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ABSTRACT

The estimation of the pose of a differential drive mobile robot from noisy odometer, compass, 
and beacon distance measurements is studied. The estimation problem, which is a state estimation 
problem with unknown input, is reformulated into a state estimation problem with known input and 
a process noise term. A heuristic sensor fusion algorithm solving this state-estimation problem is 
proposed and compared with the extended Kalman filter solution and the Particle Filter solution in 
a simulation experiment.
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INTRODUCTION

In navigation of mobile robots information from multiple sensors need to be used to reliably determine 
the position and orientation, i.e. the pose, of the mobile robot (Thrun & Burgard, 2005; Dudek & 
Jenkin, 2010; Gustafsson, 2010). In outdoor robotics applications usually GPS or DGPS measurements 
are used to compensate for the drift in the position estimation based on odometry, see e.g. (Ohno et 
al., 2004). For autonomous driving on high-ways and in urban environments other sensors, such as 
Lidar, Radar and/or camera’s, are being used as well, see e.g. (Thrun & Burgard, 2005). For navigation 
in indoor applications or near tall buildings, where GPS or other GNSS has weak or no coverage, 
other beacons can be used e.g., based on ultrasound transmission time (Wijk & Christensen, 2000) 
or received signal strength (RSS) of visible light (Plets et al., 2017) and transmission time of ultra-
wideband (UWB) transmission (Dabove et al., 2018). For indoor navigation also beacon-less methods 
are being used, that rely on simultaneous localisation and mapping (SLAM) (Thrun & Burgard, 
2005) and often make use of optical sensors observing the robots environment, such as Lidar and/
or (RGBd or stereo) camera’s.
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In dirty and/or dusty working environments optical sensors may not be effective and ultrasonic 
or UWB beacon-based techniques are needed to compensate for drift in (semi) indoor mobile robot 
navigation. There are several approaches that can be taken:

•	 Odometry based: The pose of the robot is determined only by odometry, and optionally including 
compass and/or IMU sensors;

•	 Beacon based: Odometry information is not used for navigation, only triangulation based on two 
or more time of arrival (TOA) or three or more-time difference of arrival (TDOA) measurements;

•	 Beacon based resetting of odometry: The position of the robot determined by odometry is reset 
to the position determined by a beacon based (TOA or TDOA) method (the resetting is usually 
at a lower rate than the odometry update rate);

•	 Sensor fusion of beacon and odometry based measurements: The measurements from the 
odometry, optional compass and IMU sensors and the beacon-based sensors are fused according 
to some sensor fusion algorithm to provide an estimate of the robots pose.

In this paper, the latter approach of fusing the beacon and odometry sensor measurements, 
including a compass sensor, is used to achieve an estimate of the robots pose. Because the intended 
application is for mobile robots in dirty and/or dusty environments the choice has been made to focus 
on sensor fusion of odometry, compass and UWB beacon distance measurements. Various sensor 
fusion algorithms are evaluated, a heuristic approach, the extended Kalman filter and the particle 
filter, see e.g. (Thrun & Burgard, 2005; Dudek & Jenkin, 2010; Gustafsson, 2010). The algorithms 
are compared in a simulation experiment. Parts of this paper, especially the algorithm presentation, 
have been published in (Fraanje et al., 2019) as a conference publication. In addition, the current paper 
discusses various implementation issues, gives directions for extensions, such as the multi-beacon 
case, and the section on the simulation experiments and their discussion is extended and fully revised.

PROBLEM ANALYSIS

Figure 1 shows the schematic of a differential drive mobile robot at position X Y
k k
,( )  and heading 

θ
k

 relative to some coordinate frame, where k = 0,1,... refers to a discrete time index, i.e. t k t= δ  
where δt  the time difference between two time steps. The left and right wheel velocities, denoted 
by v

l k,
 and v

r k,
respectively, are given by:

v r n
l r k l r l r k/ , / / ,
= 2π 	 (1)

where r
l
 and r

r
 wheel radii and n

l k,
 and n

r k,
 the number of rotations per second at time index k of 

the left and right wheel respectively. Note that usually the left and right wheel radii are equal but this 
is not necessary. The odometry equations that yield the update to the mobile robot pose, i.e. position 
and heading, have been derived in many textbooks, see e.g. (Dudek & Jenkin, 2010). Here, we present 
an alternative form, that can be derived using some additional trigonometry:

x

y

x

y

x

y
k

k

k

k

k

k

k

k

k

+

+

+





















=





















=


1

1

1
θ θ

δ
δ
δθ

















	 (2)



International Journal of Artificial Intelligence and Machine Learning
Volume 10 • Issue 1 • January-June 2020

3

where:
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and b the baseline, i.e. the distance between the wheels and sinc δθ δθ δθ
k k k( ) = ( )sin / .

