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ABSTRACT

In challenging environments, opportunistic networks can provide limited communication features in a 
delay tolerant manner. It is extremely difficult to transmit large data like videos in such environments, 
as delay may be hours and part of the information may be lost. This article proposes a novel system 
that uses partial information from prior communication to estimate the network congestion and delay. 
The video is compressed and packetized using scalable video coding (SVC). Extensions to Spray-
and-Wait routing protocols are analyzed to ensure better delivery video quality and lower wastage. 
Through simulation, including real-world traces, performance of the proposed solutions under multiple 
scenarios is evaluated. Experimental results show that adaptive control reduces overall delay and 
minimizes wastage while improving the quality of video at the receiver. Adaptive SVC transmissions 
demonstrate almost three times increase in decoded content, as compared to non-SVC transmission.
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1. INTRODUCTION

Wireless ad-hoc networks and mobile ad-hoc networks (MANET) can have network partitions, 
because of node mobility. Delay and disruption tolerant networks (DTN) are a sub-field of MANET, 
where the end-to-end connectivity does not exist on a regular basis (Fall, 2003). While mobility broke 
MANET, the contacts between mobile nodes completes the network for DTN over time (which can 
be in the order of hours or even days in some cases). Instead of store-and-forward techniques, these 
networks rely on store-carry-forward. Such a communication approach may also use multiple replicas 
of the content to ensure better delivery rates and lower delays. This replication can lead to resource 
exhaustion (e.g., bandwidth, storage or power in case of portable devices). DTN based routing has 
been widely researched (Cao & Sun, 2012), with applications in defense, disaster management 
scenario, inter-planetary networks, etc.

Similar to the evolution of networks, video communication technology has also progressed. 
Early digital video networks would typically broadcast the video, for prior published content and 
one-way broadcast of live events. Digital TV offerings (including digital cable TV, Satellite-based TV 
services) are early examples of this. Subsequently, as internet penetration increased, other platforms 
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like Netflix, YouTube, etc., started providing content individually to each user (i.e., unicast). Parallel to 
this, real-time video communication also evolved, initially in one-to-one mode and later in conference 
mode supporting multiple sources. Examples of such communication platforms are WebEx, Skype, 
FaceTime, WhatsApp, Duo, etc. In all these scenarios, end users view the video on heterogeneous 
platforms connected over a variety of networks. Since the display resolution, buffering and decoding 
capabilities may vary, the original video may need to be adapted for different receivers. SVC (Unanue 
et al., 2011) is one of the approaches, which uses the multi-layer encoding of content, to satisfy the 
needs of the different network and device capabilities. The base layer (BL) has the lowest demands 
on resources while providing a minimal quality. Addition enhancement layers (EL) help to improve 
the quality of the decoded video, on devices that have better resources like network bandwidth, screen 
resolution, processing power, etc.

There is a significant increase in opportunistic capture of content in multiple domains like law 
enforcement, disaster response, transport, defense, wildlife, agriculture, etc. Here the communication 
delay may be of the order of minutes to hours. Affordable smartphones and other portable devices 
with integrated camera have helped increase this trend. Trono et al. (2015) and Shibata and Uchida 
(2017) have explored multimedia applications, which are both delay and loss tolerant for disaster 
management scenarios.

In opportunistic networks, the destination may only receive parts of multimedia content. Further, 
the acknowledgments convey information only about that part of the network, over which the 
successful delivery of content and acknowledgment has happened. Such path limitations mean that 
both the source and the destination can only get a partial view of the network. This partial view of the 
network is used to adapt subsequent transmission from the sender, to maintain video quality without 
overloading the network. The algorithm adapts three aspects for subsequent transmission – SVC 
operating points (i.e., number of SVC layers transmitted by source); replication count for different 
layers; and time-to-live (TTL) for different layers. Savings from the adaptation can be redistributed, 
by increasing the copy count of the transmitted layers. The adaptation is purely on the end host and 
does not rely on a modification of the routing protocols. This paper uses Spray-and-Wait (SNW) as 
the routing protocol (Spyropoulos, Psounis, & Raghavendra, 2005).

The proposed system is named SORT (SNW based adaptive video transmission using operating 
point, replication count and time-to-live). For scenarios where it is feasible to have media-aware 
network elements (MANE) (Schierl et al., 2007), authors implemented layer awareness to SNW 
routing for all nodes and analyzed its performance.

This work extends authors prior work (Thakur, 2020). The additional contributions of this paper are:

1. 	 Experiments and analysis of overheads and buffer occupancy;
2. 	 Explore the impact of extensions to SNW routing protocols on SVC media flow;
3. 	 Analyse the impact of different scenarios (including mobility pattern, load and node density) on 

SVC media flows.

This work can be applied to multiple domains that may need opportunistic video capture. For 
large transitionary gatherings, the opportunistically collected video provides excellent input for trend 
analysis, including posterior monitoring and investigations (Trono, 2015). Monitoring of events 
in remote locations (e.g., elections or exams in sparsely populated areas) is another application 
where such an approach, backed with tamper-resistant local storage for few hours can provide an 
efficient enhancement for ensuring that no malpractices take place. This work can also be coupled 
with energy saving approaches like those proposed by Celebi et al. (2019), for infrastructure based 
dense 5G solutions.

The structure of rest of the document is as follows: Section 2 is an overview of scalable 
video compressions and prior work done regarding the transmission of video over delay tolerant 
networks. Section 3 presents the details of the proposed systems. Section 4 covers the experimental 
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setup including the aspects of different videos and simulation scenarios. Section 5 presents the 
experimental results and analysis of the same. Section 6 provides the conclusion and discusses 
the scope for further work.

2. PRIOR WORK AND MOTIVATION

Video communication over opportunistic delay tolerant networks is an active area of research. 
Additional motivation for this work comes from Ad-Hoc networks (Lindeberg et al., 2011) and peer-to-
peer networks (Abboud et al., 2011). Following sections cover a brief overview of a) video compression 
including scalable video and related technologies; b) video packaging and communication; c) video 
transmission over DTN and finally d) motivation for SVC on DTN.

2.1. Video Compression and Encoding
The raw video takes tremendous bandwidth and hence needs to be compressed or encoded. The choice 
of encoder provides a trade-off between three things: the size of compressed content, computation 
and storage complexity during encoding/decoding and the distortion in the video post-decoding. As 
computation and storage capabilities have increased, the newer encoding schemes use algorithms, 
which have a higher demand for computation or storage. Video/visual coding experts’ group of ITU-T 
developed the early digital video compression standards and published them as H-26X series with 
the primary aim of real-time video communication. The moving picture experts group developed 
compression schemes for pre-recorded content. Subsequently, the two teams have combined and 
developed some of the encoding standards together. Presently high-efficiency video coding (HEVC 
or H-265) is among the state-of-the-art video compression standards published by this combined 
team. The earlier encoding standard is called advanced video coding (AVC/H264).

