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ABSTRACT

The treatment of large data is difficult and it looks like the arrival of the framework MapReduce 
is a solution of this problem. This framework can be used to analyze and process vast amounts of 
data. This happens by distributing the computational work across a cluster of virtual servers running 
in a cloud or a large set of machines. Process mining provides an important bridge between data 
mining and business process analysis. Its techniques allow for extracting information from event 
logs. Generally, there are two steps in process mining, correlation definition or discovery and the 
inference or composition. First of all, their work mines small patterns from log traces. Those patterns 
are the representation of the traces execution from a log file of a business process. In this step, the 
authors use existing techniques. The patterns are represented by finite state automaton or their regular 
expression; and the final model is the combination of only two types of different patterns whom are 
represented by the regular expressions (ab)* and (ab*c)*. Second, they compute these patterns in 
parallel, and then combine those small patterns using the Hadoop framework. They have two steps; 
the first is the Map Step through which they mine patterns from execution traces, and the second one 
is the combination of these small patterns as a reduce step. The results show that their approach is 
scalable, general and precise. It minimizes the execution time by the use of the Hadoop framework.
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1. INTRODUCTION

Many techniques have been proposed that mine such patterns from execution traces. However, the 
most existing techniques mine only simple patterns, or a single complex pattern that is restricted to 
a particular set of manually selected events.

Recent work has recognized that patterns can be specified as regular languages (Ammons, Bodík, 
& Larus, 2002). This allows the compact representation of patterns as regular expressions or finite 
state automata, and it allows the characterization of the pattern mining as a language learning problem.

Current approaches are fundamentally similar; each takes as input a static program or a dynamic 
traces or profile and produces one or more compact regular languages that specify the pattern 
representation or the workflow. However, the individual solutions differ in key ways.

In this paper, we present a new general approach to patterns mining that addresses several of the 
limitations of current techniques. Our insight is twofold. First, we recognize that instances of smaller 
patterns which can be composed in parallel into larger patterns. Second, we also observe that the 
composition of small pattern can be in parallel.
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Then, we leverage this insight to divide our work into two parts; The first one, we use a technique 
on how we can mine two types of small patterns and we compose them by using standard algorithms 
for finite state automaton manipulation, and some special rules used by M. Gabel and Z. Su (2008), 
The mining is also performed by symbolic mining algorithm (Gabel & Su, 2008; Zhang, Zhu, Chen, 
& Yang, 2015).

For the second one, we use the framework MapReduce in mining and composing micro-patterns. 
Those patterns have been shown as regular expressions or their finite state automatons. In this part 
we mine small patterns using the same symbolic mining algorithm but in parallel as Map step, and 
we compute this small pattern into a larger pattern in parallel as a reduce step.

Our work is an amelioration to the existing techniques in mining patterns and parallel distributed 
process.

Our approach has been implemented in the java programming language with two log files of 
two applications namely; SKYPE and VIBER. The size of the first log file is 10 GB, and the second 
is 18 GB, which are generated by log file generator.

We have tested our approach in three clusters in a cloud, the first regroups five machines, the 
second regroups ten machines, and the third regroups 20 machines. The traces in our applications 
are the call, the answer, and the messages, etc.

2. RELATED WORK

Many techniques are suggested in the domain of process mining; we quote:
M. Gabel et al. (2008) present a new general technique for mining temporal specification, they 

realized their work in two steps, firstly they discovered the simple patterns using existing techniques, 
then combine these patterns using the composition and some rules like Branching and Sequencing 
rules.

Temporal specification expresses formal correctness requirement of an application’s ordering 
of specific actions and events during execution, they discovered patterns from traces of execution or 
program source code; The simples patterns are represented using regular expression (ab)* or (ab*c)* 
and their representation using finite state automaton, after they combine simple patterns to construct 
a temporal specification using a finite state automaton.

G.Greco et al. (2006) discovered several clusters by using a clustering technique, and then they 
calculate the pattern from each cluster, they combine these patterns to construct a final model, they 
discovered a workflow scheme from, and then they mine a workflow using a mine workflow algorithm, 
after they define many clusters from a log traces by using clustering technique and process discover 
algorithm and some rules cluster.

Then they use a find features algorithm to find patterns of each cluster, finally they combine 
these patterns to construct a completely hierarchical workflow model.

In their clustering algorithm, clusters reflect only structural similarities among traces; they say that 
in future works extending their techniques to take care of the environment so that clusters may reflect 
not only structural similarities among traces, but also information about, e.g., users and data values.