Note that this expression holds for all v v
r k l k, ,

�and�  and it is not necessary to distinguish the cases 
v v
r k l k, ,

=  and v v
r k l k, ,
≠  from each other, which simplifies the implementation of the odometry model 

as well as the calculation of linearized models in the extended Kalman filter. Because often in practice 
the angle update between two-time instances are small, i.e. δθ δθ

k k
� 1, sinc( )  can be approximated 

very well by the first few terms of its power series expansion about 0:

sinc δθ
δθ δθ

k
k k( ) = − + −…1

3 5

2 4( )

!

( )

!
	 (4)

which provides a computationally efficient implementation.
The measurement of the distance to a beacon, which position x y

b b
,( )  is known, is given by:

Figure 1. Schematic of the differential drive mobile robot with the distance to a beacon being measured. ICC is the Instantaneous 
Center of Curvature. Dependency on the time index k is suppressed for reasons of clarity.
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z x x y y v
b k b k b k b k, ,

( ) ( )= − + − +2 2 	 (5)

where v
b k,

 represents noise that deteriorates the measurement of the distance, and can be caused 
by scattering, fading, propagation time errors, etc. Note, that this paper focuses on the case of a 
single beacon, but the equation can be vectorized straightforwardly for multiple beacons. Also the 
position of the beacons need not to be fixed, and even need not to be in the same plane as the 
mobile robot, as long as the beacon positions are known at each time instance and Equation (5) is 
adjusted accordingly.

The measurements of the left and right wheel speeds, determined by wheel encoders or 
tachometers, and the heading, determined by a compass or a gyroscope, are stored in the following 
observation vector:

z v v v v v
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where v v v
vr k vl k k, , ,

,  and θ  represent measurement noises.
For notational convenience, the following definitions are being made. The pose is denoted by:
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k k k k

T
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    θ 	 (7)

and the command vector is denoted by:
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which is directly determined by the left and right wheel velocities according to:
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Then, the pose update equation is written by:

q f q u
k k k+ = ( )1

, 	 (10)

where the function f can be easily derived from (2), (3):
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where u(i) and q(i) refer to the ith element of the vectors u and q respectively; this notation will 
be adopted for indexing elements in other vectors in this paper as well. For reasons of clarity the 
dependency on the time index k is suppressed.

All measurements, the beacon distance (5) and the wheel velocities and heading (6), at time 
instance k are stored in one measurement vector:

z z z
k b k o k
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, ,

	 (12)

When multiple beacons are being used, z
b k,

 will be a vector instead of a scalar and to achieve a 
proper vector stacking z

b k,
 should be replaced by z

b k
T
,

 in Equation (12). Then, the measurement 
equation can be compactly written as:
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= ( )+, ν 	 (13)

where V
k

 is the vector stacking of all the measurement noises, and the function g is defined as:
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Then, the problem is to (recursively) estimate the pose qk given the noisy measurements z
k

 
subject to Equations (10) and (13). Note, that this is an estimation problem with an unknown input 
u
k

, because the measured wheel velocities, z
k

 (2) and z
k
�3( ) , are distorted by noise from which only 

a noise deteriorated estimate of u
k
 can be determined. One possibility would be to augment the state 

vector with the unknown input u
k

 and adopting a hypermodel for the time-update of u
k

. Then, the 

augmented state q u
k
T

k
T
T

   



  can be estimated from the measurements z

k
, subject to adjusted versions 

of Equations (10) and (13). In this paper, a simpler approach is taken to deal with the unknown input 
u
k

