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ABSTRACT

In data mining the task of extracting classification rules from large data is an important task and is 
gaining considerable attention. This article presents a novel ant miner for classification rule mining. 
The ant miner is inspired by researches on the behaviour of real ant colonies, simulated annealing, and 
some data mining concepts as well as principles. This paper presents a Pittsburgh style approach for 
single objective classification rule mining. The algorithm is tested on a few benchmark datasets drawn 
from UCI repository. The experimental outcomes confirm that ant miner-HPB (Hybrid Pittsburgh 
Style Classification) is significantly better than ant-miner-PB (Pittsburgh Style Classification).
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1. INTRODUCTION

Learning classification rules from instances have been a subject of intense study in 
data mining (Han & Kamber, 2006; Dehuri, Ghosh & Ghosh, 2008; Panda, Dehuri, & 
Patra, 2015). Based on various theories and techniques, many different algorithms have 
been proposed to generate classification rules (Dehuri & Mall, 2006; Dehuri, et al., 
2008, & Kalia, et al., 2018). However, there are three common and important factors for 
classification rule learning: higher predictive accuracy, smaller rule sets, and shorter 
running time (Freitas, 2002;). More precisely, higher predictive accuracy means more 
efficient application; smaller rule sets enable better understanding for the user, and shorter 
running time means that the algorithm can be applied to online systems and address the 
scalability issue (Kalia, et al., 2018).

Ant miner is an application for extracting classification rules from data by simulating the 
behaviours of real ant colonies (Parpinelli, Lopes, & Freitas, 2001). Aiming at the insufficiencies 
of ant-miner, researchers have proposed some improvement strategies resulting new versions 
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of ant-miner including new heuristic function formula, a new pheromone updating method, 
and a state transition rule, which can get higher accuracy rate (Otero, Freitas & Johnson, 2008; 
Liu, Abbass, & McKay, 2004; Parpinelli, Lopes, & Freitas, 2002).A comparative analysis 
and survey of ant colony optimization based rule miner can be obtained in (Ali & Shahzad, 
2017). On the other hand, in rule-based classifier, many objectives are involved and regain 
simultaneous optimization, for example, minimization of the number of rules or length of 
rule, maximization of classification accuracy of the rule, maximization of interestingness, 
etc (Dehuri, Ghosh, & Ghosh, 2008). In lieu of these criterions, classification rule mining 
problem is not restricted as single objective problem. It is also an attractive field of research. 
For many objective optimization researches, although we realize this classification rule mining 
is a multi-objective optimization problem but by giving higher priority to the objective of 
classification accuracy, a novel algorithm has been developed by us. We explore the search 
space by giving proper attention to both good and bad solution with certain probabilities (this 
concept is derived from simulated annealing (Aarts & Korst, 1989; Laarhoven & Aarts, 1987). 
However, overall rule discovery process is motivated by ant colony optimization method 
(Mahapatra & Patnaik, 2018; Angus & Woodward, 2009). The combined approach of both 
stochastic approaches drives us to uncover hidden pattern very effectively.

2. PRELIMINARIES

In this section, we discuss two basic algorithmic paradigms like ant colony optimization and simulated 
annealing in following Subsections.