H.R. Motahari-Nezhed et al. (2008) use a service conversation log; first they split a log into 
several partitions, second they discovered a model from each partition, and third, they annotate the 
discover protocol model with various metadata to construct a protocol model from real-word service 
conversation logs.

The protocol is the specification of all possible conversations that a service can have with its 
partners and the conversation consists of a sequence of messages exchanged between two or more 
services.

During the split they discovered a simple precise protocol models by analyzing messages 
sequences in the log, they eliminate conversations considered noisy or not presented in the log; they 
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discovered a protocol with various metadata including state and transition supports to get a final 
protocol model of the log a most generalized model based splitting.

Li Li, Xiangfeng Luo, and Haiyan Chen (2015) Proposed two clustering-based student grouping 
methods which automatically group students for all kinds of organizational learning, they say that 
they are flexible, comprehensive, and timely compared with manual group methods;

Their general grouping method consist to divide students into groups by their teacher manually, 
which is not timely or accurate. They say that overcome the shortcomings of manual methods, their 
paper proposes an automatic grouping method based on clustering technologies. In first time, “the 
student profile is built to model the student’s knowledge level, which can be updated based on the 
results of examinations automatically. Then, to meet the different teaching goals, two student clustering 
methods are proposed: similarity student clustering and complementation student clustering” (Li, Luo, 
& Chen, 2015). Last, their proposed methods are evaluated by comparing the students of clustered 
groups with those of the manual groups in the learning effectiveness. Their results show that their 
methods are flexible, comprehensive, and timely compared with manual group methods. Knowledge 
level, which can be updated based on the results of examinations automatically. Then, to meet the 
different teaching goals, two student clustering methods are proposed: similarity student clustering 
and complementation student clustering. At last the proposed methods are evaluated by comparing 
students of clustered groups with those of the manual groups in the learning effectiveness (Meddah 
& Belkadi, 2018)

“Mining frequent patterns and finding associations among them require handling large and 
distributed databases. As FP-tree considered being the best compact data structure to hold the data 
patterns in memory there has been efforts to make it parallel and distributed to handle large databases” 
(Itkar & Kulkarni, 2013). However, it incurs lot of communication over head during the mining. 
Parallel and distributed frequent pattern mining algorithm using Hadoop Map Reduce framework is 
proposed, which shows best performance results for large databases. Proposed algorithm partitions 
the database in such a way that, it works independently at each local node and locally generates the 
frequent patterns by sharing the global frequent pattern header table. These local frequent patterns 
are merged at final stage (Itkar & Kulkarni, 2013).

This reduces the complete communication overhead during structure construction as well as 
during pattern mining. The item set count is also taken into consideration reducing processor idle 
time. Hadoop Map Reduce framework is used effectively in all the steps of the algorithm. Their 
experiments are carried out on a PC cluster with 5 computing nodes which shows execution time 
efficiency as compared to other algorithms. Their experimental result shows that proposed algorithm 
efficiently handles the scalability for very large data bases (Itkar & Kulkarni, 2013; Deng & Lv, 2015; 
Meddah & Belkadi, 2018).

Ranjan and Bhatnagar (2010) present the advantages of the application of data mining techniques 
in the management of client relationship in the financial sectors like banking, forecasting stock market, 
currency exchange rate and bank bankruptcies, say they; there are a big concurrence in the society 
financial sectors, and they find a difficult to sustain the ever-changing behavior of the customer.

“Data mining techniques is helping the firms to achieve profitable and efficient CRM by providing 
them with advance techniques to analyze the already existing data in the databases of the firms using 
the complex modeling algorithms” (Ranjan & Bhatnagar, 2010); their work demonstrated that data 
mining is able to automate the process of searching to mountain of customer’s related data to find 
patterns that are good predictors of the behaviors of the clients.

Authors propose an idea of how data mining provide the increased customer, and minimize 
the risk involved in the financial sectors to obtain the advantages and conclude by providing the 
limitations of opportunities in the field.

Processing and analysis of big data can be problematic, it refers to data is so large that it exceeds 
the processing capabilities of traditional systems, it can be awkward work and the storage (Hsu, 
Slagter, & Chung, 2015).
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MapReduce is a recent programming model that can handle big data. MapReduce achieves this by 
distributing the storage and processing of data amongst a large number of computers (nodes). However, 
this means the time required to process a MapReduce job is dependent on whichever node is last to 
complete a task. Heterogeneous environments exacerbate this problem (Hsu, Slagter, & Chung, 2015).