For heterogeneous devices and networks, video compressed at one resolution or bitrate may not 
give the optimal quality for a variety of receivers. To solve this problem, three broad approaches exist 
– 1) transcoding on the network, 2) simulcast and 3) SVC and multiple-description-coding (MDC). For 
transcoding, the network needs significant computing resources to adapt the content to the receivers 
needs. Simulcast involves simultaneous transmission from the source on to multiple channels (e.g., 
using IP multicast, link layer or application layer multicast, etc.). The simulcast receiver selects the 
optimal channel based on its capabilities and the current network performance. For pre-recorded 
content, there is an alternative to simulcast where the receiver pulls the content. The source publishes 
content in chunks, at different bit rates. The receiver first downloads the details about the chunks. 
It then downloads the first chunk and based on the time taken to download the prior chunk, adapts 
the bitrates for subsequent chunks (Stockhammer, 2011). SVC generates multiple layers of video. 
The base layer carries the data for lowest resolution (spatial), lower framerate (temporal) and highest 
quantization scale (lower quality). Subsequent enhancement layers help improve the spatial, temporal 
or quality aspects. Quality improvement is also called an improvement in signal to noise ratio (SNR). 
An alternative to SVC is MDC, which has been analyzed in detail by Kazemi, Shirmohammadi, and 
Sadeghi (2014). MDC includes redundant information in each stream such that receiver can decode 
any of the streams independently. The destination node can further improve the decoded video quality, 
as and when it receives more MDC streams.

For opportunistic networks, one cannot rely on network infrastructure for transcoding. Unless 
distributed, the transcoder may become a single point of failure. This scheme expects relay of content 
via the transcoding node(s), thus increasing the delivery path length. The delivery quality (delay and 
loss) will degrade because of longer path length. Given the fact that many of these network elements 
may be resource constrained, computation complexity of transcoding will reduce the active lifetime of 
such nodes. Moreover, the bandwidth from the source to the transcoder will be very high. Because of 
such issues, one cannot use on-network transcoding approaches for opportunistic networks. Simulcast 
creates additional packets for the network and may make sense in information-centric deployment for 
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data dissemination in DTNs (Sobin et al., 2016). Even in such scenarios, the redundant information 
between the Simulcast sessions will be a huge overhead for the network.

As mentioned before, SVC cannot decode successfully received higher layers, when the base 
layer or lower layers in SVC are not available. MDC does not suffer from such issues. Irrespective 
of the stream received, MDC can decode the video, because of redundant information within each 
stream. When comparing SVC and MDC for peer-to-peer streaming, Abboud et al. (2011) in context 
of P2P infer that SVC is better in scenarios where the network can prioritize the lower layers. Usage 
of MDC (with redundant information across the stream) will cause additional overhead during 
replication-based routing. By leveraging higher replication to protect the lower layers (BL may have 
double the copy counts as compared to first enhancement layer), SVC is more adaptable than MDC.

Scalable HEVC or SHVC (Boyce et al., 2016) as compared to the SVC (Unanue et al., 2011) adds 
enhancements for bit-depth, color gamut, and hybrid codec. Moreover, HEVC has inbuilt support for 
SHVC layers using the high-level syntax (HLS). HLS allows for lower overheads in packaging the 
layers in SHVC when compared with SVC. This work utilizes SVC and H264 to align with some of 
the reference work. Moreover, because of the lower overhead of SHVC, the results for SHVC should 
be an improvement over SVC.

In SVC, video scaling can improve frame-rate (temporal), resolution (spatial) or quality (SNR). For 
temporal scaling, enhancement layers increase the frame rate. Enhancement layers for spatial scaling 
increase the resolution for the frames. SNR scaling reduces the quantization scale for enhancement 
layers, thus reducing the residual error for the decoder. One or more of these scaling approaches can 
be combined to get multilevel scaling.

Based on the type of video, and choice of scalability order, multilevel scaling can provide different 
residual errors (Li et al., 2010). E.g., when a surveillance video is captured by the static indoor 
camera (say in a shopping mall or banks), it may be meaningful to move first on spatial scalability, 
followed by temporal scalability. This is because most of the information across the scenes stays 
static, hence missing the temporal aspect, does not affect the SNR values. For such videos, it may be 
more important to get detailed features of objects, rather than a smooth motion for the mobile objects. 
On the other hand, for entertainment-focused video recording from a moving vehicle or for a sports 
event, it is more advisable to have temporal enhancements at lower layers, while higher layers may 
bring in spatial enhancements. The video to be too jittery to watch if temporal enhancement layer is 
delayed for such content.

2.2. Scalable Video Packaging and Communication
This work explores video communication for opportunistic DTN; hence, topics for regular Internet-
based applications or ad-hoc networks are not discussed in detail. Singhal et al. (2014) discuss 
physical layer and encoding optimizations in multicast scenario for base station or access point 
like deployments for heterogeneous user groups. Lindeberg et al. (2011) and Trestian, Comsa, and 
Tuysuz (2018) provide a good survey on these aspects. A brief context for video transmission and 
the alternatives for opportunistic networks is covered below.

One can broadly classify video communication in three categories, based on the demand of 
end-to-end interaction and delay– 1) live-interactive transfer with round-trip delays below second; 2) 
live or pseudo-live communication based on application needs; and 3) transmission of pre-recorded 
content. For the first two categories, on regular Internet, mostly RTP/UDP based approach is used 
(Handley, et al., 1997). For both AVC and HEVC (and by that virtue SVC and SHVC), encoded 
content is packaged with network adaptation layer (NAL) unit. Encoder embeds the parameter used 
for encoding as well as encoded pictures within the NAL units (NALU). The NAL units on RTP/
UDP packets for communication. Transmitters try to ensure that the UDP packet size is small enough 
to avoid fragmentation when the transmission is over the internet. Each UDP packet contains one 
or more NAL units of an SVC layer. Actual UDP communication may be multicast (one-to-many) 
or unicast (one-to-one). Transmission of the RTP/UDP content can use different communication 
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channels (ports) for NAL units of each SVC layer. The receivers can use approaches like RSVP 
(Handley et al., 1997). to detect the available bandwidth and get access to as many SVC layers as 
possible, starting with a channel for a base layer. In the absence of RSVP, lower layer packets may 
be assigned higher priority so that these packets encounter a minimal drop and have less delay in the 
network. To achieve such behavior from the nodes on the network, special values in IP header field 
may be used, or edge routers may have more involved approach using MPLS, etc. The source, using 
feedback received from clients, adapts the encoder. The receiver implements the network behavior 
detection while the source does the control of video encoding.

When transmission can be delayed by a few seconds, video can be broken into chunks and stored. 
These chunks are subsequently transmitted to regular Internet applications. E.g., DASH (Stockhammer, 
2011) stores video in chunks of few seconds at different bitrates and the transfer happen from the 
server to client using TCP. Client downloads and buffers newer chunks, while it continues to decode 
and playout prior chunks. Since the server and clients have round-trip delays below a second, the client 
can choose lower or higher quality for subsequent chunks, depending on the time taken to download 
prior chunks. In this case, the client does the congestion detection and adaptation. Note that the default 
DASH approach is different from SVC since the source creates different chunks for different bitrates 
and the client chooses to download only the chunk that it deems fit, as per its adaptation state. Grafl 
et al. (2013) explore an extension of DASH involving SVC.

As compared to legacy wired networks with static nodes, there is a higher impact to media flow 
for wireless networks, because of interference, lower bandwidth, and node mobility. Abdulkadir et 
al. (2019) explore heterogeneous wireless networks but utilize a central SDN controller to decide if 
a stream of media should be adaptively rerouted to an alternate path. Wireless networks, especially 
Ad-hoc networks (including MANET) may use link layer optimizations and other network coding 
approaches (Lindeberg, 2011) to ensure a higher quality of base layers. On the other extreme of Ad-
hoc networks are Vanets where the nodes have frequent connections and disconnection. Wu et al. 
(2014) have explored VANET for routing of the video stream in a dense scenario (more than ten hops 
and using ten thousand taxi nodes and a radio range of 250 meters). Quinlan, Zahran, and Sreenan 
(2015) have explored an adaptive layer distribution where the lower few layers of SVC are packaged 
and transmitted using MDC and measured the impact of loss for such communication across a single 
hop network.