3. ANT COLONY OPTIMIZATION

Since the early 1990‘s, several collective behavior (like social insects and bird flocking) inspired 
algorithms have been proposed and applied in many optimization problems with inherent 
intractability (Abraham, Grosan, & Ramos, 2006; Bonabeau, Dorigo, & Theraulaz, 1999; 
Tao, 2018). Ant Colony Optimization (ACO) (Blum, 2005; Dorigo & Stutzle, 2006; Dorigo, 
Maniezzo, & Colorni, 1996; Bonabeau, Dorigo & Theraulaz, 1999) is one of the most popular 
algorithms of them and was introduced around 1990. Ants are social insects, living in colonies 
and exhibit an effective collective behavior. Although each ant is relatively a simple insect with 
limited individual abilities, a swarm of ants has the ability to find the shortest path from their 
nest to food. Further, it was discovered that most of the communication amongst individual 
ants is based on the use of a chemical, called pheromone that is dropped on the ground. As ants 
walk from a food source to the nest, pheromone is deposited on the ground, creating in this way 
a pheromone trail on the path used. Shorter paths will be traversed faster and by consequence, 
will have stronger pheromone concentration than longer paths over a given period of time. The 
more pheromone path contains, the more attractive it becomes to be followed by other ants. 
Hence, as time goes by, more and more ants will prefer the shorter path, which will have more 
and more pheromone. At the end, almost all ants will be following a single path which usually 
will represent the shortest path between the food source and the nest.

An ant probabilistically chooses a path to follow based on heuristic information 
and the amount of pheromone deposited by previous ants. The inter-active process of 
building candidate solutions and updating pheromone values allows an ACO algorithm 
to converge to optimal or near optimal solutions (Liu, Zhang, & Yu, 2019; Al-Behadili, 
2018). Algorithm 1 presents a high-level pseudo code of a basic ACO procedure, 
comprising four main steps: Initialization (), Construct-Ant-Solution (), Local-Search 
(), and Update-Pheromone ().
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Algorithm 1. High-level pseudo code of a basic ACO algorithm

BEGIN 
INITIALIZATION(); 
WHILE (Termination condition not met) DO 
BEGIN 
Construct-Ant-Solutions(); 
          Apply Local-Search(); // optional 
Update-Pheromones(); 
END 
END WHILE 
RETURN Best Solution; 
END

3.1. Construction of Ant Solution ():
Candidate solutions are created by simulating the movement of artificial ants on the construction 
graph. Each ant incrementally creates a candidate solution by moving through neighbor vertices of 
the construction graph G. Hence, a candidate solution is represented by the list of visited vertices, 
which corresponds to a path in the construction graph. The vertices to be visited are chosen in a 
stochastic decision process, where the probability of choosing a particular neighbor vertex depends 
on both the problem dependent heuristic information η  and the amount of pheromone τ  associated 
with the neighbor vertex ( η τ

j j
 and , respectively) or the edge leading to the neighbor vertex (

η τ
ij ij
 and , respectively). Given an ant currently located at vertex v

i
, the probability of selecting a 

neighbor vertex v
j
 is given by:

P j
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j j

j j j

i
i
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where τ
j
 and η

j
 are the pheromone value and heuristic information associated with the j th  vertex, 

respectively, 
i

 is the feasible neighborhood of the ant located at vertex v
i
 (the set of vertices that 

the ant can visit from vertex v
i
), α  and β  are (user defined) parameters used to control the influence 

of the pheromone and heuristic information, respectively.

4. UPDATE PHEROMONE

After building the candidate solutions of iteration, the updating of pheromone trails in the 
construction of graph is usually accomplished in two steps, namely reinforcement and evaporation. 
The reinforcement step consists of increasing the amount of pheromone of every vertex (or edge, in 
the case that pheromone is associated with edges of the construction of graph) used in a candidates 
solution and it is usually only applied to the best candidate solution according to a problem dependent 
quality measure Q of the current iteration. Assuming that pheromone values are associated with 
vertices of the construction graph, a simple reinforcement rule is given by:

τ τ
i i

Q CS i CS= + ( ) ∀ ∈∆ ,    	 (2)
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where ∆Q (CS) is the amount of pheromone proportional to the quality of the candidate solution CS 
to be deposited. τ

i
 is the pheromone value associated with the ith  vertex of the candidate solution 

CS. The evaporation step consists of lowering the pheromone value of every vertex or edge simulating 
the natural phenomenon of pheromone evaporation in order to avoid a quick convergence of all ants 
toward a sub-optimal solution. Assuming that pheromone values are associated with vertices, a simple 
evaporation rule is given by:

τ ρ τ
i i

i G= −( ) ⋅ ∀ ∈1 ,    	 (3)

where ρ ∈ 

0 1,  is a parameter representing the evaporation factor, τ

i
 is the pheromone value 

associated with the ith  vertex of the construction graph G.