Ching-Hsien Hsu et al. propose a method to improve MapReduce execution in heterogeneous 
environments.

Their work is done by dynamically partitioning data before the Map phase and by using virtual 
machine mapping in the Reduce phase in order to maximize resource utilization. Their Simulation 
and experimental results show an improvement in MapReduce performance, including data locality 
and total completion time with different optimization approaches.

“Big Data refers to the massive amounts of structured and unstructured data being produced 
every day from a wide range of sources. Big Data is difficult to work with and needs a large number 
of machines to process it, as well as software capable of running in a distributed environment” 
(Slagter, Hsu, & Chung, 2015). “MapReduce is a recent programming model that simplifies writing 
distributed programs on distributed systems. For MapReduce to work it needs to divide work amongst 
computers in a network. Consequently, the performance of MapReduce is dependent on how evenly 
it distributes the workload” (Hsu, Slagter, & Chung, 2015; Slagter, Hsu, & Chung, 2015). Authors 
(Slagter, Hsu, & Chung, 2015) propose an adaptive sampling mechanism for total order partitioning 
that can reduce memory consumption whilst partitioning with a trie-based sampling mechanism 
(ATrie). The performance of the proposed algorithm (Slagter, Hsu, & Chung, 2015) is compared 
to a state-of-the-art trie-based partitioning system (ETrie). Their experiments show the proposed 
mechanism is more adaptive and more memory efficient than previous implementations. Since 
ATrie is adaptive, its performance depended on the type of data used. A performance evaluation of 
a 2-level ATrie shows it uses 2.43 times less memory for case insensitive email addresses, and uses 
1,024 times less memory for birthdates compared to that of a 2-level ETrie. Their results show the 
potential of the proposed method.

MapReduce is an effective tool for processing large amounts of data in parallel using a cluster of 
processors or computers. One common data processing task is the join operation, which combines 
two or more datasets based on values common to each (Slagter, Hsu, Chung, & Yi, 2014).

Kenn Slagter et al. present a network aware multi-way join for MapReduce (SmartJoin) that 
improve performance and considers network traffic when redistributing workload amongst reducers. 
SmartJoin achieves this by dynamically redistributing tuples directly between reducers with an 
intelligent network aware algorithm. They show that their technique has significant potential to 
minimize the time required to join multiple datasets. Their evaluation, they show that SmartJoin 
has up to 39% improvement compared to the non-redistribution method, a 26.8% improvement over 
random redistribution and 27.6% improvement over worst join redistribution.

3. MAPREDUCE

Since its introduction just a few years ago, the MapReduce framework (Dean & Ghemawat, 2008; 
Itkar & Kulkarni, 2013; Tsourakakis, 2010) has become extremely popular for analyzing large datasets 
in cluster environments. The success of MapReduce stems from hiding the details of parallelization, 
fault tolerance, and load balancing in a simple programming framework.

The MapReduce Framework is increasingly being used to analyze large volume of data. Having 
several small processes, meaning these small processes or patterns can be computed in parallel.
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The MapReduce framework is implemented in the C programmer language, there are an open 
sources implementation called Hadoop, it uses a distributed processing architecture in which a task 
is mapped to a set of servers in then reduced down a single output set, one node, designed as the 
master node, controls the distribution of tasks. The following diagram shows a Hadoop cluster with 
the master node directing a group of slave nodes, which process the data.

MapReduce (Dean & Ghemawat, 2008; Itkar & Kulkarni, 2013; Bhuiyan & Al Hasan, 2015; 
Tsourakakis, 2010; Lan, Wang, Fong, Liu, Wong, & Dey, 2018) was originally proposed and used 
by Google engineers to process the large amount of data they must analyze on a daily basis.

The input data for MapReduce consists of a list of key/value pairs. Mappers accept the incoming 
pairs and map them into intermediate key/value pairs. Each group of intermediate data with the same 
key is then passed to a specific set of reducers, each of which performs computations on the data 

Figure 1. Principal of MapReduce (Dean & Ghemawat, 2008)

Figure 2. Master node directing a group of slave nodes (Shang, Jiang, Adams, & Hassan, 2009)
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and reduce it to one single key/values pair. The sorted output of the reducers is the final result of the 
MapReduce process.