As compared to few seconds delay for Ad-hoc networks, delay-tolerant opportunistic networks 
may have delays of hours or more. Hence, the adaptation control from the receiver may be too late, and 
source may end up underutilizing or congesting the network. Lack of feedback (e.g., acknowledgment 
getting lost) can further amplify such issues. Instead, it makes sense for the source to estimate the 
network behavior using acknowledgments that it receives and adapt subsequent transmission. The 
adaptation needs to ensure that it is neither too fast while reducing the SVC layers, nor too slow in 
adapting to increased load on the network behavior.

2.3. Routing Over DTN
Cao and Sun (2012) provide an excellent overview of numerous DTN routing protocols. One of the 
classifications involves single-copy vs. multiple-copy routing. Single copy routing frequently involves 
custody transfer of bundle and works for a controlled environment with oracle based (or strongly 
predictable) connectivity – e.g., deep space networks or public transport systems that follow a strict 
schedule. Such DTN deployments can use single copy-based routing, as one can reasonably predict 
the future location, of the satellites or vehicles with high confidence. At the other extreme of single-
copy, routing is epidemic routing, wherein the replica of original bundles are shared (relayed), at each 
contact with the assumption that one of the nodes will eventually get in contact of the destination and 
deliver the data. This approach works well for opportunistic networks where little correlation exists 
between node contacts (Nayyar et al., 2018).
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One should note that epidemic routing works well when payloads are small, or the count of 
nodes is less. As the payload on networks increase or node density increases, epidemic routing 
creates significant overhead on relaying bundles (higher node count) and usage of buffers to store 
the bundles (higher payload). In case some correlation exists in the contact patterns of nodes, many 
proposals exist to minimize the number of the replica. E.g., multiple social contacts-based routing 
approaches attempt to exploit features like community, between-ness, centrality, etc. when deciding 
whether to relay a bundle or not. Some of the other approaches rely on the history of encounter times 
and transitivity of the same between nodes (e.g., Prophet). Another group of algorithms attempts to 
solve the routing challenge as a resource optimization problem across nodes in a distributed manner 
(e.g., RAPID, MaxProp, etc.). These approaches try to find the utility of the other node in successfully 
delivery of the content and give good results when such a correlation exists, the computing and sharing 
of information on contact add to the complexity of these protocols.

One of the most widely used approaches to limit the overheads of Epidemic routing is using 
spray-and-wait (SNW) proposed by Spyropoulos et al. (2005). Here the source application decides 
the maximum number of copies that can exist on the network (denoted as L). SNW allows any node 
to relay content only if it’s copy count is more than one. When copy count is one, a node can only 
deliver the content to the destination. When compared to epidemic routing, there is only a small 
overhead of tracking the notional value of L for each bundle.

2.4. Video Over DTN
Prior work of video streaming over DTN has been mainly in the context of distributing content or 
streaming video over oracle-based delay tolerant networks. In some cases, video streaming is done 
using DTN enabled VANETs. Lenas et al. (2015) have proposed a bundle streaming service using 
single copy forwarding. They also verified the proposal for the single-copy routing on the real-world 
experimental test bed. Morgenroth et al. (2011), Blanchet (2012) and Cabrero et al. (2012) have 
demonstrated media streaming capabilities in a controlled environment with a limited number of 
nodes. Raffelsberger and Hellwanger (2015) adapted DTN to HTTP for video streaming in a simulated 
scenario of an explosion in a chemical facility. Such approaches do not fit well for opportunistic 
networks where the contacts are intermittent, and count of nodes may vary. Pan et al. (2016) have 
explored routing hierarchical video in opportunistic networks. They have optimized video streaming, 
by aligning buffer management of intermediate nodes. However, making the DTN forwarding strategy 
optimized for hierarchical media flow puts other applications at a disadvantage.

Sandulescu et al. (2015) in their work have compared the performance for a video like flow 
between the stationary source and destination (e.g., public library and airport in one of the use 
cases) for bandwidth estimation to periodically send video bundles based on the estimates of 
available capacity. They have not included continuous media flow and video quality measurements. 
The experiments relied on data from prior round of transmission, with a large time gap between 
the transmission rounds (e.g., transmission at 06:00, 14:00 and 00:00 hours). Moreover, their work 
focussed on demonstrating the accuracy of bandwidth and delay estimation, rather than proposing a 
complete system for streaming video chunks.

Klaghstan et al. (2013, 2014, 2016) have analyzed the performance of SVC using multiple layers. 
While (Klaghstan, 2013) maps SVC layers to separate bundles, (Klaghstan, 2014) and (Klaghstan, 
2016) attempt media flow using NAL units. In (Klaghstan, 2013), they have analyzed the delay and 
delivery ratio based on single transmission over different network scenarios and observed that the 
base layer should have higher copy counts, and the higher enhancement layers would have lower copy 
count. Their subsequent work (Klaghstan, 2014) using NALU implemented media-aware network 
elements (MANE) that combined multiple NALU into a DTN bundle and exchanged them during 
node encounters. The size of the bundle was estimated based on the contact duration spread observed 
by a node. All nodes transmit base layer NALU in a single bundle without forcing it for fitting it 
into optimum bundle size. (Klaghstan, 2016) explored improving the delivered quality further by 
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implementing pull requests from the receiver to fill intermediate SVC layers. If the receiver has got a 
significant number of NALU for higher SVC layer but missed some NALU for intermediate layer(s), 
it solicits the retransmission from nodes in the network. The nodes in vicinity created additional 
copies of NALU based on the solicitation requests. To avoid overload on the network, the solicitation 
is triggered only after a threshold. The threshold is determined based on expected play out time and 
percentage of NALU received for intermediate layers. In all their experiments. (Sandulescu et al., 
2013, 2014, and 2016), they ran the simulation multiple times, but each run involved only one burst 
of video transmission.

When transmitting a series of video bundles, some of the DTN bundles from the source may 
not reach the destination because of multiple reasons. One of the most commonly studied reasons 
for the delivery delay or failure is related to congestion or excessive loads on some nodes (Cao & 
Sun, 2012). If some nodes run out of space when receiving a bundle to be forwarded, they may drop 
older bundles. Even if large buffers are available, the contact duration between nodes may constrain 
and limit the exchange between nodes. In some cases, delay and drops may occur because of the 
deployment scenario, e.g., location and mobility patterns of the source and destination nodes are 
such that they have very few contacts with other nodes.

3. PROPOSED SYSTEM

Based on analysis of media flow (both scalable and non-scalable) across different scenarios authors 
identified the following goals as ideal for media transmission on opportunistic networks:

1. 	 Align with end-to-end principles (Blumenthal & Clark, 2001): This implies that the 
optimization of media flow should not require explicit support from DTN routing layer;

2. 	 It should be possible to use optimizations from the network (if available): To improve media 
flow performance, as long as it does not impact other (non-media flow) communication.