, which is estimated first from the measurements:
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Then the pose update equation can be written in terms of the estimate û
k

 rather than the true 
u
k

 where a process noise term η
k

 accounts for the error in the estimate:

q f q u
k k k k+ = ( )+1

, ˆ η 	 (16)
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where η
k k k k k
f q u f q u= ( )− ( ), , ˆ . For small values of u

k
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This approximation of η
k

 will be used later to estimate its covariance for use in the extended 
Kalman filter. Because the wheel speed measurements z

k
2( )  and z

k
3( )  have been used already in 

determining û
k

 they are not considered as outputs anymore, and we introduce the reduced output 
vector consisting of the beacon distance (or the vector with beacon distances for multiple beacons) 
and the heading:
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where the vector with the true beacon distance and the heading, and v v v
k k k

T
' = ( ) ( )



1 4   the vector 

with the beacon distance noise and the heading noise respectively. With these adjustments, there is 
a process noise term η

k
 introduced in the pose update equation, but the unknown input in the estimation 

problem is removed.

SENSOR FUSION ALGORITHMS

Heuristic Approach
This approach is rather straightforward, and its implementation is efficient. The idea is to first estimate 
the pose by updating the odometry equations and fuse the heading and then to fuse this estimate 
with the measurement from the distance to the beacon. For the case of multiple beacons, the latter 
step can be repeated for each beacon distance measurement. The procedure for a single beacon is 
outlined as follows:

1. 	 Set the initial pose estimate ˆ
|

q
0 0

 and the initial command vector estimate û
0

;
2. 	 Iterate for k = 1, 2,...:

Perform a time update of the pose estimate:

ˆ ˆ ˆ,
| |
q f q u
k k k k k− − − −= ( )1 1 1 1

	 (20)
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Determine the predicted output:

ˆ ˆ’
|

z g q
k k k
= ( )′

−1
	 (21)

3. 	 Measure zk and determine z
k
'  and û

k
;

4. 	 Make a weighted average of the heading (fusion step):
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where C
pθ,  the variance of the error in the heading estimate z

k
' 2( )  and C

mθ,  the variance of the noise 
in measurement z

k
' 2( ) .

5. 	 Update the position by fusing the beacon distance measurement:

a. 	 Calculate the angular position of the mobile robot relative to the beacon:
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where C
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 the variance of the error in the estimation z
k
' 1( )  of the distance to the beacon and C
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the variance of the noise measurement z
k
' 1( ) .

c. 	 Calculate the position estimate:

ˆ

ˆ
ˆ

cos
|

|
|

|q

q

x

y
zk k

k k

b

b
k k

k k1

2
1

( )
( )
















=















+ ( )

Φ� −−

−

( )
( )



















1

1sin |Φ� k k
	 (25)

The algorithm heavily relies on the fusion equation of two estimates, each with its own error 
variance, see e.g. (Gustafsson, 2010). The implementation is rather straightforward, but the difficulty 
in the practical use is to determine the variances C

pθ, , C
mθ,  and C

b p,
, C

b m,
. In fact, only the ratio 

between C
pθ,  and C

mθ,  and between C
b p,

 and C
b m,

 needs to be determined, which involves determining 
the ‘trust’ in the model prediction versus the ‘trust’ in the measurement.

When there are multiple beacons, step 5 above, can be repeated for each beacon. Alternatively, 
the position of the mobile robot can be estimated by solving a triangulation problem using the beacon 
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distance measurements and then fusing this estimate with the predicted position estimation resulting 
from the time update Equation (20).

Extended Kalman Filter
The extended Kalman filter is obtained by applying the Kalman filter to the linearized pose update 
and measurement equation, i.e. the functions f and ′g . The gradients of f and ′g  are given by (note, 
we suppress the dependency on the time index k):
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where:

z x q y q
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Then, the nonlinear model of the differential drive mobile robot can be approximated by the 
following linear model:



International Journal of Artificial Intelligence and Machine Learning
Volume 10 • Issue 1 • January-June 2020

9

q A q B u n

z C q V
k k k k k k

k k k k

+ = + +

= +
1

ˆ ’

’ ’ ’
	 (30)