To illustrate MapReduce, we consider an example MapReduce process, which counts the 
frequency of word lengths in a book. The example process is shown in Figure 3. Mappers accept 
every single word from the book and make keys for them. Because we want to count the frequency 
of all words with different length, a typical approach would be to use the length of the word as key. 
So, for the word “hello”, a mapper will generate a key/value pair of”5/hello”. Afterwards, the key/
value pairs with the same key are grouped and sent to reducers. A reducer, which receives a list of 
values with the same key, can simply count the size of this list, and keep the key in its output. If a 
reducer receives a list with key “5”, for example, it will count the size of the list of all the words that 
have as length “5”, if the size is “n”, it outputs an output pair “5/n” which means there are “n” words 
with length “5” in the book.

The power and challenge of the MapReduce (Shang, Jiang, Adams, & Hassan, 2009; Tsourakakis, 
2010; White, Yeh, Lin & Davis, 2010; Chaki, Dey, Shi, & Sherratt, 2019) model reside in its 
ability to support different mapping and reducing strategies. For example, an alternative mapper 
implementation could map each input value (i.e, word) based on its first letter and its length. Then 
the reducers would process those words starting with one or a small number of different letters (keys) 
and perform the counting. This MapReduce strategy permits an increasing number of reducers that 
can work in parallel on the problem. However; the final output needs additional post-processing in 
the comparison to the first strategy. In short, both strategies can solve the problem, but each strategy 
has different performance and implementation benefits and challenges.

The open source implementation of MapReduce” Hadoop” (Stewart, Trinder, & Loidl, 2011; 
Itkar & Kulkarni, 2013; Bhuiyan & Al Hasan, 2015) is supported by yahoo and used by Amazon, 
AOL, Baidu and a number of other companies for their distributed solutions. Hadoop can run on 
various operating systems such as Linux, Windows, FreeBSD, Mac OSX and OpenSolaris. It doesn’t 
only implement the MapReduce model, but also provides a distributed file system, called the Hadoop 

Figure 3. Example MapReduce process for counting the frequency of word lengths in a book (Shang, Jiang, Adams, & Hassan, 2009)



International Journal of Rough Sets and Data Analysis
Volume 6 • Issue 3 • July-September 2019

7

Distributed File System (HDFS). Hadoop supplies java interfaces to simplify the MapReduce model 
and to control the HDF programmatically. Another advantage for users is that Hadoop by default 
comes with some basic and widely used mapping and reducing methods, for example to split files 
into lines, or to split a directory into files. With these methods, users occasionally do not have to 
write new code to use MapReduce. We used Hadoop as our MapReduce implementation for the 
following four reasons:

3.1. Hadoop is Easy to Use
Researchers do not want to spend considerable time on modifying their mining program to make it 
distributed. The simple MapReduce java interface simplifies the process of implementing the mappers 
and reducers (Tsourakakis, 2010; Koundinya, Sharma, Kumar, & Shanbag, 2012).

3.2. Hadoop Runs on Different Operating Systems
Academic research labs tend to have a heterogeneous network of machines with different hardware 
configurations and varying operating systems. Hadoop can run on most current operating systems 
and hence to exploit as much of the available computing power as possible (Koundinya, Sharma, 
Kumar, & Shanbag, 2012; Meddah & Khaled, 2016).

3.3. Hadoop Runs on Commodity Machines
The largest computation resources in research labs and software development companies are desktop 
computers and laptops. This characteristic of Hadoop permits these computers to join and leave the 
computing cluster in a dynamic and transparent fashion without user intervention (Shang, Jiang, 
Adams, & Hassan, 2009; Seki, K., Jinno & Uehara, 2013; Koundinya, Sharma, Kumar, & Shanbag, 
2012)

3.4. Hadoop is Mature and an Open Source Systems
Hadoop has been successfully used in many commercial projects. It is actively developed with 
new features and enhancements continuously being added. Since Hadoop is free to download and 
redistribute, it can be installed on multiple machines without worrying about costs and per seat 
licensing.

Based on these points, we consider Hadoop as the most suitable MapReduce implementation 
for our research.

4. PROCESS MINING

Recently, process mining has become a vivid research area (Van der Aalst & Weijters, 2004; Van 
der Aalst, Weijters, & Maruster, 2004). The basic idea of process mining is to diagnose business 
processes by mining event logs for knowledge. Process mining techniques and tools provide the means 
for discovering process, control, data, organizational, and social structures from event logs (Van der 
Aalst, 2004; Meddah & Belkadi, 2018).