As mentioned in the prior section, multiple DTN routing protocols exist. Some of them are 
quite complicated and may cause unpredictable feedback with end-to-end adaptation. Hence binary 
SNW is chosen for adaptation at source node, for its simplicity. The only extension to SNW for 
intermediate node was to accommodate cumulative acknowledgment, wherein on receipt of the newer 
acknowledgment, the node discards the older acknowledgment.

Another key decision point is the mapping of communication units to SVC layers or NAL units. 
Some of the prior work, e.g. (Klaghstan, 2014) and (Kloghstan, 2016) have directly mapped NAL 
units to payload for transmission over DTN. This required changes to all DTN nodes so that they 
pack/unpack the NAL units into bundles as needed. This packaging comes with significant processing 
costs. Since each video frame will generate at least one NAL unit (besides multiple SVC layers and 
compression parameters will add more payloads), such mapping will create a significant overhead for 
continuous media streaming. Typically, DTN is not-live (delay of the order of hours). Hence authors 
chose to periodically chunk the video and create a burst of DTN bundles for every video chunk. The 
source will transmit each SVC layer for the chunk as a separate bundle. This mapping of video chunks 
to bundles is similar to the communication approach suggested in Klaghstan (2013) and Sandulescu 
(2015) and conformant with end-to-end principles. Except for source and destination, other nodes 
need not be aware of SVC mappings and chunk details.

Figure 1 provides an overview of the changes proposed in this work. Note that across different 
scenarios, the source (S), destination (D) as well as multiple intermediate nodes (Ni, Nj, etc.) may be 
mobile. End-to-end adaptation by SORT only involves application layer at the source and destination 
nodes. The destination generates the cumulative acknowledgment. All other nodes can have regular 
SNW implementation. Later part of this section discusses extensions of SNW, where nodes give 
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preference to higher copy count (H), delete delivered messages (D) and MANE (M). Figure 1 captures 
these optional extensions as HDM.

The source (Src) generates a burst of DTN bundles carrying different SVC layers. Intermediate 
nodes (N), relay / carry these bundles to the destination (Dst). On receipt of the bundle at the 
destination, a cumulative acknowledgment is generated capturing the details covered in Table 1. 
Figure 2 depicts such a media flow over time.

Note that Figure 2 does not capture the mobility of nodes. The source node adapts the next burst 
based on acknowledgments that it has received. Intermediate nodes relay the bundle. If the SNW 
extensions for higher copy count (H) is enabled, the choice of the relayed bundle gets affected by 
the value of copy-count(L). As and when destination node gets the SVC bundle; it generates a new 
cumulative ack. The nodes share the cumulative acks. On receiving a new ack, nodes may trigger the 
SNW extensions for MANE(M) and delete(D), if they are enabled.

This section first discusses the video packaging and transmission bursts of bundles with different 
SVC layers from the source. Subsequently, the logic of cumulative acknowledgment is covered. The 
algorithm for the estimation of state (congestion, delay) and subsequent adaptation from source is 
covered after that. Finally, the optional extensions to SNW are covered.

3.1. Video Packaging and Transmission
For communicating video over delay tolerant opportunistic networks, the video is captured in chunks 
of few seconds to few minutes and subsequently compressed using SVC. Each of the SVC layers 
is transmitted using different max-copy-count threshold (L). Similar to Klaghstan (2013), the base 
layer gets highest counts, and copy counts are gradually reduced for higher enhancement layers. The 
source generates a burst of DTN bundles every few minutes. The inter-burst-gap will be same as the 
duration of the video chunk.

The receiver (destination) will have application and deployment specific delay targets, for playing 
back the received video, from the time the source sends it. The source will set the time-to-live (TTL) 
at a value much higher than the delay target (e.g., twice that of delay target). TTL values in DTN 

Figure 1. The DTN stack and its modifications for different nodes with the indication of their path
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ensure that in the absence of acknowledgments, the intermediate nodes do not continue to cache the 
data forever. They delete the bundles whose TTL has expired.

3.2. Cumulative Acknowledgment
DTN routing has an optional feature to send an acknowledgment. The acknowledgments are small 
bundles that may be flooded on the network or communicated using the same routing protocol as 
the one carrying the application payload. These acknowledgments can be used to delete delivered 
messages if the feature is enabled similar to Cao and Sun (2012) and Ding et al. (2018). While earlier 
work used separate bundles for acknowledgment of each delivery, the authors have implemented 
cumulative acknowledgment to increase the chance of delivery for the acknowledgment to the source 
of media flow.

The cumulative acknowledgment includes the delivery delay for last few bundles in the media 
flow between the source and destination pair. If the source and destination nodes have clock skew 
below few seconds, the data shared in cumulative acknowledgement will not have major impact. Since 
the acknowledgments are cumulative, missing some of the intermediate acknowledgments will not 
significantly impact the estimation at the source.

Table 1 provides a simplified representation of the metadata within the cumulative ack. Note 
that the cumulative acknowledgment differs significantly from TCP cumulative acknowledgments. 
It allows holes to exist in the sequence, there is no expectation of retransmission of missing bundles, 

Figure 2. A temporal illustration of various components in the system
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and it includes the delivery delays for each received bundle. For example, in Table 1, for burst 41, EL1 
had a delay of 73 minutes, while EL2 was not received when the ack was generated. Using simple 
bitmaps and rounding off for the receipt delay to closest minutes, one can communicate cumulative 
acknowledgment for last four hundred bursts in less than one kilobyte. Application of other lossless 
compression schemes can reduce this data further. The design of optimal compression scheme for 
these acknowledgments is outside the scope of this paper.

On receipt of a new acknowledgment bundle (with higher cumulative ack Sequence number, for the 
same source-destination pair), the intermediate nodes discard the earlier acknowledgment. The SNW 
routing first attempts to deliver the bundles to the destination then exchanges the acknowledgments 
before forwarding other bundles.

3.3. Streaming State - Congestion and Delay Estimation
The following algorithm is used to estimate the likely congestion and delay between source and 
destination in the DTN network. Note that the computation of streaming state uses only the data 
about SVC layers and bursts of transmission between the source and destination pairs. It is not an 
estimator of congestion in the overall DTN network.

Table 2 covers the details of the constants used in the algorithms, which are discussed below. 
Based on the scenario and requirements for the deployment, application running at the source can 
set it. Note that the values used for these constants are based on limited experiments across different 
scenarios. Authors have not attempted to identify optimal value for them as they found that the 
optimum values are scenario dependent.

Table 2. Algorithmic constant used in SORT and HDM

Identifier Description / Value

DT Delay target -ideally playback at the destination is for a burst sent at (Tnow-DT)

BG Burst gap – gap between each SVC burst

RMDP Ratio of missed bundles penalty to delayed bundles penalty (value = 9)

EstChoice The choice between average, minimum, maximum of the two estimates

MxLayers Maximum number of SVC layers.

MxTtlDrop Maximum factor by which TTL for the higher layer is reduced (default = 0.2)

ActualTtl The default value of TTL

Table 1. Metadata in cumulative acknowledgment from the destination

Source of ack: 17 {identity of Dst}

Destination of ack: 44 {identity of Src}

Cumulative ack Sequence number: 109

Oldest burst id: 41

Entries for delay in 
minutes

Burst Id BL EL1 EL2 … ELN

41 74 73 -1 … -1

42 94 -1 33 … -1

.. … … … … …

90 76 -1 77 … …
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The estimate of congestion using NumSample involves counting the number of delayed or missed 
base layer and enhancement layers. Since base layer is an absolute must for decoding at the destination, 
it is given half the weight in the estimate (line 5 of Algorithm 1). All enhancement layers contribute 
to the other half. Moreover, missed bundles are much worse than delayed bundles. Hence a higher 
weight is assigned to missed bundles using RMDP. Note that division by “2 * (1 + RMDP)”, ensures 
that the estimate is range bound between 0 to 100.