Assume that the process noise n
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mean independent stochastic noise processes with correlation:
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where δ k( )  the Kronecker delta function, i.e. δ k( ) = 1  and δ k( ) ≠ 0  for k ≠ 0 . Under the 
assumption that n n
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' =  and that qk(3) can be approximated by its estimate q̂
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contribution from the estimation error in the heading qk(3)), we can approximate Q
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/

sin / / / sin /

cos

ˆ ˆ ˆ

ˆ

2

3 2 8 3 4 3 22

b

q q q b

q
k k k

sin

kk k
b q b b3 2 3 2 1 2( )( ) ( ) ( )( ) ( )





















/ sin / /ˆ

	 (32)

and:

R
Q

Qk
b' =
















0

0 θ

	 (33)

where Q
v r,

 and Q
v l,

 are the variances of the measurement noises v v
vr k vl k, ,

 and  on the right and left 
wheel velocities respectively, and are assumed to be zero-mean and independent; moreover Q

b
 and 

Qθ  are the variances of the noise v
b k,

 on the beacon distance measurement and the noise v
kθ,  on the 

heading measurement respectively, also assumed to be zero-mean and independent.
The estimation of the extended Kalman filter is given (see e.g., (Gustafsson, 2010)):

1. 	 Set the initial pose estimate ˆ
|

q
0 0

, the initial pose estimation error covariance matrix P
0 0|

 and the 
initial command vector estimate û

0
;

2. 	 Iterate for k = 1,2,…:
a. 	 Calculate A

k−1
 and B

k−1
 ˆ

|
q
k k− −1 1

 and û
k−1

;
b. 	 Perform the time update of the pose estimate:

ˆ ˆ ˆ,
| |
q f q u
k k k k k− − − −= ( )1 1 1 1

	 (34)

c. 	 Calculate Q
k
'  using Equation (32) using ˆ

|
q
k k−1

 and the pose prediction error covariance:
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P A P A Q
k k k k k k

T
k| |
'

− − − − −= +
1 1 1 1 1

	 (35)

d. 	 Calculate C
k
'  using ˆ

|
q
k k−1

;
e. 	 Measure z

k
 and determine z

k
'  and û

k
;

f. 	 Determine the predicted output:

ˆ ˆ’
|

z g q
k k k
= ( )′

−1
	 (36)

and the innovation:

e z z
k k k
' ' 'ˆ= − 	 (37)

and the Kalman gain:

K P C C P C R
k k k k

T
k k k k

T
k

'
|

' '
|

' '= +( )− −

−

1 1

1
	 (38)

g. 	 Perform a measurement update of the pose estimate:

ˆ ˆ
| |

’ ’q q K e
k k k k k k
= +−1

	 (39)

and the pose estimation error covariance:

P P K C P
k k k k k k k k| |

' '
|

= −− −1 1
	 (40)

Note, that the pose prediction and the output prediction are based on the non-linear model, i.e. 
the functions f and g’, and the linearized model is only used in calculating the pose prediction and 
estimation covariances and the Kalman gain.

Particle Filter
Whereas the extended Kalman filter assumes that the statistics of the pose can be approximated 
by a Gaussian probability density function, this is most likely not the case, especially because of 
the nonlinearity of the odometry equations. The particle filter, see e.g. (Gustafsson, 2010), relaxes 
this assumption, by sampling the probability density function by a number of so called particles 
representing an estimate of the pose, each with a weight, representing the probability of that particle. 
When a new measurement is available, each weight is updated by determining the probability of 
the predicted output of the particle given the actual measurement. Therefore, as in the case of the 
extended Kalman filter, we assume that the noise term v

k
'  is a zero-mean Gaussian distributed 

white noise signal with known covariance R
k
' . Then, the probability density function of the 

measurement noise v
k
'  is given by:
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P
e

R
v k

R

v k

T
v k

′

′

−

( ) =
′

,

,

,

ξ
π

ξ ξ
1

2

2
	 (41)

Then the Particle filter algorithm for estimating the pose is given by:

1. 	 Choose (different) initial values for the N
p

 particles ˆ
|
qi

i

Np

0 0 1
{ }

=
;

2. 	 Iterate for k = 1, 2, …:
a. 	 Perform a time update of the pose estimate particles:

ˆ ˆ ˆ, ,���� ,�
| |
q f q u i N
k k
i

k k
i

k p− − − −= ( ) = …
1 1 1 1

1 	 (42)

b. 	 Measure z
k

 and determine z
k
'  and û

k
;

c. 	 Determine for each particle the predicted output:

ˆ ˆ ,����� ,’�
|

z g g i N
k
i

k k
i

p
= ( ) = …′

−1
1 	 (43)

d. 	 Calculate the weights with the probability density function of the noise on z
k
' :

w
p z z

c
i N

k k
i v k k

i

k
p|

'
' 'ˆ

, , ,=
−( )

= …1 	 (44)

where c p z z
k

i

N

v k k
i

p

= −( )
=
∑

1
'

' 'ˆ  the normalization weight.

e. 	 Calculate the pose estimate by:

ˆ ˆ
| | |
q w q
k k

i

N

k k
i
k k
i

p

=
=

−∑
1

1
	 (45)

f. 	 Take samples ˆ
|
q
k k
i

i

Np{ }
=1

 with replacement from the set ˆ
|
q
k k
i

i

Np

− =
{ }1 1

 where the probability to 

take sample i is w
k k
i
|

;
g. 	 To prevent particle depletion (because of resampling with replacement more and more 

particles may become equal), a small amount of noise is added:

ˆ ˆ
| |
q q
k k
i

k k
i

k− −← +
1 1

ζ 	 (46)

where ζ
k

 is a realization of a zero-mean (Gaussian) random vector with a small covariance, e.g.  I  
where   a small positive number, say  = −10 4 .
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Simulation Experiment
The algorithms of the previous section are compared in a simulation experiment of a differential 
drive robot with baseline b=0.5 m, left and right wheel radii of r r

l r
= = 0 5. m and a time update 

rate of δt s= 0 02. , i.e. a sample frequency of 50 Hz. The differential drive is commanded to drive 
five times along a closed rectangular shaped path of 46.7 m with a constant speed of about 1.6 m/s 
as illustrated in Figure 2. The starting point of the robot is at the origin, i.e. (0,0) m with heading 90o 
with respect to the x-axis. The beacon is at position (1, 7.5) m.

The measurement noises are assumed to be zero-mean, independent and Gaussian distributed 
with constant variances. The variance of the beacon distance measurement noise is Q

b m,
.= 0 001

m2, of the right and left wheel velocity measurement noise is Q Q
v r v l, ,

.= = 0 001 m2/s2 and of the 
heading measurement noise is Q

mθ, .= 0 001  (o)2. In addition to the measurement noise, we add a 
small constant bias on the left wheel velocity measurement of 10-3 m/s, to simulate the effect of a 
systematic error. This bias adds about 14cm tot the measured traveled distance of the left wheel, 
which is about 0.06% of the total traveled distance.

For the heuristic approach, the variances of the prediction errors are set to be 10 times smaller 
than those of the measurement noises, i.e. Q

pθ,  = 0.0001 (o)2 and Q
b p,

 = 0.0001 m2, to give more 
weight to the model based prediction, which turned out to give a smoother estimate. For the extended 
Kalman filter the initial pose estimate covariance matrix is set to P

0 0|
 = 10-5 I3, which is determined 

by a bit of trial and error. The covariances Q
k
'  and R

k
'  are determined as in the Extended Kalman 

Filter subsection above. For the Particle filter N
p

 = 100 particles have been used and the scaling 

Figure 2. Example trajectory containing a rectangular path that is followed five times; the true position and the position estimated 
by the Heuristic algorithm and the extended Kalman filter are behind the estimation of the Particle filter (blue), the drifting in the 
odometry estimate (pink) is clearly visible
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parameter of the spurious noise on the particles to prevent particle depletion was chosen as   = 10-6. 
We have performed N

exp
 = 100 experiment, where each experiment consist of a generation of 

realizations of the measurement noises and sensor signals and a run of the various estimation 
algorithms, including the estimate solely based on odometry (i.e., only left and right wheel velocities 
and the pose update Equations (2) and (3)).

Figure 2 shows an example of the estimated trajectories in one experiment. We observe that the 
estimation algorithms, heuristic algorithm (green), extended Kalman filter (red) and Particle filter 
(blue) are perform relatively well, but the odometry estimate (pink) deviates more and more, as is 
expected since no feedback of measured quantities is being used. The drifting of the odometry is 
caused by the noise in the left and right wheel speed velocities. The small bias of 10-3 m/s on the left 
wheel speed measurement also contributes to the error in the odometry estimate but is not dominant 
here; removing this bias resulted in similar odometry estimation errors.