It provides an important bridge between data mining and business process analysis (Weske, 2012; 
Gao, 2013; De Weerdt, Schupp, Vanderloock, & Baesens, 2013; Karaa & Dey, 2017), and even allow 
for extracting information from event logs.

The idea is that process mining is:
Process Discovery: What processes are executed in our company, supported by enterprise 

information systems (ERP, BPM, total ad-hoc, e-mail).
Conformance checking: Business processes are executed according to the rules defined, or 

human variants exist.
Performance analysis: Where are the bottlenecks?
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Process prediction: When will the process end?
Process improvement: How to redesign a process?
For example, the audit trails of a workflow management system or the transaction logs of 

an enterprise resource planning system can be used to discover models describing processes, 
organizations, and products. Moreover, it is possible to use process mining to monitor deviations (e.g., 
comparing the observed events with predefined models or business rules in the context of SOX).” 
(Versteeg & Bouwman, 2006; Zhang, Zhu, Chen, & Yang, 2015).

In addition, Process mining is interesting (Versteeg & Bouwman, 2006):
In enterprise architecture, when analysts and people who work in your company lost time going 

fishing for processes that exist, in order to establish process and system architecture. Process Mining 
plays an indispensable role in the discovery of true enterprise architecture.

Process Conformity, how many times people discovered that the processes are not performed 
according to the rules (our human nature love finding new ways to execute). This does not mean 
that the process should be executed according to the rules, because sometimes the rules were not 
correctly set up.

Process optimization: People that has the experience to perform process analysis by looking at 
process flows usually indicate easily where are the bottleneck, duplication, repetition, but nowadays 
(!) in the world of knowledge management where flows do not dictate the manner of execution is 
necessary to sit side by side with the people who perform work to understand what are the obstacles 
(in a large company this is a daunting task). But it is also true that normally escapes analysis teams 
some of the problem sources, or because there are based opinions, or simply … bad reasoning 
(Meddah, Belkadi, & Boudia, 2016).

Business Intelligence helps to understand how we do things but does have predictive capabilities 
needed to understand how work could be performed.

4.1 Business Process
Business process is a set of activities occurring within a company that lead to a specific end. Most 
often, it focuses on meeting the needs of the customer and delivering a good or service that will fulfill 
that need. This process is actually often a collection of interrelated processes that function in a logical 
sequence to achieve the ultimate goal (Meddah & Belkadi, 2018; De Weerdt, Schupp, Vanderloock, 
& Baesens, 2013; Zhang, Zhu, Chen, & Yang, 2015).

The log files correspond to the actions or traces of the business process. The following example, 
which is very simple, represents a sequence of characters:

1x Case1 A B C D E G
1x Case2 A C B D G
1x Case3 A E D
Simple Log File
A= Send e-mail, B= check credit, C= calculate capacity, D= check system, E= accept, F= 

reject, G=send e-mail.
There are many techniques to discover micro patterns from event log or process traces, the next 

section describes how we mine small patterns from business process.

5. IMPLEMENTATION AND RESULTS

5.1 Implementation and Experimental Setup
We implemented our approach in the java programing language. The first phase, which consist of 
mining micro patterns, is performed by an existing symbolic specification-mining algorithm (Gabel 
& Su, 2008; Itkar & Kulkarni, 2013; Tsourakakis, 2010; Meddah & Belkadi, 2017; Van der Aalst, 
2015). This algorithm leverages Binary Decision Diagrams (Bryant, 1986; Seki, Jinno, & Uehara, 
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2013; Ranjan & Bhatnagar, 2010) to maintain a compact state throughout its execution, despite 
simultaneously tracking up to billions of potential micro patterns. This algorithm is currently the 
most scalable pattern-based approach, and it is the only algorithm capable of scalably mining micro 
patterns with alphabets of size three (Meddah & Belkadi, 2018; Wang, 2014; Wang, & Wiebe, 2014).

Our Hadoop installation is divided into three steps; first is deployed on five computers in a local 
network. The five computers have an Intel Core I5 3210M @ 2.5 GHz CPU with 8 GB Ram memory. 
The second phase is deployed on ten computers. The third step is deployed on twenty computers. In 
the second and third steps, the computers have the same characteristics of the five computers.