Since even the cumulative acknowledgments may be delayed or lost, sometimes the state may be 
wrongly represented at the source. Moreover, network behavior can vary over time (because of node 
mobility). Hence, two intervals (DT and 2*DT) are chosen to estimate the congestion. The choice of 
average/min/max (EstChoice) of the two estimate is driven based on whether the SVC media flow 
can be aggressive on resource usage or not. Algorithm 2 combines the two estimates based on the 
value of EstChoice at the application level.

3.4. Source Adaptation Based on State Estimation
Based on the congestion estimate, the source may infer one of the following states; No Loss or Delay, 
Occasional delivery beyond delay target; Sustained loss at delay target; Sustained loss beyond delay 
target (at TTL). Figure 3 captures these states and adaptation values associated with each of them. 
Based on experiments, authors identified these adaptation values as a reasonable trade-off across 
different scenarios. The choice ensures that end-to-end adaptation reduces the load on the network 
for simple SNW deployments while giving significantly better results for decoded video quality. 
Algorithm 3 utilizes these adaptation values (OP_ratio, RR_Ratio, and TTL_ratio).

In general, the transitions should happen along the solid edges of Figure 3, but in the presence 
of sudden changes in the networks conditions (say bursts between other nodes or extreme mobility of 
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source or destination) alternate state transitions along the dashed lines cannot be ruled out. The finalEst 
from Algorithm 2 is mapped to State A [0,25]; State B (25,50]; State C (50,75] and State D (75,100].

One cannot apply conventional TCP/IP like flow and congestion control for opportunistic 
Video transmission, on three accounts. First of all, like the scenario of regular internet multimedia 
communication, Video transfer can be loss tolerant but would expect reasonable bounds on delay. 
Secondly, unlike TCP transfer, some parts of the video can be discarded by the source when it 
observes severe congestion. Finally, based on the congestion, it’s possible to control replication 
overheads in DTN. The first few SVC bursts are transmitted without any adaptation. Subsequently, 
based on congestion estimate, the source adapts future bursts. Usage of SNW over DTN, provides 
the following three levers to adapt:

1. 	 O - SVC Operating point: In the presence of severe congestion, the source does not transmit 
one or more of the higher layers. Operating point corresponds to maximum enhancement layer 
transmitted. Less number of bundles will imply smaller load on the network. OP_ratio from 
Figure 3 is used to control this value in Algorithm 3;

2. 	 R - Replication foctors of the bundles: The source reduces the replication count for higher 
layers to ensure lower load on the network. RR_ratio controls this value;

3. 	 T - TTL values: The time to live for higher layers can be reduced to ensure that they spend 
less time in the buffers. When buffers are full, and some messages need to be deleted to create 
space, smaller TTL values for higher layers will ensure that nodes which are running out of 
storage, delete bundles for higher layers before deleting lower layer bundles. This adaptation 
uses TTL_ratio from the corresponding state in Figure 3.

Figure 3. The estimated state for adaptive video transmission
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Furthermore, when the source adapts O/R/T, it can measure the amount of traffic load being 
taken off the network and redistribute (when ReDist=true in Algorithm 3) the same for lower layers. 
Typically, the lower layers of SVC are smaller in size. Hence ReDist can increase the copy counts 
for the base layer and lower enhancement layers, thus improving the delivery rate and reducing the 
delivery delay for them.

To ensure that changes in path length are gradual, an exponential weighted moving average is 
done for operating point using α as 0.2 as captured in line 2 of Algorithm 3.

Assume that five SVC layer is used in transmission (MaxLayers=5) and prior eWMA_PathLen is 
at 4. Let us consider the impact of Algorithm 3 when the estimate is at 98 (state A, OP_ratio = 121%) 
and 35 (state C, OP_ratio = -5%). For state A, the new value for eWMA_PathLen will increase to 
4.41 (0.8 * 4 + 0.2 *5 * 1.21) and hence logic on line 5 will transmit four layers. There is no impact 
to TTL, and copy count in State A since both TTL_ratio on line 6, and RR_ratio on line 8 is at 1. 
On the other hand, for estimates leading to state C, the eWMA_PathLen will reduce to 3.15 (0.8 * 
4 - 0.2 * 0.5 * 0.05). Hence, it sends only three layers (BL + EL1, EL2). Moreover, for enhancement 
layers, copyCount and ttl will reduce. Value for ttl[1] will drop to 90% while it will be 81% for ttl[2]. 
Similarly, copyCount will reduce to 66% for enhancement layer 1 and 2.

3.5. SNW Extensions
While SORT adapts SVC media flow without changes on intermediate nodes, authors explored 
alternatives to improve delivery of content, by making the following three changes to SNW routing. 
The first two extensions are quite generic and would not give undue resource allocation to SVC 
media flow:

1. 	 H - prefer higher copy count: When two nodes are in contact and need to relay bundles, 
vanilla SNW proposes a random order of relaying or relaying based on earlier packet first. For 
SORT+SVC, lower layers will have higher copy counts. Hence authors extend SNW to order 
the relay of bundles, based on the count of replica (L) that is held by a node;

2. 	 D - delete on acknowledgment: On receiving a cumulative acknowledgment, intermediate nodes 
delete the existing bundles for the delivered SVC layers;

3. 	 M – media-aware network elements: Source based adaptation is a push-based model and 
does not allow the destination to make pull requests. In case some of the higher layer bundles 
are received at the destination, with missing intermediate layers, it makes sense to increase the 
counts for missing intermediate layers to ensure that they also are delivered. Only after delivery 
of missing intermediate layers, prior received higher can be used for decoding. When MANE 
extension is enabled, the nodes periodically check the acknowledgments to identify the gaps. 
MANE uses a timer-based threshold and doubles the replication count (L) for bundles matching 
the missing intermediate layers.

The MANE implementation creates additional copies of some bundles, on intermediate network 
nodes, when it detects gaps in delivery to destination. This deviates from the network-neutrality 
principles and breaks the end-to-end paradigm. Such hard coupling of application on all the network 
nodes negatively impacts other applications that may be deployed on same network.

4. EXPERIMENTAL SETUP

The experiments, simulate the flow of SVC bursts in different network topologies using open source 
simulator ONE (Keränen, Ott & Kärkkäinen, 2009). Based on the bundles received at the destination, 
it measures the peak-signal-to-noise-ratio (PSNR) for various delay targets. Thereafter, similar to 
(Klaue, Rathke & Wolisz, 2003), the PSNR values are mapped to mean-opinion-score (MOS). This 
mapping is primarily to simplify the plots (since single curve represents the value interpreted from 
the nine SVC curves).
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4.1. Input Video Characteristics
The experiments utilize publicly available test video data Highway with 2000 frames at 30 frames per 
second (media.xiph.org/video/derf/y4m/highway_cif.y4m) and CIF resolution (352x288) as video 
load. JSVM [9.19.15] is used to create nine-layer SVC content with layer-specific details as captured 
in Table 3. Further x264 (0.148.2643) is used to create a non-scalable video with a target bitrate of 
100 kbps. The resultant file is 836 KB in size with luminance PSNR of 28.7159.

