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ABSTRACT

The detection of underwater objects in a video is a challenging problem particularly when both the 
camera and the objects are in motion. In this article, this problem has been conceived as an incomplete 
data problem and hence the problem is formulated in expectation maximization (EM) framework. In 
the E-step, the frame labels are the maximum a posterior (MAP) estimates, which are obtained using 
simulated annealing (SA) and the iterated conditional mode (ICM) algorithm. In the M-step, the camera 
model parameters, both intrinsic and extrinsic, are estimated. In case of parameter estimation, the 
features are extracted at coarse and fine scale. In order to continuously detect the object in different 
video frames, EM algorithm is repeated for each frame. The performance of the proposed scheme 
has been compared with other algorithms and the proposed algorithm is found to outperform.

Keywords
EM algorithm, Feature Extraction, Iterated Conditional Mode, MAP Estimation, Model Camera Calibration, 
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1. INTRODUCTION

The problem of underwater video object detection has received considerable attention during last 
decades and appreciable progress has been made in this direction (Emberton, Chittka, & Cavallaro, 
2018; Hossain, Alam, Ali, & Amin, 2016; Mohapatra, Mahapatra, Mahapatra, & Swain, 2015; Walther, 
Edgington, & Koch, 2004).The underwater moving object suffers from limited range of visibility, 
low contrast, non-uniform lighting, blurring, bright artefacts, colour diminished and noise (Ancuti, 
Ancuti, Haber, & Bekaert, 2012; Emberton et al., 2018; Zhang et al., 2017). An automated system 
for detection and tracking of underwater moving objects has been developed, which of interest to the 
oceanographic researchers ((Mohapatra et al., 2015). Variable lighting condition and the presence 
of noise from high contrast debris pose challenge for object detection and tracking. Walther et al. 
(Walther et al., 2004) have proposed a novel method to overcome the above issues. Negrea et al. 
(Negrea, Thompson, Juhnke, Fryer, & Loge, 2014) have presented an adaptive background subtraction 
algorithm for detection and motion prediction which is used for tracking. Design of this fully automated 
system removes the frames without any activity and hence there is cost reduction for fish monitoring.

This problem of underwater object detection can be of two types. In first case, the object moves 
while the camera is static, and in second case, both the object and camera are in motion. Often in real 
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world scenario, the second case is more prevalent and challenging than the first one. This is valid 
in a real-world scenario, where neither the camera model parameters nor the object is known, this 
motivated us to address the issue in this research work.

In this paper, we have attempted to detect the underwater video objects under varying illumination 
condition. The problem is formulated as an incomplete data problem and the Expectation and 
Maximization (EM) approach has been adopted to solve the problem. Our main contributions are: 
(i) three new Spatio Temporal MRF models for classification of pixel labels in the E step, (ii) new 
features based model parameter estimation using pipelining approach in the M step, (iii) a continuous 
Underwater video object detection scheme using EM framework, and (iv) the EM algorithm in 
Multiresolution framework. In the proposed framework, no a priori knowledge of the camera model 
parameters is necessary. In E-step of the EM algorithm, the video object is segmented based on the 
video frame model. The problem of frame label estimation is formulated as a Maximum a posterior 
(MAP) estimation problem and these MAP estimates are obtained by an algorithm which is a 
combination of Simulated Annealing (SA) and the Iterated Conditional Model (ICM) algorithm. 
Subsequently, in M-step, the estimated frame labels are used to estimate the intrinsic and extrinsic 
parameters of the camera model. The proposed features are extracted from the labelled frames and 
weighted appropriately before being fed to the pipeline. These weighted corner features are used to 
estimate the camera intrinsic and extrinsic parameters using the 2D optimization method (Zhou, Cui, 
Peng, & Wang, 2012). E step and M step are repeated to continuously detect the video objects with the 
moving camera. The camera calibration errors have been computed and the estimated parameters are 
chosen based on the minimum calibration error. The segmentation accuracy has been validated by four 
quantitative measures. The advantage of the proposed multiresolution framework is that the execution 
time substantially reduced as compared to considering the fine scale images. The performance of the 
proposed algorithm has been compared with the Stolkin’s E-MRF algorithm (Liu, Dai, Wang, Zheng, 
& Zheng, 2016; Prabowo, Hudayani, Purwiyanti, Sulistiyanti, & Setyawan, 2017; Rustam Stolkin, 
Greig, Hodgetts, & Gilby, 2008) algorithm and found to be superior.