Our small patterns were represented by using regular expression or their finite state automaton, 
to compose these small patterns, we use the standard algorithm for finite state automaton, using the 
following rules:

Definition (Projection). The projection π of a string s over an alphabet ∑, π∑ (s), is defined as 
s with all letters not in ∑ deleted.

The projection of a language L over ∑ is defined as π∑ (L) = {π∑ (s) | s є L}.
Definition (Specification Pattern). A specification pattern is a finite state automaton A= (Q, ∑, 

δ, q0, F), where Q is a finite set of states, ∑ is a set of input symbols, δ: Q x ∑ → Q is the transition 
function, q0 is the single starting state, and F is a set of final states. A pattern is satisfied over a trace 
T with alphabet ∑’ ⊇ ∑ if π∑ (T) є L (A).

Definition (Expansion) (Gabel and Su, 2008, §2.6). Assume a regular language defined by finite 
state automaton A= (Q, ∑, δ, q0, F). The expansion of (L (A)) over an arbitrary alphabet ∑’, written 
E∑’ (L (A)), is the maximal language over ∑ ∪∑’ whose projection over ∑ is L (A).

An automaton accepting E∑’ (L (A)) can be constructed by first duplicating A and then adding 
a looping transition δ (q, a) = q to each state q for each letter a ∈∑’\∑.

Expansion can be thought of maximal inverse of projection. For example, an expression 
corresponding to E {a, b, c} ((a b)*) is c*(a c*b c*)*.

Note that projecting this new language over {a, b} yields the original language, (a b)*. The 
composition of two patterns is defined as follows:

Definition (Composition). The composition of two patterns A1 and A2 is the intersection of the 
expansion of each pattern over their combined alphabets, E∑1 (A1) ∩E∑2 (A2).

Intuitively, the composition of two patterns defines a language of traces in which both patterns 
hold.

We could use this general definition to arbitrary compose patterns by using standard algorithms 
for finite state automaton manipulation. However, in general, performing these pairwise compositions 
directly are undesirable. Given a reasonably large set of patterns, the finite state expansion, intersection, 
and minimization operations become more expensive as the automata grow.

There is some difficulty of treatment with the use of those rules, however, we use some other 
rules used by Gabel and Su (2008) in their framework Javert.

They recognize special cases of composition in which the result of composition is compact 
and intuitive. Then they formulate these cases as inference rules, which leads to straightforward 
implementation in which composition is a constant time operation.

They suggest two rules: the branching rule and the sequencing rule:
Branching Rule describes the composition of two patterns with identical “endpoint”, i.e., the 

first and the last letters of a single iteration of the pattern. Defining ∑’ as {a, b} ∪∑L1∪∑L2, the 
correctness of the branching rule follows:

E∑’(aL1*b)*∩E∑’ (aL2*b)*= (a(L1|L2)*b)* (Gabel and Su, 2008, §3.5)	

This rule performs the composition, of two patterns that describe legal operations at the same 
logical state. For example, from the patterns: [Call answer* Close]*, and [Call not answer* Close]*

We can infer a third pattern [Call (answer | not answer)* Close]*
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Sequencing Rule describes the sequencing of two patterns with compatible endpoints.as with 
the previous rule, L1 and L2 must have disjoint alphabets, which must in turn be disjoint from {a, 
b,c}. Redefining ∑’ as {a, b, c} ∪ ∑L1∪∑L2, the correctness of the sequencing rule follows from 
the following fact:

E∑’(a L1 b)*∩E∑’(b L2 c)*∩E∑’(a c)* = (a L1 b L2 c)* (Gabel and Su, 2008, §3.6)	

Continuing the earlier example, from the patterns:

[Call (answer | not answer)* Close]*, [Connect Call]*, and [Connect close]*	

We can infer a fourth pattern [Connect Call (answer | not answer)* Close]*
Both of these rules are general; they apply to both micro patterns and any intermediate assembly 

thereof.
For the second party, we computed and composed the small patterns in parallel with the use of 

MapReduce framework.
In the MapReduce implementation, we have two steps: the Map step and the Reduce step; we 

consider the mining Patterns as the Map step, and compose patterns as the Reduce step.
As an input we have log file of two applications, in this log file we have all applications traces, 

from those traces we mine in parallel small patterns, having <P, Value>, Patterns as the key and 
their values. In the Map step we mine all possible patterns, there are two types of patterns (ab)* and 
(ab*c)*; P is a small pattern and value is the number of patterns, in this step we have many cases of 
<P, Value>. In the reduce step we have only the result of patterns <P1, Value> and <P2, Value>, 
after we compose them in parallel in order to get the final pattern that represents the whole model of 
the process, this model generates a lot of cases, Unfortunately there are two cases can’t be generated 
by our approach.