Author also experimented with seven-layer SVC, where temporal scaling at QCIF (BL + 4 
temporal EL) was followed by spatial and quality scaling. Across simulation runs, the trends for 
seven-layer plots were similar to those for nine layers, and hence they are not included in this work.

The chrominance PSNR values (U, V) were always above 38 dB across the SVC layers for this 
video set., Hence the results have only used the luminance(Y) PSNR as generated by the PSNRStatic 
tool of JSVM.

4.2. Simulation Settings
Table 4 captures the three different simulation scenarios used in the experiments. Besides, variants 
of RWP with different node densities, delay targets and burst gap are used in experiments.

The network interface (range and speed), delay target, default TTL and buffer size values are 
chosen for RWP to align with the settings used by Klaghstan (2013). For SFT and WDM, they were 
updated to ensure that reasonable communication could happen even without the optimizations 
proposed. The intent was that for non-SVC video without using the adaptation or SNW extensions, 
approximately half the transmissions reach the destination within the delay target.

For real-world traces (SFT) the cars move quite frequently, but their paths are different, and they 
cover a significantly larger geographical area. Hence the choice of Wi-Fi and similar delay target as 
RWP suits this model. In case of WDM, the nodes travel from home to office and sometimes to evening 
activities after work. Since there are large periods where the nodes stay static (office in the day, and 
home in nights) the delay target was taken as 12 hours. Since the map area is large and nodes do not 
move for a significant period, Wi-Fi like interface is used in WDM scenario to create more contacts.

Each simulation is executed fifty times with different random number seeds. For analysis, bursts 
in the beginning and end of simulation runs are skipped, since the network is not saturated in these 
cases. Skipping of initial flows also provides adequate time for adaptation to settle itself. For RWP 
and SFT, the data analyzed is from bursts 200-299; while for WDM, the analysis is for bursts 432-

Table 3. Nine-layer SVC operation points for highway test video sequence

Layer Size (KB) Luma PSNR Type L at Source

BL 92 27.0608 176x144 at 1.875 fps 32

EL1 212 27.1757 352x288 at 1.875 fps 16

EL2 76 29.1398 352x288 at 3.75 fps 12

EL3 92 31.3958 352x288 at 7.5 fps 10

EL4 108 33.1269 352x288 at 15 fps 8

EL5 132 35.7351 352x288 at 30 fps 7

EL6 556 36.7759 Quality enhancement 1 (36-33) 6

EL7 1056 37.954 Quality enhancement 1 (33-30) 5

EL8 1232 38.7324 Quality enhancement 3 (30-28) 4
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719. Usage of 288 samples in WDM, ensures that execution cover a complete day (with the default 
delay of 5 minutes between each burst). SFT and RWP did not exhibit such daily pattern; hence, 100 
samples suffice for them.

4.3. Video Decoding and Quality Measurements
The receiver may not get all the packets sent by the source. Some of the packets may be lost or delayed 
and would not arrive in time for decoding and playout at the receiver. To compensate for missed higher 
layers, the decoder may use multiple approaches like spatial scaling, repeating frames for temporal 
scaling, etc. (Unanue et al., 2011). If none of the layers is received, the last decoded frame can be 
repeated to compensate for missed parts of the video. Such compensation approaches improve the 
user experience, but the played-out video can be significantly different from the original content.

One can measure the quality of decoded video using multiple approaches (Klaue et al., 2003). 
Average value of PSNR across the video frames is one of the most common approaches. PRNR 
measurements can be automated, when both the original content and received data is available. 
Mean-opinion-score (MOS) is another metric used in multiple research work. Since MOS involves 
manual feedback collection from multiple users who watch the video, it is very costly to implement 
and can be prone to bias if not properly implemented. For automatically determining the received 
video quality, the PSNR values have been converted to mean opinion score (MOS) using heuristic 
mapping as proposed in (Klaue et al., 2003).

While DTN may deliver multiple SVC layers, PSNR measurement considers only the successfully 
received base layer and consecutive enhancement layer for each burst. If enhancement layers are 
missing in the spatial domain, lower resolution decoded frames are scaled to a higher resolution 
before computing PSNR. Similarly, if temporal frames are missing, FFmpeg (2.8.11) is used to 
generate the intermediate frames. For video bursts where the base layer itself is not received, MOS 
of 1 (bad) is used (Table 5).

Table 4. Simulation parameters

Random Way Point 
(RWP)

San Francisco Taxi Traces 
(SFT)

Working Day Model 
(WDM)

Mobility model for nodes Shortest Path Map Based 
(Keränen, 2009)

Real world taxi traces 
(Piorkowski et al., 2009)

Working day Model 
(Ekman et al., 2008)

Node Details 50 nodes at pedestrian 
speeds 50 taxi nodes 2 Buses, 48 nodes

Map details Helsinki with points of 
interest

San Francisco and its 
vicinity

Part of Helsinki - “Area 
A” (Ekman et al., 2008); 
10 offices and 10 meeting 
spots

Mobility Speed and 
patterns 0.5 – 1.5 meters per sec. As per trace data 50% car ownership

Network Interface (range, 
speed) 10 meters, 2 Mbps 50 meters, 24 Mbps 50 meters, 24 Mbps

Default Delay Target 2 Hours 2 Hours 12 Hours

Default TTL 4 Hours 4 Hours 24 Hours

Default Burst Gap 5 minutes 5 minutes 5 minutes

Number of Bursts 600 600 800

Buffer Size 100 MB for the source, 10 
MB for all other nodes

100 MB for the source, 10 
MB for all other nodes

600 MB for the source, 60 
MB for all other nodes
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4.4. Cost for DTN Communication
To identify the savings on cost, one of the common metrics used in DTN applications is the overhead-
ratio. This is the ratio of all bundles relayed and created across nodes, to the number of delivered 
bundles (see Equation 1). For SVC, given that the size of bundles varies significantly, this metric does 
not completely capture the associated cost. Hence, cumulative buffer occupancy (CBO) over time in 
MB-hours is used for analyzing the communication cost. Equation 2 computes CBO, by multiplying 
the time for which the bundle is in buffers of a node, with the size of the bundle, across all the nodes. 
Note that Note that for SVC bundles created on source node ReceiveTimeM,N in Equation 2 will be 
the time of creation of the message:

overhead
totalbundlesrelayedandcreatedacrossall node

=
� � � � � � � ss

totalbundlesdeliveredacrossall nodes� � � � �
−1 	 (1)

CBO DeleteTime ReceiveTim
N

Num Nodes

M

Num Messages

M N
= −

=

−

=

−

∑ ∑
1 1

,
ee Size
M N M,
*( ) 	 (2)

The total count of delivered bundles normalizes overhead computation. For lightly loaded 
networks if TTL is large, almost all the bundles are delivered. In the absence of MANE overhead for 
SNW will be upper bound to the values of L used by the source application. Similarly, CBO will be 
upper bounded to values used by source (at L × TTL × SizeM) for the bundles created.