Rest of the paper is organized as follows. The related research works are presented in Sec. 2. The 
proposed schemes are discussed in Sec. 3 and the EM framework is presented in Sec. 4. The new 
Spatio Temporal MRF models are presented in the Estep of Sec. 5. The M-step with the proposed 
weighted feature along with parameter estimation algorithm is provided in Sec. 6. Results and necessary 
discussions are presented in Sec. 7. Finally, conclusions are presented in Sec. 8.

2. RELATED WORK

Capturing the underwater object motion with the camera inside water is a real world problem and 
has been studied in detail by Amanda et al.(Silvatti et al., 2013) . Recently, the notion of multi view 
geometry, specifically two views have been employed for two new formulations, one for global 
optimal solution and the other for outliers (Kang, Wu, Wei, Lao, & Yang, 2017). Underwater object 
tracking in real time is often necessary and toward this end few research efforts have been directed 
for practical applications (Cho, Jung, Lee, Rim, & Lee, 2016; D. Zhang, Kopanas, Desai, Chai, & 
Piacentino, 2016) .

Many real-world underwater object detection problem have been addressed using EM framework 
(Chandan & Bala, 2009; Dempster, Laird, & Rubin, 1977). In the E-step of the EM framework, 
image modelling plays a crucial role. In this regard, Markov Random Field (MRF) model has been 
extensively used as the a priori model of the image labels (Geman & Geman, 1987; Li, 1994). 
Iterated Conditional Mode (ICM) algorithm is used (Besag, 1986) for simultaneous estimation 
of MRF model parameters and the image labels. Stolkin et al. (Stolkin, Hodgetts, Greig, & Gilby, 
2007) have proposed Extended MRF (E-MRF) based model considering the interaction between 
the pixels of the observed frame and the corresponding pixels of predicted frame. The authors have 
used the E-MRF model develop a tracking algorithm that simultaneously estimates camera model 
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parameters and the class labels of video sequences (Rustam Stolkin et al., 2008). Recently, in order to 
improve the performance of Stolkin’s algorithm, Panda et al. (Panda & Nanda, 2015) have proposed 
weighted oriented feature-based camera model parameter estimation and object detection. In order to 
detect moving object underwater H. Liu et. al (Liu et al., 2016) propose an approach which combine 
background subtraction and three frame difference considering the camera to be fixed. Similarly 
(Prabowo et al., 2017) addressed an adaptive background modelling method to detect moving objects 
on an underwater video. It has been observed that time varying background in a video sequence 
poses a challenge which has been addressed by Kalyan et al. (Halder, Tahtali, & Anavatti, 2016). 
They have identified and tracked the moving objects by the thresholding algorithm and Regression 
Neural Network. A new fish detection algorithm has also been implemented to identify and localize 
fish occurrences in each frame, under partial occlusion, and amidst dynamic texture patterns formed 
by whirls of sand on the seabed (Boudhane & Nsiri, 2016).

In the M-step of EM framework, the accuracy of estimation of camera parameters greatly depends 
on proper selection of features. The improved Harris corner detection algorithm has been used to extract 
features (Qiao, Tang, & Li, 2013) with reduced time for detection. As far as parameter estimation is 
concerned, Zhang (Z. Zhang, 2000) has proposed a closed form solution-based technique where the 
camera parameters can be estimated using the observed planar pattern which may move freely. Usually, 
camera calibration involves two steps; the first step is the linear computation of initial parameters 
values followed by the computation of the final parameters by nonlinear optimization. As an extension, 
Heikkila et al. (Heikkila & Silven, 1997) have proposed a four step procedure which is an extension of 
the two step method. Zhou et al. (Zhou et al., 2012) have proposed a novel optimization algorithm for 
estimating camera parameters by minimizing the distance error between calculated point and the real 
point in 3D measurement coordinate system. They have employed Levenberg-Marquardt algorithm 
to update the camera parameters. By and large, EM algorithm has been employed to simultaneously 
estimate camera parameters and pixel labels of frames to continuously detect the moving object with 
the camera in motion. Our proposed scheme presented in Sec.3 is based on EM framework.

3. PROPOSED SCHEME

We have considered the underwater object detection problem when both camera and the object are 
in motion. Since both camera and object are in motion, the estimation of camera model parameters 
needs the previously available segmented frames. The segmentation of a given frame depends 
upon the a priori estimated camera parameters. Thus, it is conceivable that estimation of the image 
labels and the camera parameters are interdependent. In this regard, we have cast the problem as an 
incomplete data problem and employed the Expectation and Maximization (EM) algorithm which 
is presented in Figure 1.