Our algorithm is an amelioration of existing techniques by using MapReduce:
Repeat the process for all application

Input 
Process Traces or the log files of Applications 
Mapper 
Pattern 1, value 
………………. /*Pattern 1= (ab)* */ 
Pattern 2, value 
………………. /*Pattern 2= (ab*c)* */ 
Reducer 
Pattern 1, Values 
Pattern 2, Values 
Composition 
Compose the patterns using standard Algorithms of finite state 
automaton, and the sequencing, branching rules 
Output

The workflow how represents the actions of users for three web applications.
Figure 4 represents our MapReduce approach; P1 and P2 are the small mining patterns.
The next section presents our result in all steps.

5.2 Results
In first time we used a log file of size 10 GB; Table 1 presents the result of our approach without using 
MapReduce; we used a log file of size 10 GB of two Applications Skype and Viber. The number of 
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traces is the actions effected, and total trace events are the number of all actions contained in the log 
file, we know that we have two steps; the pattern mining and the composition of patterns whom are 
executed in limited times.

Table 2 presents the result of our approach using MapReduce distributed in five (05) computers 
with the same applications and the log file size.

Figure 4. The approach architecture using MapReduce

Table 1. Trace data and analysis times

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 825,458,970 5432,8s 462,0s

Viber 8 332,697,321 3951,0s 589,4s

Table 2. Trace data and analysis times with using MapReduce in five machines

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 825,458,970 2092,5s 298,0s

Viber 8 332,697,321 1901,0s 222,1s
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Table 3 presents the result of our approach using MapReduce distributed in ten (10) computers 
with the same applications and the log file size.

Table 4 presents the result of our approach using MapReduce distributed in twenty (20) computers 
with the same applications and the log file size.

In second time we used the same clusters with log file of size 18 GB;
Table 5 presents the result of our approach without using MapReduce; we used a log file of size 

18 GB of two Applications Skype and Viber. The number of traces is the actions effected, and total 
trace events are the number of all actions contained in the log file, we know that we have two steps; 
the pattern mining and the composition of patterns whom are executed in limited times.

Table 3. Trace data and analysis times with using MapReduce in ten machines

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 825,458,970 1431,3s 153,0s

Viber 8 332,697,321 1052,8s 143,7s

Table 4. Trace data and analysis times with using MapReduce in twenty machines

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 825,458,970 802,9s 99,8s

Viber 8 332,697,321 709,0s 82,3s

Table 5. Trace data and analysis times

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 935,478,970 7442,8s 982,0s

Viber 8 424,707,321 5951,0s 789,4s
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Table 6 presents the result of our approach using MapReduce distributed in five (05) computers 
with the same applications and the log file of size 18GB.

Table 7 presents the result of our approach using MapReduce distributed in ten (10) computers 
with the same applications and the log file of size 18GB.

Table 8 presents the result of our approach using MapReduce distributed in twenty (20) computers 
with the same applications and the log file of size 18GB.

6. CONCLUSION

A scalable pattern mining solution should be efficient, scalable. In this paper, we propose to use 
MapReduce as a general framework to mining micro patterns from process traces. To validate our 
approach, we presented our experience of mining small patterns and compose them. Our experiments 
demonstrate that our solution minimizes the execution time, and we conclude that the parallel compute 
have an inverse relationship with the execution time, with the grow of the machines, the time execution 
decreases. In addition to the existence of a proportional relationship between the grow of computers 
and the efficiency of treatment.

There are a number of directions for future work, including and evaluating our method in a big 
number of computers in cloud, also for big log file size of different applications.

Table 6. Trace data and analysis times with using MapReduce in five machines

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 935,478,970 4201,7s 541,8s

Viber 8 424,707,321 3151,8s 498,7s

Table 7. Trace data and analysis times with using MapReduce in ten machines

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 935,478,970 2092,5s 368,0s

Viber 8 424,707,321 1701,0s 302,1s

Table 8. Trace data and analysis times with using MapReduce in twenty machines

Application Num. of Traces Total Trace Events Execution Time

Pattern Mining Composition

Skype 11 935,478,970 999,9s 128,7s

Viber 8 424,707,321 896,9s 131,1s
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