As network load increases, overheads and CBO can increase in two different patterns. If the 
bundles are deleted because the source (or nodes in the vicinity of source) run out of space, the 
“total bundles relayed” as well as “receive to delete time” will be small. Since bundles delivered to 
destination will be low in count, overheads will be high, but CBO will not increase significantly. On 
the other hand, if the nodes have large buffer capacity and node contact durations are large, (e.g., in 
case of WDM) then the bundles will have a higher count for relayed bundles. They will also stay in 
buffers longer. For such cases, the delivery rate affects the overhead, but the CBO values will stay 
high, irrespective of delivery rate.

5. PERFORMANCE EVALUATION

The results in this section have the following order, a) RWP scenario for consecutive bundles received 
and delay in receiving the bundles; b) the MOS based results for the RWP as well as WDM and 
SFT; c) communication costs using overheads and CBO for the three scenarios; d) impact on HDM 
and SORT for faster/slower bursts with smaller/larger delay targets; e) impact on SVC media flow 

Table 5. Heuristic mapping for PSNR to MOS

PSNR (dB) MOS

>37 5 (Excellent)

31-37 4 (Good)

25-31 3 (Fair)

20-25 2 (Poor)

<20 1 (Bad)
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when the node density is varied; and f) the individual contribution from each of the components of 
SORT and HDM.

5.1. Base RWP Scenario – Consecutively Received Layers
Figure 4 captures the plot for RWP mobility scenario across four different settings. The subplots show 
the cumulative count for maximum consecutive layer received (for 5000 SVC bursts for Sequence 200 
to 299 for fifty simulation runs) on the vertical axis against the delay in delivery on the horizontal axis. 
First sub-plot, Figure 4(a), shows the performance of nine-layer SVC video transmission with SNW 
implementation supporting only the cumulative acknowledgment. At two hours (default delay target) 
less than 20% of the bursts are decodable at the destination since BL bundles reached the destination 
for less than 1000 bursts. At the end of 4 hours, 42% of the bursts received at the destination are 
decodable. Similarly, at delay target, 23 flows (0.5%) reach EL5 or higher. Less than 51 bursts (1%) 
reach EL5 or higher with a delay of 4 hours. Note that the plots are cumulative – for example, the 
plot for EL5 is the sum of all bursts that are decoded till enhancement layer 5 or higher.

Figure 4(b) shows the performance when the source adapts the transmission. Higher 
enhancement layers (EL7 and EL8) still have very low counts. Values for all other layers have 
improved significantly. BL improved from 20% to 55% at delay target and 42% to 87% for 4 
hours. The metrics for EL5 corresponding to a two hour delay is 3% and a four hour delay is 
9%. At delay target of 2 hours, the destination could decode almost thrice the number of bursts 
for SORT when compared to the Base scenario.

Figure 4(c) shows the performance when the SVC bursts are transmitted with SNW extended to 
support higher copy count, delete delivered message and MANE. It does not include SORT adaptation. 
As compared to Figure 4(a), HDM improves the quality for all the layers. When compared to SORT, 
SNW-HDM shows improvements for all the layers. At delay target (120 minutes), BL achieves 88%, 
and EL5 achieves 16%. At the end of four hours, BL achieves 98% while EL5 achieves 33%.

Figure 4. SVC maximum consecutive layer received for RWP base scenario
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Combining both HDM and SORT, as captured in Figure 4(d), improves the results at delay 
target to 89%(BL) and 18% (EL5). The values for a four hour delay is 98% for BL, and 32% for 
EL5. For this experiment, network-based optimizations (HDM) give better results than end-to-end 
optimization (SORT).

5.2. Quality (MOS) and Transmission and Storage Costs Across Scenarios
To properly understand the viewing impact of the layers that are received, the Figure 5(a), plots the 
above four scenarios with MOS values across delay in delivery. The baseline plots also include non-
SVC video and SVC video using constant copy count of eight for all layers (labelled as SVC-Linear). 
For ease of visualization, plots are from 0.5 * DT (60 minutes) to 2* DT (240 minutes). Fig 5(b) and 
5(c) are the corresponding plots for SFT and WDM scenario.

Comparing SVC to SVC+SORT shows that at delay target, across the scenarios, MOS score 
improved by 0.5 to 0.8. The improvements are much more significant at TTL (twice the delay target).

Combined HDM + SORT perform the best for all scenarios. HDM outperforms SORT in case 
of RWP, while it is the other way around for WDM. This is because the infrequent contacts between 
nodes in WDM limits the role of HDM. In case of SFT, both HDM and SORT are very close to each 
other. Between the non-adaptive versions, SVC-Linear is the worst in all scenarios, as it does not 
give higher copy count to the base layer.

For SFT and WDM, just moving from Non-SVC (single layer, 836 KB content with L=16) to 
SVC (9 layers with more than 3 MB in total, but with BL of 92 KB and L=32) improves the quality 
even when HDM and SORT are not enabled.

Figure 5. Mean opinion scores for RWP, SFT and WDM scenarios
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In Figure 6, CBO is lowest when both HDM and SORT are enabled. Individually, SORT has 
highest costs for RWP and SFT since it does not benefit from delete optimization of HDM. In case 
of WDM, the costs on CBO are similar for HDM and SORT.

Since overheads only include relay-counts and do not give weight to the size of the bundle and 
time occupied by the bundle in the buffers, non-SVC, SVC, and SVC-Linear flavors show a lower 
value on overheads. But it should be kept in mind that MOS values for these runs are significantly 
poor than those involving HDM or SORT.

5.3. Load and Node-Count Related Performance
The message generation frequency and node density are varied, for RWP with both HDM and SORT 
enabled. Figure 7(a) plots results for 50 node RWP runs when video bursts are generated every 37 
seconds, 75 seconds, 150 seconds, 300 seconds and 600 seconds while keeping all other values same 
as in Table 4. Figure 7(b) plots the MOS values for simulation runs while varying node density from 
25 to 400 for the same map area. Figure 7(c) and (d) plot the costs regarding overhead and CBO.

At a high frequency of SVC burst generation, the decoded quality is low, the overheads are high, 
and CBO is low. The overheads are high because most of the content created at the source is deleted 
either on the source or in its vicinity. Source generates new bursts even before the prior burst’s content 

Figure 6. Communication and storage costs for RWP, SFT and WDM
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can be shared, thus causing buffers to become full at the source itself. Note that the source has ten 
times buffer space than other nodes; still, it suffers from buffer overflow for very high frequencies 
(37 seconds and 75 seconds) as the gap between contacts with other nodes is higher than the burst 
gap. For 150 seconds and beyond, overheads drop as more bundles reach the destination (and hence 
higher MOS scores) while CBO continues to increase since more messages reach the destination and 
the messages in transit stay in the buffer for longer intervals.

Figure 7(b) and (d) for change in node counts have a similar trend as Figure 7(a) and (c). When 
few nodes are present, the buffers at source or nodes in the vicinity of source quickly run out of 
buffer space. Hence they delete older bundles to accept newer bundles, leading to relatively high 
overheads (order of 15-18 for node counts of 251 and 50). For low node density, buffer space and 
relay opportunities are limited. Hence CBO values are low. Overheads taper off around 100 nodes or 
beyond since maximum copy count used for base-layer is 32. CBO increases slightly while delivery 
rates increase significantly for 400 nodes, taking the MOS scores above 4.5.