Initially, the current observed frame together with the previously available segmented frames are 
used for spatio temporal MRF modelling. The segmentation problem is formulated as pixel labelling 
problem and the pixel labels are estimated using MAP estimation criteria. The MAP estimates yield 
the current segmented frame and the features that have been extracted from this frame are used with 
the features of the previous frames available in the pipeline. Features corresponding to different 
frames are used to estimate the camera model parameters. The extrinsic parameters of the camera 
model are used to transform the current segmented frame and the transformed frames are used for 
spatio temporal modelling of the subsequent frame. This process of estimation of frame labels and 
camera parameters is repeated for object detection till all the frames are exhausted.

The proposed scheme in EM framework is presented in Figure 2.
In the E-step, the frame labels have been estimated using MAP estimation principle while in 

the M-step the camera model parameters are estimated. This is shown in Figure 2, where the given 
frame is modelled as spatio temporal MRF and the MAP estimation is obtained using the simulated 
annealing and ICM algorithm. The camera model parameters, both extrinsic and intrinsic ones, are 



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 4 • October-December 2020

4

estimated using the features/weighted features computed using the segmented frames. The parameter 
estimation step works using the notion of pipelining. The parameters are estimated using the features 
of the current frame as well as the features of previously available transformed frames. These 
transformed frames are obtained by convolving the prior segmented frames with the corresponding 
estimated rotational parameters. The features of the transformed frames and the current frame have 
been used to estimate the intrinsic and extrinsic parameters. Using these estimated parameters, the 
segmentation is obtained by the MAP estimation. In parameter estimation step, we need features of 
five frames to estimate the camera model parameters. As shown in Figure 3,

at time instant ‘t’ all the slots have been filled with the features of different frames and the 
parameters have been estimated based on the available features. Because of availability of the features 

of all frames, the error in the parameter estimation is expected to be low. At t
th

+( )1  time the next 
features of frames are available and accordingly the parameters will be estimated accurately, 
particularly the extrinsic parameters will be updated while the intrinsic parameters will not change. 
The parameters estimated with the available features in the pipeline are obviously not the correct 
estimates and the estimates are presented in Table 1 and Table 2. Subsequently, in the next time slot, 
the features of the view i.e view 1 are shifted to the next stage and the features of view 2 are input to 
the first stage of the pipeline. The camera parameters thus estimated are tabulated in Table 1 and 
Table 2.

Figure 1. Schematic representation of the proposed scheme using EM framework
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4. EM FRAMEWORK

The EM algorithm, as applied for the incomplete data problem consists of two steps, the Expectation 
step and the Maximization step. In the Expectation step, estimate of the complete data is obtained 
from the incomplete data, while in the Maximization step, these estimated complete data are used to 
maximize the likelihood estimate of the camera model parameters. These two steps are alternated till 
the convergence. At convergence, the camera parameter estimates are the maximum likelihood 
estimates and the label estimates are the MAP estimates. In the E step, the expectation of the joint 
probability distribution of the observed image X and the unobserved label Z given the observed image 
X and the current estimates of the model parameter θ .

That is in E step, the following is evaluated:

E P X Z X
e

nlog , | | , ˆθ θ( )



 	 (1)

In the M-step, the parameter vector θ  is estimated to be θn+1  by maximizing the expectation of 
this joint probability. This is tantamount to maximizing the likelihood function P X Z n, |θ +( )1 given 

the observed image X and  θn . Since log is a monotonic function, often in practice the likelihood 

Figure 2. Block diagram of the proposed approach
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Figure 3. Notion of pipelining for camera model parameter estimation

Table 1. Intrinsic Parameter estimation with the notion of pipelining. (Frame 15-22 of Whalesharks in Philippines southern 
Leyte, Underwater video)

Frame Time View
f
x

(mm) f
y

(mm) u
0

(mm) v
0

(mm)