5. SIMULATED ANNEALING

The simulated annealing (Aarts & Korst, 1989; Hwang, 1988) procedure simulates this process of 
slow cooling of molten metal to achieve the minimum function value in a minimization problem. 
The cooling phenomenon is simulated by controlling a temperature-like parameter introduced with 
the concept of the Boltzmann probability distribution. According to the Boltzmann ∆E  probability 
distribution, a system in thermal equilibrium at a temperature T has its energy distributed 

probabilistically according to P E E
kT( ) = −( )exp ∆ , where k is the Boltzmann constant. This 

expression suggests that the system at a high temperature has almost uniform probability of being at 
any energy state, but at a low temperature it has a small probability of being at a high-energy state. 
Therefore, by controlling the temperature T and assuming that the search process follows the Boltzmann 
probability distribution, the convergence of an algorithm can be controlled. Metropolis, et al. in 1953 
(Laarhoven & Aarts, 1987) suggested a way to implement the Boltzmann probability distribution in 
simulated thermodynamic systems. The same can also be used in the function minimization context. 

Let us say, at any instance the current point is x t( )  and the value at that point is E t f x
t( ) = ( )( ) . 

Using the metropolis algorithm, we can say that the probability of the next point being at x t−( )1  
depends on the difference in the function values at these two points or on ∆E E t E t= +( )− ( )1  
and is calculated using the Boltzmann probability distribution:

P E t E
kT

+( )( ) = −( )





1 1min , exp ∆ 	 (4)

If ∆E ≤ 0 , this probability is one and the point x t−( )1  is always accepted. In the function 
minimization context, this makes sense because if the function value at x t−( )1  is better than that at 
x
t( ) , the point x t−( )1  must be accepted. The interesting situation happens when, ∆E > 0  which 

implies that the function value at x t−( )1  is worse than that at x t( ) . According to many traditional 
algorithms the point x t−( )1 must not be chosen in this situation. But according to the Metropolis 
algorithm, there is some finite probability of selecting the point x t−( )1  even though it is worse than 
the point x t( ) . However, this probability is not the same in all situations. This probability depends 
on relative magnitude of ∆E  & T values. If the parameter T is large, this probability is more or 
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less high for points with largely disparate function values. Thus, any point is almost acceptable for 
a large value of T. On the other hand, if the parameter T is small, this probability of accepting an 
arbitrary point is small. Thus, for small values of T, the points with only small deviation in function 
value are accepted.

Simulated annealing is a point-by-point method. The algorithm begins with an initial point and 
a high temperature T. A second point is created at random in the vicinity of the initial point and the 
difference in the function values ∆E( )  at these two points is calculated. If the second point has a 
smaller function value, the point is accepted: otherwise the point is accepted with a probability 

exp −( )∆E
T

. This completes an iteration of the simulated annealing procedure. In the next 

generation, another point is created at random in the neighborhood of the current point and the 
Metropolis algorithm is used to accept and reject the point. In order to simulate the thermal equilibrium 
at every temperature, a number of points (n) are usually tested at a particular temperature, before 
reducing the temperature. The algorithm is terminated when a sufficiently small temperature is 
obtained or a small enough change in function values is found.

Algorithm 2. Canonical algorithm of simulated annealing

1. Choose an initial point x
0( ), a termination criterion ε .

   Set T a sufficiently high value, number of iteration to be  
   performed at a particular temperature n, and set t=0. 

2. Calculate a neighboring point x N x
t t−( ) ( )= ( )1

, Usually, a random 

   point in the neighborhood is created. 

3. If E E x E x set t t
t t

  ∆ = ( )− ( ) < = +−( ) ( )1
0 1,

   Else 
   Create A random number (r) in the range (0,1). 