Figures 3-6 show the median, i.e. 50-percentile, (solid curves) and the 95-percentile (dotted 
curves) of the error in the position estimate, i.e.:

J q q q q
k k k k k
= ( )− ( )( ) + ( )− ( )( )1 1 2 2

2 2
ˆ ˆ 	 (47)

The scale on the y-axis has been chosen such that the difference on the well performing algorithms 
can be compared.

Figure 3 shows that the position estimate achieved by the extended Kalman filter performs the 
best, closely followed by the heuristic algorithm. The estimate obtained by the Particle filter is slightly 
worse, which may be explained by the fact that a limited number of particles N

p
 = 100 has been 

used. The results in Figure 3 are obtained by using feedback from the beacon distance and the heading 
measurements. To study the influence of the contribution of each sensor reading separately we also 
performed measurements running the estimation algorithms only using feedback from the beacon 

Figure 3. Median (solid lines) and 95-percentile (dotted lines) of the error in position estimate obtained by odometry (pink), the 
heuristic algorithm (green), the extended Kalman filter (red) and the Particle filter (blue); the latter three use both beacon distance 
and heading measurements
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distance (green curves in Figure 4-6) and only from the heading (red curves in Figures 4-6). The blue 
curves in Figures 4-6 show the estimation errors achieved when using both sensors (as in Figure 3).

We see that only using the beacon distance and no heading measurement resulted in 
large and diverging estimation errors. Only taking heading into account resulted in less bad, 
but still in a diverging performance for all estimation algorithms. This divergence is caused 
by the small bias on the left wheel velocity measurement. When we removed this bias, 
the estimation based on heading measurements only is stable and only slightly worse than 

Figure 4. Median (solid lines) and 95-percentile (dotted lines) of the error in position estimate obtained by the heuristic algorithm 
using both beacon distance and heading (blue), only beacon distance (green) and only heading (red)

Figure 5. Median (solid lines) and 95-percentile (dotted lines) of the error in position estimate obtained by the extended Kalman 
filter using both beacon distance and heading (blue), only beacon distance (green) and only heading (red)
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achieved by beacon distance and heading. The reason for the drifting is, that feedback of the 
heading can only correct for errors in the orientation but not for errors in the displacement 
caused by the bias. For this reason, in practice where the sensor readings both are distorted 
by orientation and displacement errors, both means of feedback, beacon distance and heading, 
need to be taken into account.

CONCLUSION AND FUTURE WORK

The differential drive pose update equations have first been written in a closed form expression 
that simplifies the model implementation as well determining the linearized model for use 
in the extended Kalman filter, since no checks for equality of the left and right wheel speeds 
need to be taken anymore. It is also shown that the pose estimation problem is in fact an 
unknown input estimation problem, which can be solved e.g. by augmenting the state with 
the unknown input. In this paper, a simplified approach has been taken by first estimating the 
unknown input resulting in a standard estimation problem, with an additional process noise 
term. Under some mild assumptions an expression for the covariance of this additional process 
noise term is derived.

To solve the estimation problem, using measurements from both a distance to a beacon and the 
readings from a heading sensor, various estimation algorithms are compared: a heuristic sensor fusion 
algorithm, the extended Kalman filter and the Particle filter.

The simulation experiments show that the extended Kalman filter performs the best, closely 
followed by the heuristic algorithm. The estimation of the Particle filter algorithm was slightly 
worse. Simulations based on beacon distance only, neglecting the heading measurements, did not 
give satisfactory results. Simulations based on heading sensors only, neglecting the beacon distance 
measurement, showed not to be able to account for systematic errors such as a small bias on one of 
the wheel speed velocity measurements because it loses information about the displacement error.

Future work is on (automatic) calibration of the parameters in the algorithms and experimental 
validation on a real differential drive mobile robot.

Figure 6. Median (solid lines) and 95-percentile (dotted lines) of the error in position estimate obtained by the Particle filter using 
both beacon distance and heading (blue), only beacon distance (green) and only heading (red)
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