F
t−4

View 0﻿
View 1﻿
View 2﻿
View 3﻿
View 4

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

F
t−1

View 0﻿
View 1﻿
View 2﻿
View 3﻿
View 4

192.67﻿
192.67﻿
192.67﻿
192.67﻿

*

174.37﻿
174.37﻿
174.37﻿
174.37﻿

*

-23.11﻿
-23.11﻿
-23.11﻿
-23.11﻿

*

32.039﻿
32.039﻿
32.039﻿
32.039﻿

*

F
t

View 0﻿
View 1﻿
View 2﻿
View 3﻿
View 4

36.31﻿
36.31﻿
36.31﻿
36.31﻿
36.31

38.15﻿
38.15﻿
38.15﻿
38.15﻿
38.15

189.17﻿
189.17﻿
189.17﻿
189.17﻿
189.17

40.62﻿
40.62﻿
40.62﻿
40.62﻿
40.62
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function is maximized instead of actual function. Thus, in M step, θn+1  is obtained by maximizing 
the following:

E log P X Z X
e

n n( |, | ,ˆ̧ +





1 θ 	 (2)

This estimated θ̂n+1  is used in the E step to estimate the labels ẑ  at n
th

+( )1  instant and the 
process is repeated till convergence as shown in Figure 4.

Table 2. Extrinsic Parameter estimation with the notion of pipelining. (Frame 15-22 of Whalesharks in Philippines southern 
Leyte, Underwater video)

Frame Time View θ deg.( ) t
x

(mm) t
y

(mm) t
z

(mm)
Error of 

calibration

F
t−4

View 0﻿
View 1﻿
View 2﻿
View 3﻿
View 4

*
*
*
*

*
*
* .
*
*

*
*
*
*
*

*
*
*
*
*

*
*
*
*
*

F
t−1

View 0﻿
View 1﻿
View 2﻿
View 3﻿
View 4

93.25﻿
11.54﻿
13.09﻿
23.95﻿
*

308.50﻿
127.84﻿
261.16﻿
304.42﻿

*

177.87﻿
.275﻿
-.62﻿

38.57﻿
*

775.82﻿
294.89﻿
558.32﻿
678.93﻿

*

50.93﻿
15.37﻿
39.92﻿
45.9﻿
0.00

F
t

View 0﻿
View 1﻿
View 2﻿
View 3﻿
View 4

18.9﻿
10.24﻿
9.42﻿
4.2﻿
6.33

-448.88﻿
-565.16﻿
-291.84﻿
-381.21﻿
-412.91

30.44﻿
124.46﻿
-18.17﻿
-26.08﻿
4.12

116.95﻿
151.27﻿
82.30﻿
113.31﻿
119.09

34.86﻿
48.58﻿
65.65﻿
28.74﻿
35.76

Figure 4. Recursive estimation of camera parameter
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5. E-STEP

The hidden value i.e. the labels of the image “z” is estimated in the Expectation step. This is obtained 
by determining the following expected value.

E log P X Z X
e

k, | | ,θ θ( )



 	 (3)

The � ,log P X Z
e

|θ( )  is evaluated as follows. P X Z, |θ( )  is evaluated for every individual pixel 

and then summed over the entire image. For a given pixel at i j
th

;( )  location, the above joint density 
is evaluated as

P X Z P X Z P Z
i j i j

k
i j i j

k
i j

k
, , , , ,
, ,| | |θ θ θ( ) = ( )( ) 	 (4)

In Equation (4) P Z
i j

k
,
|θ( )  is the prior probability distribution function and assuming Z to be 

Spatio Temporal MRF, the prior probability P Z
i j

k
,
|θ( )  can be expressed as Gibbs distribution i.e

P z
e

Zi j
k

U Tzi j

( |
,

/

)
,

θ =
′

−

	 (5)

We assume the observed image process X is obtained from Z by a Gaussian degradation process. 
Hence P X x Z z

ij
k= =( )| ,θ  can be expressed as

P X z n Z z
ij ij ij ij

k= + =( )| ,θ or P n x z Z z
ij ij ij ij

k= − =( )| ,θ 	

Assuming n
ij

 to be Gaussian,

P X Z e
i j i j

x zij ij

, ,
,∨( ) =

− −( )









θ
πσ

σ1

2

2

22

	 (6)

Therefore,

P X Z e
i j i j

k

x zij ij

, ,
, |θ

πσ

σ

( ) =
− −( )









1

2

2

22 
−

−
′

e

Z

U Tzi j,
/

	 (7)

Considering � ’Z  as constant and T as unity, and taking logarithm of both sides of Equation (7),
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i j I
e i j i j

klog P X Z
,

, ,
,


∑ ( ) =|θ 	

i j k
i j i m j n i j i j

f Z Z f Z Z log
,

, , , ,
, , ˆ


∑ + +( )