                     If r E
T
set t t  ≤ −( ) = +exp ∆ 1

   Else go to step 2. 

4. If x x and T is small terminate
t t−( ) ( )− <1 ε     ,

   else if t mod n then lower T according to cooling sche( ) = 0 ddule .

                         go to step2;
   Else go to step 2.

The initial temperature (T) and the number of iteration (n) performed at a particular temperature 
are two important parameters which governs successful working of the simulated annealing procedure. 
If a large initial T is chosen, it takes a number of iterations for convergence. On the other hand, if a 
small initial T is chosen the search is not adequate to thoroughly investigate the search space before 
converging to the true optimum. A large value of n is recommended in order to achieve quasi-
equilibrium state at each temperature, but the computation time is more. Unfortunately, there are no 
unique values of the initial temperature and that work for every problem. However, an estimate of the 
initial temperature can be obtained by calculating the average of the function values at a number of 
random points in the search space. A suitable value of n can be chosen (usually between 20 to100) 
depending on the available computing resource and the solution time. Nevertheless, the choice of 
initial temperature and subsequent cooling schedule still remain an art and usually require some 
trial-and-error efforts.
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6. ANT MINER-PB (ANT MINER- PITTSBURGH STYLE)

In the Michigan style approach, each ant corresponds to a rule and a set of rules is represented by the 
colony of ants, using some mechanism to ensure that different rules cover different regions of the data 
space. Hence, a single run of a procedure following a Michigan approach discovers a complete list 
of rules. Similarly, in the Pittsburgh approach, each run of the procedure discovers a complete list of 
rules (the best list of rules produced over all iterations). One of the main differences between IRL/
Michigan and Pittsburgh approaches is that in the latter a complete list of rules, which constitutes 
an ant, is evaluated instead of a single rule, in order to guide the discovery process. As discussed in 
(Freitas, 2002) evaluating the quality of a rule individually, instead of the quality of a list of rules as 
a whole, has difficulty with the problem of rule interaction i.e., the list of best rules is not necessarily 
the best list of rules (Otero et al., 2012).

The classification rules discovered through Pittsburgh approach based on the ant miner is presented 
in the following algorithm. This algorithm to some extent overcomes the rule interaction problem of 
ant miner-MC (Michigan Approach).

Algorithm 3. Ant miner algorithm of Pittsburgh style (Ant Miner-PB)

Procedure Ant Miner Pittsburgh Style− − − − ()
Input TrainingSet: ;
Output List of Rules:

–− ;
ComputationalSteps :
�INTIALIZATION OF PHEROMONES− − () ;

GB LIST− ← ∅ ;
t← 0;
WHILE t maximum IterationAndNot Stagnation DO<( )− −

IB LIST− ← ∅ ;

Fori toSize COLONY DO← ( )1

M size trainingSet← ( ) ;
i LIST− ← ∅ ;

�WHILE M Maximum uncovered DO>( )−

COMPUTATION OF HEURISTIC INFORMATION TrainingSet− − − ( ) ;
RULE CREATERULE TrainingSet← ( );
PRUNE RULE( );
TrainingSet TrainingSet Covered Rule TrainingSet← − ( ), ;

i LIST i LIST RULE− −← + ;
ENDWHILE

IF Predective Accuracy i LIST Predective Accuracy IB LIST− − − −( )( )> (( )( )THEN
IB LIST i LIST− −← ;
ENDIF
ENDFOR
Update Pheromones IB RULE− −( );
IF Predective Accuracy IB LIST Predective Accuracy GB LIS− − − −( )( )> TT THEN( )( )
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GB LIST IB LIST− −← ;
ENDIF
t t= +1;
ENDWHILE
RETURN GB LIST−( );