5.4. Analysis of Components in SORT
This sub-section analyzes the impact of Operating point control, Replica control, TTL control, Re-
distribution and choice of estimation. HDM is disabled in these runs (except for ReDist, where the 
variance is more when HDM is enabled). To analyze the impact of load and delay targets, in addition 
to the RWP setting captured in Table 4, two additional variants of RWP are used in these runs. RWP-
Fast generates at twice the base frequency (at 150 seconds interval) and targets delay of 1 hour and 
TTL of 2 hours. RWP-Slow generates messages at half the speed (at 600 seconds) while it also doubles 
up the TTL and delay-target when compared to the base (to 8 hours and 4 hours, respectively).

As shown in Figure 8, in all the variations of RWP, for quality measured as MOS, operating point 
adaptation provides the maximum improvement. When all three components (ORT) are enabled, it 
provides slightly better performance than only the operating point. TTL control provides moderate 
improvements for Base and Fast scenario, while Replica adaptation provides small improvements for 

Figure 7. Impact of load and node density in RWP scenario
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Base and Slow scenarios. Algorithm 3 applies Replica control only on two highest layers. Hence, its 
isolated impact is smallest amongst the three.

Figure 9 shows that replication control (R) provides maximum savings on overheads for Base 
and Fast scenarios. But CBO values are relatively high for R since it keeps the higher layers in the 
buffer (and HDM is disabled on the nodes). ST provides the maximum savings on CBO by reducing 
the TTL values when it detects congestion/delay.

Similar to MOS figures, when all three (ORT) are enabled, both the overhead and the CBO values 
are almost same as the values for operating point (O).

Figure 10 analyses the impact of ReDist estimation features of SORT. As expected, redistributing 
the copy counts to lower layers impacts the results only if delivery rates are low. In the Slow scenario, 
MOS scores as shown in Figure 10(a) stay the same irrespective of whether the algorithm redistributes 
or not. On the other hand, for Base and Fast scenario, ReDist increases the MOS while also increasing 
the CBO marginally. The overheads for ReDist are very high under the Fast scenario. In-depth analysis 
showed that RWP-Slow operates in State-A most of the time, while RWP-Fast computes the State 
as B and C most of the time. Algorithm 3 in State-A does not remove the higher layers; hence there 
is very little scope to redistribute. On the other hand, in State B and C, adaptation removes higher 
layers and reduces copy count as well as TTL for some of the enhancement layers. This increases 
the ReDist to lower layers. In RWP-Fast, the bundles are deleted closer to the source, they do not 
increase the CBO, but the overheads are high because of lower delivery rate.

When experimenting with choice of estimator, when HDM is disabled, the delivered quality was 
poor, and all the three estimates (min/max/avg) were very close. Fig 10(b) and (d) plots the results for 
the estimate as min/max with HDM enabled on the network. The plot of avg. was in between these 
values, hence its removed for ease of visualization. Note that minimum estimator pulls the adaptation 
towards State-A, thus creating more overheads and increasing the MOS scores.

Figure 8. Contribution to MOS from SORT components across different load and delay in RWP
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5.5. Analysis of Components in HDM
This sub-section identifies the improvements from the three enhancements in SNW - the preference 
of higher copy count (H), deleting delivered messages (D) and media aware network extension (M). 
To better identify the contribution from HDM components, SORT is disabled for these experiments.

Figure 11 shows that maximum improvements are because of H (preference of higher copy count). 
As discussed before, this is because lower layers have higher copy counts and hence enabling H, helps 
relay the lower layers faster. MANE provides slight improvement for Base and Slow scenarios, while 
D (delete) does not provide any noticeable gain in MOS score. However, when all three (HDM) are 
combined, there is a slight improvement in quality across the three simulation runs.

Deleting by itself is not expected to improve the MOS score as it comes into play only after 
bundles are delivered. Analysis of logs showed that the delivery rate increased when delete feature 
was enabled, but it delivered bundles for multiple layers, and hence the destination did not see any 
appreciable increase in consecutive bundles received for different bursts. Note that improvements 

Figure 9. Communication and storage costs for SORT components
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Figure 10. Impact from ReDist and estimation for RWP scenarios

Figure 11. Contribution to MOS from HDM components across different load and delay in RWP
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from MANE are lower than that observed by Klaghstan (2016). This is because DTN bundles are 
have mapped to each SVC layers for the burst. This mapping is much coarser (order of hundreds of 
KB) than the mapping to NALU, which are hundreds of times smaller. When MANE triggers for 
such large DTN bundles, the creation of additional copies causes deletion of some of the other SVC 
bursts, thus offsetting the improvement under heavy load.

Observations on the cost aspects show that “delete” provides a significant saving on both overheads 
and CBO. Overheads reduce since delivered bundles are not relayed further. CBO improves much 
more significantly as bundles are deleted as soon as an acknowledgment is received, and additional 
copies are not created. Figure 12(a,c) show that CBO value also benefits from Delete if all three 
components are enabled, and network load is moderate. Preference for higher copy count increases 
the CBO and overhead for all scenarios. MANE also increases the communication costs for Slow 
and Base scenarios, but for the Fast scenario, MANE does not have a cost impact as most of the 
bundles are deleted because of heavy load from the source, and MANE is not able to find a local 
copy for missing layers.

Figure 12. Impact of HDM components to communication and storage
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5.6. Summary of Analysis
The operating point is the most prominent control for application-level adaptation and preference for 
higher copy count is the most beneficial extension on the network nodes. Note that different choice 
for OP_ratio, RR_ratio, and MxTtlDrop can make other components of SORT to dominate. On-
network optimization for MANE provides benefits under low to moderate load while delete feature 
is an effective way to control the cost of communication.

Observations across scenarios showed that relying only on routing optimization or only on 
end host adaptation would not provide the best results. While RWP performs best for on-network 
optimization, WDM showed better performance, for end hosts adaptation-using SORT. Using both 
SORT and network optimizations always gave the best results.

6. CONCLUSION

This paper has proposed SORT, an end-to-end adaptive system to improve the quality of streamed 
video over delay tolerant networks, using SVC. The performance of the system has been analyzed 
using three different mobility scenarios. SORT provides significant performance gains when 
transmitting scalable video across different scenarios. MOS scores increased by 0.5 to 0.8 across 
different scenarios. Impact on video quality is analyzed with simple extensions to SNW routing. With 
SVC layers mapped to DTN bundles, when the source assigns higher copy count to lower layers, 
simple network optimization to prefer higher copy count during bundle relay, provides excellent 
improvements. In RWP scenarios, it increased MOS scores by 0.7 to 1.5, with low load scenarios 
demonstrating the maximum improvements.

An area to explore in the future is the application of SORT and HDM to information-centric 
networks, especially those involving multiple subscribers (multicast), as well as multiple media 
flows. The future extension of SORT can use machine learning or similar approaches at the source 
to estimate the congestion and get the best quality. Other scenario specific optimizations could also 
be attempted. For example, in WDM it is expected that usage of 24 hours earlier data rather than 
simple EWMA can provide better results. SORT did not try to optimize the adaptation for specific 
scenarios. Instead, it used a simple estimator-based approach without changing the algorithm constants 
for different scenarios.

SORT only considered changes to end-applications for optimization. Feedback from network 
elements (other than the destination) for adaptation can provide further optimization. MDC based 
video communications, especially with single-copy DTN routing (e.g., using custody transfer), is 
another possible area to explore in future. Impact on SORT and HDM by various network coding 
approaches and heterogeneous connectivity can also be explored.
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ENDNOTES
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