+ ( )





γ γ σ
1 2

1

2
22

2

22
( )+

−( )X z
i j i j, ,

σ
	 (8)

Where, γ
1
 and γ

2
 are the weighting parameters fixed to deal with the poor visibility condition and 

f (.) denotes the pairwise clique potential function. Equation (8) is minimized to obtain �̂z . The value 
of ẑ  has been obtained by SA and ICM algorithm. With this estimated ẑ  labels the complete 
likelihood function E log P X Z X

e
k, ,| |θ θ( )



  has been maximized to obtain the estimate of parameter 

vector θ .
We have proposed the following three Spatiotemporal MRF models as the prior model for the 

image label Z.

5.1. Proposed Spatiotemporal MRF (ST-MRF) With First Order 
Spatial and Temporal Neighbourhood (1st Model)
In the E-step of the algorithm, the segmentation problem has been cast as a pixel labelling problem 
and the label estimates are obtained in MAP framework. In this context, the evaluation of the posterior 
probability requires the knowledge of the a priori model of the labels and the degradation process of 
the labels. The degradation process is assumed to be Gaussian and the a priori pixel label model is 
the spatiotemporal MRF model. The temporal frames are the previously transformed frames. Thus, 
the current frame at t and the transformed frames corresponding to (t-1) and (t-2) time instants are 
used for 2nd order spatiotemporal modelling. Analogously, first order spatiotemporal modelling uses 

the tth  frame together with the transformed frame at t
th

−( )1  instant. In the following, we present 
the spatiotemporal MRF modeling with first order Spatial and first order temporal neighbourhood.

Since observed video sequence x  is a 3D volume consisting of image frames in temporal direction, 
x
t
 denotes the frame at time t, and x

st
 denotes a site s  of the temporal frame x

t
 . Therefore, x

st
 

corresponds to the spatio- temporal coordinate of the grid (s, t). Let z  denotes the segmentation of 
video sequence x  and z

t
 is the segmentation of the x

t
th  frame. Z

t
has been assumed to be MRF and 

z
t
 is a realization of Z

t
 . This assumption of Markovianity is in the spatial direction. We have also 

assumed Markovianity in the temporal direction. As shown in Figure 5, we have shown one temporal 
frame at (t -1) time instant for considering 1storder temporal neighbourhood. Since we have assumed 
to have the Markov Model in both spatial and temporal direction, the Markovianity is satisfied for 
both spatial and temporal directions as well. In spatial direction

P Z z Z z r S s r
st st rt rt
= = ∀ ( ) ≠( )| ; , 	

P Z z Z z r
st st rt rt st
= = ( )( )| ;  η 	 (9)

Where, η
st

 denotes the neighborhood of s t,( )  and S M N= ×( )  denotes the lattice of  z
t
 . Figure 

5 shows the schematic representation of Spatio Temporal modeling but the local property in temporal 
direction is given as
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P Z z Z z q t s q V
st st sq sq
= = ≠ ∀( )( )| ; ; ,  	

P Z z Z z s q
st st sq sq st
= = ( )( )| , ,  η 	 (10)

Where, V  denotes the 3D volume of the video sequence. The priori probability can be expressed as 
Gibbs distribution and can be expressed as

P Z z
e

Zt t

U z Tt

=( ) =
′

− ( )/
	 (11)

Where, U z
t( )  is the energy function which can be expressed as

U z V z V z
t

c C
sc t

c C
tc t( ) = ( )+ ( )∑ ∑

 

	 (12)

Where,V z
sc t( )  denotes the clique potential in spatial domain while considering a single frame and 

is given by

Figure 5. Spatio Temporal MRF model with first order spatial and temporal neighbourhood
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V z
ifz z r t S

ifz z r t Ssc t
st rt

st rt

( ) =
+ ≠ ( )

= ( )







α , ,

, ,


0

	 (13)

Similarly, the clique potential function in temporal direction with first order neighbourhood can 
be expressed as

V z
ifz z s t V

ifz z s t Vtc t
st s t

st s t

( ) =
+ ≠ −( )

= −( )




−

−

β
,

,

, ,

, ,
1

1

1

0 1









	 (14)

Where, V Z
tc t( )  denotes the clique potential function in temporal direction.