Algorithm 3 presents the high-level pseudo code of the Pittsburgh strategy. The strategy works 
as follows. An ant in the colony (corresponding to an iteration of the for loop) starts with an empty 
list of rules and adds one rule at a time to that list while the number of uncovered training examples 
is greater than a user-specified maximum value. After a rule is created and pruned, the training 
examples covered by the rule are removed and the rule is added to the current list of rules. Note that 
the heuristic information is recalculated at each iteration of the list creation process WHILE loop in 
order to reflect the potential changes in the predictive power of the terms due to the removal of training 
examples covered by previous rules. When an ant finishes the list creation process, the iteration best 
list is updated if the quality of the newly created list is greater than the quality of the iteration best 
list. After all ants create a candidate list of rules, pheromone values are updated using the iteration 
best list of rules and the global-best list of rules is updated, if the quality of the iteration best list is 
greater than the quality of the global-best list.

In order to use pheromone to create multiple rules covering different set of training examples, 
the pheromone matrix is extended to include a tour identification, which corresponds to the number 
of the rule being created (e.g., 1 for the first rule, 2 for the second rule, and so forth). Each entry in 
the pheromone matrix corresponding to an edge of the construction graph is represented not just by 
a pair (v v

i j
, ) where v

i
 and v

j
 correspond to the vertices connected by e

ij
 but rather it is represented 

by a triplet (tour, v v
i j
, ). This way, an ant will use the pheromone entries corresponding to the number 

of the rule (tour) being created during the rule construction process. The probability of an ant to 
follow the edge leading to a vertex  v

j
 when creating the rule t and located at vertex v

i
 is given by:

P
v

t v v V

k

F

t v v V

j

i j j

Vi

i k k

=
( )

= ( )∑
�

*

*

, ,

, ,

τ η

τ η
1

	 (5)

where τ
t v vi j, ,( )  is the amount of pheromone associated with the entry t v v

i j
, ,( )  in the pheromone 

matrix, η
Vk

 is the heuristic information associated with vertex v
k

 and F
Vi

 is the set of neighbour 

vertices of vertex v
i
.

The pheromone update also takes into account the tour identification and the update procedure 
is accomplished in two steps. Firstly, pheromone evaporation is simulated by decreasing the amount 
of pheromone of each entry by a user-defined factor. Secondly, the amount of pheromone of the 
entries used in the iteration best list of rules is increased based on the quality of the list of rules, 
which corresponds to its predictive accuracy measured on the training set. The pheromone update 
rule is given by:

τ
ρ τ

ρ τt v v

t v v i j

t v v
i j

i j

i j

if t v v IB LIST

Q, ,

, ,

, ,

. , , ,

.( )
( ) −

( )
=

( ) ∉
+ IIB LIST if t v v IB LIST

i j− −( ) ( ) ∈








, , ,
	 (6)
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where ρ  is the evaporation factor, τ
t v vi j, ,( )  is the amount of pheromone associated with the entry 

t v v
i j

, , ,( )  t is the tour identification (i.e., the number of rule where the edge between vertices v
i
 and 

v
j
 was used), v

i
 is the start vertex of the edge and v

j
 is the end vertex of the edge and Q IB LIST−( )  

is the quality of the iteration-best list of rules, measured as the predictive accuracy (number of correct 
predictions divided by the total number of predictions) in the training set. The values given by Equation 
(6) are limited to the interval τ τ

MIN MAX
, , following the same approach as the MAX−MIN Ant System 

(MMAS).MMAS imposes explicit limits τ
MIN

 and τ
MAX

 on the minimum and maximum pheromone 
values to constrain all pheromone values τ

t v vi j, ,( )  to the range τ τ τ
MIN t v v MAX

i j

≤ ≤( ), ,
. These limits 

are dynamically updated each time a new best solution is found. Additionally, the τ τ
MIN MAX

 and  
values are also used to determine the stagnation of the search. When all edges followed by the ant 
that created the iteration best list of rules are associated with τ

MAX
 and the remaining edges are 

associated with τ
MIN

, the search has become stagnant and the algorithm stops. The rule construction 
process, pruning procedure, and heuristic information of Ant Miner-PB are based on Ant Miner-MC. 
Ant Miner-PB algorithms like Ant Miner-MC algorithm can cope with both nominal and continuous 
attributes, unlike the original Ant-Miner algorithm, which can cope with nominal attributes only.

