yearly percentage (% over the period 1990-2015) of purely diagnostics and fault detection-focused publications using 
the ANN exponent

Figure 5c. Yearly percentage (% over the period 1990-2015) of purely diagnostics and fault detection-focused publications using 
the FL exponent
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Figure 5d. Yearly percentage (% over the period 1990-2015) of purely diagnostics and fault detection-focused publications using 
the FL exponent

Figure 6a. Yearly percentage (% over the period 1990-2015) of purely monitoring-focused publications using the ANN exponent
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Figure 6b. Yearly percentage (% over the period 1990-2015) of purely monitoring-focused publications using the ANN exponent
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Figure 6c. Yearly percentage (% over the period 1990-2015) of purely monitoring-focused publications using the FL exponent
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Figure 6d. Yearly percentage (% over the period 1990-2015) of purely monitoring-focused publications using the FL exponent



International Journal of Energy Optimization and Engineering
Volume 9 • Issue 1 • January-March 2020

77

Figure 6e. Yearly percentage (% over the period 1990-2015) of purely monitoring-focused publications using the GA exponent
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Figure 6f. Yearly percentage (% over the period 1990-2015) of purely monitoring-focused publications using the GA exponent
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Figure 7a. Yearly percentage (% over the period 1990-2015) of purely NPP operations-focused publications using the ANN exponent
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Figure 7b. Yearly percentage (% over the period 1990-2015) of purely NPP operations-focused publications using the ANN exponent
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Figure 7c. Yearly percentage (% over the period 1990-2015) of purely NPP operations-focused publications using the FL exponent
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Figure 7d. Yearly percentage (% over the period 1990-2015) of purely NPP operations-focused publications using the FL exponent
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Figure 7e. Yearly percentage (% over the period 1990-2015) of purely NPP operations-focused publications using the GA exponent
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Figure 7f. Yearly percentage (% over the period 1990-2015) of purely NPP operations-focused publications using the GA exponent
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Figure 8a. Yearly percentage (% over the period 1990-2015) of purely proliferation and resistance applications-focused publications 
using the ANN exponents
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Figure 8b. Yearly percentage (% over the period 1990-2015) of purely proliferation and resistance applications-focused publications 
using the ANN exponents
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Figure 8c. Yearly percentage (% over the period 1990-2015) of purely proliferation and resistance applications-focused publications 
using the FL exponents
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Figure 8d. Yearly percentage (% over the period 1990-2015) of purely proliferation and resistance applications-focused publications 
using the FL exponents
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Figure 9a. Yearly percentage (% over the period 1990-2015) of purely sensor and component reliability publications using the 
ANN exponents
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Figure 9b. Yearly percentage (% over the period 1990-2015) of purely sensor and component reliability publications using the 
ANN exponents
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Figure 9c. Yearly percentage (% over the period 1990-2015) of purely sensor and component reliability publications using the 
FL exponents
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Figure 9d. Yearly percentage (% over the period 1990-2015) of purely sensor and component reliability publications using the 
FL exponents
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Figure 10a. Yearly percentage (% over the period 1990-2015) of purely Spectroscopy publications using the ANN exponents
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Figure 10b. Yearly percentage (% over the period 1990-2015) of purely Spectroscopy publications using the FL exponents
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Figure 10c. Yearly percentage (% over the period 1990-2015) of purely Spectroscopy publications using the FL exponents
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Figure 10d. All journals:FL Spectroscopy
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Figure 10e. Spectroscopy (GA) per journal
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Figure 10f. All journals: GA Spectroscopy
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Figure 11a. Yearly percentage (% over the period 1990-2015) of purely fusion-focused publications using the ANN exponent
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Figure 11b. Yearly percentage (% over the period 1990-2015) of purely fusion-focused publications using the ANN exponent
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Figure 12a. Yearly percentage (% over the period 1990-2015) of publications involving CI combinations-focused publications 
grouped by publication medium
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Figure 12b. Yearly percentage (% over the period 1990-2015) of publications involving CI combinations-focused publications 
grouped by publication medium
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Figure 12c. Yearly percentage (% over the period 1990-2015) of publications involving CI combinations-focused publications 
grouped by publication medium
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Figure 12d. Yearly percentage (% over the period 1990-2015) of publications involving CI combinations-focused publications 
grouped by publication medium
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Figure 13a. Yearly percentage (% over the period 1990-2015) of CI combinations-focused publications per key - issue grouped 
by publication medium
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Figure 13b. Yearly percentage (% over the period 1990-2015) of CI combinations-focused publications per key - issue grouped 
by publication medium
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Figure 13c. Yearly percentage (% over the period 1990-2015) of CI combinations-focused publications per key - issue grouped 
by publication medium
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Figure 13d. Yearly percentage (% over the period 1990-2015) of CI combinations-focused publications per key - issue grouped 
by publication medium
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