5.2. Proposed Spatio Temporal MRF (ST-MRF) with First Order Spatial 
Neighbourhood (SN) and 2nd Order Temporal Neighbourhood (TN) (2nd Model)
Figure 6 shows the spatiotemporal MRF with first order Spatial neighbourhood and 2nd order 
temporal neighbourhood.

The first order spatial neighbourhood is presented in Equation 9 and for Figure 6 the local 
characteristic corresponding to temporal direction Markovianity is given by

P Z z Z z q t s q V
st st sq sq
= = ≠ ∀( )( )| ; ; ,  	

P Z z Z z s q
st st sq sq st
= = ( )( )| , ,  η 	 (15)

Where, η
st

 refers to the 2nd order neighbourhood structure. The energy function is given by

U z V z V z
t

c C
sc t

c C
tc t( ) = ( )+ ( )∑ ∑

 

	 (16)

V z
sc t( )  is same as defined in Equation 13 whereas there is clique potential functions which takes 

care of first order and 2nd  order terms. Hence, V V V
tc tc tc
= +

1 2
. V
tc1
� corresponds to first order term 

and is given by

V z
if z z s t V

if z z s t Vtc t
st s t

st s t
1

1

1

1

0 1
( ) =

+ ≠ −( )
= −( )


 −

−

β
,

,

, ,

, ,










	 (17)

and for 2nd  order term the potential function is defined as

V z
if z z s t V

if z z s t Vtc t
st s t

st s t
2

2

2

2

0 2
( ) =

+ ≠ −( )
= −( )


 −

−

β
,

,

, ,

, ,










	 (18)
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5.3. Proposed Spatio Temporal MRF (ST-MRF) With 2nd 
Order Spatial Neighbourhood (SN) and 2nd Order Spatio 
Temporal Neighbourhood (STN) (3rd Model)
For Spatial model, the local characteristic is same as Equation 9 but the local characteristic for the 
2nd order neighbourhood structure is given by:

P Z z Z z r s q t r q V
st st rq rq
= = ≠ ≠ ∀( )( )| ; , ; ,  	

P Z z Z z r q
st st rq rq st
= = ( )( )| , ,  η 	 (19)

Where, η
st

 denotes the 2nd  order neighbourhood structure. Figure 7 shows the Spatio Temporal 
structure with second order neighbourhood. The energy function U z

t( )  is given by

Figure 6. Spatio Temporal MRF with 1st order spatial neighbourhood and 2nd order temporal neighbourhood
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sc t
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 

	 (20)

The clique potential function for the first order neighbourhood will be same as Equation 12, but 
for second order neighbourhood the potential function consists of two interactions V

tc1
 and V

tc2
 

respectively for first order and 2nd  order neighborhood structure.
For the sake of clarity, they are separately presented as follows:

V
if z z s t r t V

if z z s t r ttc
st r t

st r t
1

1

1

1

0
=
+ ≠ ( ) −( )

= ( )
−

−

β
,

,

, , , ,

, , , ,



−−( )





 1 V

	 (21)

Figure 7. Spatio Temporal MRF with 2nd order spatial neighbourhood and 2nd order Spatio Temporal Neighbourhood
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
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


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	 (22)

6. M-STEP

We estimate the camera model parameters in the M-step.

ˆ ˆ[log ( , | ) | , ]�θ θ θθ
k

e
kargmax E P X Z X+ =1 	 (23)

The image labels ẑ  have been estimated in E step and these estimated labels have been used 
together with the observed frame X

t
 at tth  time instant to determine the estimate of the camera 

model parameters. The 2D optimization based method as proposed by Zhou et al. (Zhou et al., 2012) 
has been used to estimate the camera model parameters. This is tantamount to optimizing the likelihood 
function of 23. The observed frame  X

t
 and the estimated labels Ẑ

t
 are used in the 2D optimization 

method.
The feature points considered are the Harris corner points of the whale, which is shown in Figure 

8. These corner points are mapped into the camera coordinate plane and in the sequel to the image 
coordinate plane. We have not considered distortion and therefore the distance between the estimated 
image point in the image coordinate plane ˆ

�
i
u

 and real image point i
u

 is minimized. Hence the estimated 
point in the image coordinate ˆ

�
i
u

 is a function of intrinsic parameters f f u v
x y
, , ,

0 0( )  and extrinsic 

parameters R and t i.e. � , , , , ,ˆ
�
i
u x y
f f f u v R t= ( )0 0

 and the parameter vector θ = ( )f f u v R t
x y

T
, , , , ,

0 0
 . 