An important characteristic of the sequential covering strategy is that there is no pre-defined 
number of rules required to create a candidate list of rules and ants have the flexibility of creating 
lists of different lengths. The number of rules that an ant creates depends on the available training 
examples at each iteration of the list creation process (inner WHILE loop in Algorithm 3), which varies 
according to examples covered by the previous rules created by the ant. The use of a different set of 
pheromone values for each rule they are creating indirectly encodes the order (sequence) that ants 
create the rules, which represents the interaction between them. This highlights the main difference 
from algorithm based on Michigan approach. The aim of the algorithm is to converge to the best list 
of rules, instead of converging to the list of best rules.

7. OUR PROPOSED WORK BASED ON PITTSBURGH APPROACH

This work overcomes the problem of rule interaction (i.e., the outcome of a rule affects the rules that 
can be discovered subsequently since the search space is modified due to the removal of instances 
covered by previous rules) and reduces the local optimality by hybridizing ant miner based on 
Pittsburgh style approach (Ant Miner-HPB) and simulated annealing. A pictorial representation in 
a broader aspect of our approach is given in Figure 1. The high-level description of this approach is 
given in Algorithm 4.

Algorithm 4. Hybridized Ant Miner based on Pittsburgh approach (Ant Miner-HPB)

Procedure AntMiner Pittsburgh SAStyle HPB− − − −. . ()
Input TrainingSet: ;
Output ListofRules: ;
ComputationalSteps :
INTIALIZATION OF PHEROMONES− − () ;

COMPUTATION OF HEURISTIC INFORMATION− − − () ;

K K LIST PRUNE CRETERULE TrainingSet= = ( )( )−1; ;

GB LIST K LIST− −← ;
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�T T
MAX

= ;

WHILE T T ANDNOTSTAGNATION DO
MIN

≥( )
IB LIST− ← ∅ ;

FORi toSize COLONY DO← ( )1

M Size TrainingSet← ( );
i LIST− ← ∅;

WHILE M Maximum Uncovered DO>( )−

COMPUTATION OF HEURISTIC INFORMATION TrainingSet− − − ( ) ;
RULE PRUNE CRETERULE TrainingSet← ( )( );
TrainingSet TrainingSet Covered RULE TrainingSet← − ( ), ;

i LIST i LIST RULE− −← +
ENDWHILE

Figure 1. Flow diagram of Ant-Miner-HPB
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IF Predective Accuracy i LIST Predective Accuracy IB RULE− − − −( )( )> (( )( )
IB LIST i LIST− −← ;
ENDIF
ENDFOR
Update Pheromones IB LIST− −( );
IF Predective Accuracy GB LIST Predective Accuracy IB LIS− − − −( )( )> TT( )( )
IF Predective Accuracy IB LIST Predective Accuracy K LIST− − − −( )( )> (( )( )
K LIST IB LIST+ ←− −1
ELSE
GenerateaRandomUniformnumberU

K
;

IFU
Predective Accuracy IB LIST Predective Accurac

K
< −

( )( )−− − −
exp

yy K LIST

T
−( )( )











K LIST IB LIST+ ←− −1  ;
ELSE
K LIST K LIST+ ←− −1  ;
ENDIF
ENDIF
ELSE
GB LIST IB LIST− −← ;
ENDIF
T T= α * ;
K K← +1;
ENDWHILE
RETURN GB LIST−( );

The sub- routine of PRUNE()  and CREATERULE TrainingSet( )  are described as follows:

PRUNE LIST( )
LIST CREATERULE TrainingSet← ( ) ;
PRUNE LIST( ) ;
RETURN 

CREATERULE TrainingSet( )
list←∅ ;
WHILE M Maximum Uncovered DO>( )−

�����RULE PRUNE CREATERULE TrainingSet← ( )( );
�����TrainingSet TrainingSet Covered RULE �TrainingSet← − ( ), ;

������LIST LIST RULE= + ;
ENDWHILE
RETURNLIST ;



International Journal of Artificial Intelligence and Machine Learning
Volume 10 • Issue 1 • January-June 2020

55

8. EXPERIMENTAL WORK

In this Section, we provide the description of the datasets, environment, parameter setup, and finally 
presents the results obtained from our proposed method.

9. DATASET DESCRIPTION

To validate the proposed method, we have used six public domain datasets retrieved from the University 
of California at Irvine (UCI) machine learning repository. The datasets involve binary (two class 
values) and multiclass (more than two class values) classification problems, with both nominal and 
continuous predictor attributes. Table 1 presents a summary of the datasets used in the experiment. The 
first column of this table gives the name of datasets, while the other columns indicate, respectively, 
the number of cases, the number of categorical attributes, the number of continuous attributes, and 
the number of classes of the dataset.

The motivation of considering the aforesaid dataset is to compare our proposed method with the 
works presented in (Parpinelli, Lopes & Freitas, 2002).

10. PERFORMANCE METRIC AND PARAMETER SET UP

We use predictive accuracy as a main performance metric. It is defined as the percentage of testing 
samples correctly classified by the classifier. This is a popular performance metric for general 
comparison between classification algorithms and has been used in all ant miner approaches. The 
experiments are performed using a standard 10 fold cross validation procedure. In this procedure, 
the test cases are divided into 10 fold (i.e., 10 equally sized mutually exclusive subsets). Each of the 
subset is used once for testing while the other nine are used for training. The results of the 10 runs 
are then averaged and this average is reported as the final result along with standard deviation. The 
parameters of our approach Ant Miner-HPB like Ant Miner-PB are distinctly setting up as follows.

11. PARAMETERS OF ANT MINER-HPB

The following fixed parameter values were used for all experimental runs in the Pittsburgh approach:

Max iteration− ←� Maximum Temperature T
max

= 1500	

Table 1. Description of datasets

Dataset #Cases #Categorical 
Attribute

#Continuous 
Attribute Classes

Ljubljana breast 
cancer 286 9 - 2

Wisconsin breast 
cancer 699 - 9 2

Tic-tac-toe 958 9 - 2

Dermatology 366 33 1 6

Hepatitis 155 13 6 2

Cleve and heart 
disease 303 8 5 5
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Size Colony− ← The total number of ants= 5	

Evaporation factor
–

�←Maximum and Minimum pheromone value= 90	

Min cases per rule− − − ←Minimum number of cases per rule = 10	

Max uncovered cases− − ←Maximum number of uncovered cases in the training set=10	

Since the values of minimum number of cases and maximum uncovered parameters are related, 
i.e., the maximum uncovered should be at least the same as the minimum number of cases. We have 
used the same value for both, specified by the minimum number of cases parameter. The value of α  
is set as 0.998.

12. RESULTS AND ANALYSIS

We have evaluated the performance of Ant Miner-HPB and compare it with Ant Miner-PB. All the 
results of the comparison were obtained using an Intel PC with 1 GB of main memory. Ant Miner-HPB 
was developed in MATLAB6.5 version and it took about a little more processing time as compared 
to Ant Miner-PB (on the order of seconds for each dataset) to obtain the results.

The comparison was carried out across two criteria, namely the predictive accuracy of the 
discovered rule lists and their simplicity. Predictive accuracy was measured by a well-known 10-fold 
cross-validation procedure. The predictive accuracies (on the test set) of the 10 runs are then averaged 
and reported as the predictive accuracy of the discovered rule list.