Therefore, in this case the problem is reformulated as

ˆ ˆargmin
θ

θ
= −

= =
∑∑
i

M

j

N

u u
i i

1 1

2 	 (24)

The estimated θ̂  provides us the estimated parameters � , , , , ,ˆ ˆ ˆ ˆ ˆ ˆf f u v R t
x y 0 0( ) . These parameters are 

used to transform the a priori segmented image to be used with the current image for spatiotemporal 
MRF modelling which is used to obtain the estimation of the labels in the E-step.

6.1. Proposed Weighted Feature for Parameter Estimation
The accuracy of the estimation of camera parameters greatly depends upon the appropriate feature 
points, which is evident from previous section. The movement of the object is in underwater and 
hence, the movement in each frame may lead to improper extraction of feature points. In order 
to extract proper feature points, we have used steerable pyramid filters with different angles for 
different frames. Steerable filters have been employed to obtain different features of a given frame 
with different orientation. This filter is recursive in nature and hence the k directional bandpass filter 
can be expressed as 

B u v HP f f s cos
m

km N
k, , ,( ) =












−











−
1

2

1 θ
π 	 (25)
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Where m = 0…k-1

S u v= +( )2 2
1

2 	 (26)

S is the radial variable in frequency space and θ =










−tan
v

u
1  is the angular variable in frequency 

space.
HP(a,b,f) is a high pass transfer function, raised to cosine.

0

1

2
1

1

;
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	 (27)

The Kernels at different angle have been applied to the considered frames for feature extraction.

Figure 8. This figure shows the step for 2D optimization of whale. Where I
w

 = World coordinate plane, I
c

 = Camera coordinate 

plane, i
u

 = image plane, O
c

 = optical center of the camera and z
c

 = optical axis of the camera lens.
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Harris corner detection algorithm has been the choice for detection of corner points. From 
a practical standpoint, it may be conceivable that accurate corners may correspond to sub-pixel 
coordinate positions instead of pixel coordinates. Hence, we have adhered to the improved Harris 
corner sub-pixel corner detection algorithm (Qiao et al., 2013) in different video frames. For a given 
frame, the corner points are weighted to take care of the orientation and movement. We have assigned 
different weight age to different frame’s feature points with a view to take care of the movements 
in different frames. We have extracted features at coarse resolution which are used for parameter 
estimation. The proposed framework with different models are used to obtain segmentation. Gaussian 
Pyramid (Karasaridis & Simoncelli, 1996) has been constructed based on following.

P I S G P I
Gaussian n Gaussian n

( ) = ↓ ( )( )
+1 σ * * 	 (28)

The operator S ↓  down-samples an image; the j, kth  element of S ↓  (I) is the 2 j, 2kth  element 
of I. The nth  level of a pyramid P(I) is denoted as P I

n
( ) . Gσ  is a linear operator that takes an image 

to the convolution of that image with a Gaussian. The frame no. 19 at different resolution is shown 
in Figure 9.

7. RESULTS AND DISCUSSIONS

We have considered different viewsrom two data sets, the first one is Whalesharks in Philippines 
southern Leyte, Underwater video while, the second one is from Creepy chimera/Nautilus live video. 
Since, our pipeline consists of five stages, we have considered eight views (frames) from the first 
data set and five views from the second data set.

Features, particularly the corner features are extracted to be used for parameter estimation. The 
transformed segmented frames have been passed through Steerable pyramid filter to have maximum 
exposure of the edges of the object. Thereafter, the corner features have been extracted using the 
improved Harris corner detection algorithm. The features corresponding to frames 15, 16, 17, 18, and 
19 are weighted with 0.4, 0.2, 0.1, 0.1, and 0.1, respectively. These weighted features in the pipeline 
are used to estimate the camera intrinsic and extrinsic parameters. The estimated intrinsic parameters 
corresponding to three image frame models are presented in Table 3. The corresponding calibration 
errors are tabulated in Table 4. As observed from Table 4 the calibration errors are less with oriented 
weighted features at coarse scale than those at fine scale.