The results comparing the predictive accuracy of Ant Miner-HPB and Ant Miner-PB are reported 
in Table 2. The numbers right after the “±” symbol is the standard deviations of the corresponding 
predictive accuracies rates. As shown in this Table 2, Ant Miner-HPB discovered rules with a better 
predictive accuracy than Ant Miner-PB in all data sets, Ant Miner-HPB was significantly more 
accurate than the Ant Miner-PB, that is, the corresponding predictive accuracy intervals (taking into 
account the standard deviations) do not overlap.

Similarly results concerning the simplicity of the discovered rule list, measured, as usual in the 
literature, by the number of discovered rules and the average number of terms (conditions) per rule. 
The results comparing the simplicity of the rule lists discovered by Ant Miner-HPB and Ant Miner-
PB are reported in Table 3. An important observation is that for Ljubljana breast cancer, Wisconsin 
breast cancer and Hepatitis datasets, the rule list discovered by Ant Miner-PB was simpler then rule 
list discovered by Ant Miner-HPB. In the tic-tac-toe, Dermatology and Cleve and heart disease data 
set, Ant Miner-HPB discovered a rule list on the order of 2 times lesser than Ant Miner PB.

Table 2. Average predictive accuracy of Ant Miner-HPB in %, measured by 10-fold cross-validation

Data Set Ant Miner-PB Ant Miner-HPB

Ljubljana breast cancer 72.32 ± 0.31 78.16±0.87

Wisconsin breast cancer 94.29 ± 0.16 97.71±1.87

Tic-tac-toe 74.89±0.27 98.22±1.83

Dermatology 92.46 ± 0.31 95.21±3.45

Hepatitis 66.72 ± 0.40 95.78±5.26

Cleve and heart disease 55.50 ± 0.37 59.38±2.16
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Taking into account both the predictive accuracy and rule list simplicity criteria, the results of 
our experiments can be summarized as follows. Concerning classification accuracy, Ant Miner-HPB 
obtained results are significantly better than Ant Miner-PB in all of the six data sets. Concerning 
the simplicity of discovered rules, overall Ant Miner-HPB discovered rule lists relatively simpler 
(smaller) than the rule lists discovered by Ant Miner-PB. This seems a good trade-off, since in many 
data mining applications the simplicity of a rule list/set tends to be even more important than its 
predictive accuracy.

13. CONCLUSION

In this paper, we present a novel variant of ACO based classification algorithm, which is based on 
Pittsburgh approach. The novel algorithm is inspired and conceived by considering the best attributes 
of ACO based classification rule mining and simulated annealing (SA). Incorporating SA in ACO 
based classification is straight forward. Four ingredients are needed: i) a concise description of a 
configuration of the system; ii) a random generator of moves on rearrangements of the elements in 
a configuration; iii) a quantitative objective function containing the trade-offs that have to be made; 
and iv) an annealing schedule of the temperature. The annealing schedule may be developed by trial 
and error for a given problem, or may consist of just warming the system until it is obviously melted, 
then cooling in slow stages until diffusion of the components ceases. Inventing the most effective sets 
of moves and deciding which factors to incorporate into the objective function require insight into 
problem being solved and may not be obvious. However, existing methods of iterative improvement 
can provide natural elements in which to base a simulated annealing algorithm. The experimental 
results indicated that our algorithms have potential to compete with other state-of-art contemporary 
classification algorithms. The main advantage of our approach was high accuracy combined with 
comprehensibility of the discovered rule sets.

Table 3. Average number of terms (simplicity) in the discovered list of Ant Miner-HPB measured by 10-fold cross-validation

Data Set Ant Miner-PB Ant Miner-HPB

Ljubljana breast cancer 19.15 ± 0.40 21.28±0.38

Wisconsin breast cancer 8.55 ± 0.12 11.38±0.68

Tic-tac-toe 17.23±0.08 7.68±0.79

Dermatology 44.47 ± 0.63 21.27±0.03

Hepatitis 11.78 ± 0.08 11.88±0.08

Cleve and heart disease 27.65 ± 0.58 14.37±0.01
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