Although this could be due to the reduced features at coarse scale, the minimum Calibration 
error is expected for accuracy of estimation of both intrinsic and extrinsic parameters. The intrinsic 

Figure 9. (a) Finer image (480 × 270) (b) Image down sample to (240 × 135) (c) Image down sample to (120 × 67) (d) Image down 
sample to (60 × 33)
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Table 3. Camera intrinsic parameters (in mm) with oriented weighted features using 2Doptimization at different scale for 1st, 
2nd and 3rd Model

1st Model 2nd Model 3rd Model

Methods Scale fx f y u0 v0 fx f y u0 v0 fx f y u0 v0

Whale sharks in Philippines southern Leyte, Underwater video

Stolkin’s 
Model

Fine 36.31 38.15 189.17 40.62

Oriented 
weighted 
features

Fine 36.39 37.62 174.60 38.72 37.12 35.82 156.43 38.72 37.85 35.83 156.43 39.72

Coarse 37.48 38.29 188.59 42.44 37.48 38.29 188.59 39.65 37.48 39.14 189.89 38.27

Creepy chimera/Nautilus live video

Stolkin’s 
Model

Fine 32.12 37.71 69.48 291.1

Oriented 
weighted 
features

Fine 32.32 32.11 75.60 297.1 32.78 33.71 72.91 297.1 33.52 33.95 73.63 297.9

Coarse 35.22 37.54 59.57 269.8 35.12 38.08 60.34 270.7 33.28 39.64 60.89 270.1

Table 4. Camera calibration error (in pixels) using with oriented weighted features in different scale using 2D optimization for 
1st, 2nd and 3rd model

1st Model 2nd Model 3rd Model

Original views Fine Coarse Fine Coarse Fine Coarse

Whale sharks in Philippines southern Leyte, Underwater video

View1 5.67 0.82 5.20 0.71 4.98 0.65

View2 7.01 3.44 6.72 2.99 6.41 2.75

View3 5.88 4.17 5.27 3.72 5.04 3.68

View4 6.88 3.46 6.48 2.33 6.11 2.07

View5 5.39 2.35 5.26 2.04 4.99 1.88

Creepy chimera/Nautilus live video

View4 4.02 3.40 3.33 3.01 3.02 2.01

View5 3.07 2.98 2.72 2.52 2.32 1.62

Table 5. Camera calibration error (in pixels) using 2D optimization for Stolkin’s Model

Original views View1 View2 View3 View4 View5

Whale sharks in Philippines southern Leyte, Underwater video

34.86 48.57 65.65 28.74 35.7

Creepy chimera/Nautilus live video

39.92 41.01 41.09 33.74 20.06
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parameters for weighted oriented features are presented in Table 3. The estimated parameters are 
within the available focal length range i.e 4.5mm- 54mm. The calibration error is minimum for the 
third model at coarse scale level thus confirming the use of coarse scale. Comparing results of Table 
4 and Table 5, the errors with the proposed models are very less than that of the Stolkin’s model. As 
observed from Table 11, the execution time for the frames at coarse scale is in the range of (8-11) 
seconds.

The segmentation results obtained by the proposed algorithms and the existing three algorithms 
are presented in Figure 10 - Figure 19. Figure 10 - Figure 17 correspond to results of 8frames of 
video of whale sharks in Philippines southern Leyte, while, Figure 18 and Figure 19 correspond 
32 and 33 frames of Creepy chimera/live video. Figure 10(f), 10(h) and 10(j) results correspond to 
finer scale while Figure 10(g), 10(i) and 10(k) correspond to coarse scale results. As observed from 
these figures for finer scale, there is an improvement with the 3rd model. As observed from Figure 
10(f), there are misclassified pixels on the tail of the whale, and the number of misclassified pixels 
reduces with 2nd order neighbourhood structure based (ST-MRF) which is observed from Figure 10(j). 
This could be attributed to the model with weighted features. The reconstructed fine scale images 
from the coarse scales results are shown in Figure 10(g), 10(i) and 10(k). As observed from these 
figures, some portions of the boundary are blurred and the misclassified pixels are more in case of 
1st order as compared to that of 2nd order ST-MRF case. This has been reflected on the Percentage 
of Misclassification Errors (PME) presented in Table 6.

The PME for Stolkin et al., Liu et al., and M. R. Prabowo et al. model is higher than those of 
the proposed models. Similar observations are also made for the results obtained for other frames 
presented in Figure 10 to Figure 17. This effect can also be observed from Table 6.

The proposed algorithms have also been tested for the second set of frames. The results 
corresponding to two frames have been presented in Figure 18 and Figure 19. As observed from the 
segmented results of Figure 18(d) - 18(i), sharp boundaries of the object could be retained in case 
of fine scale while the boundaries are blurred in case of coarse scales. Similar observations are also 
made for the results presented in Figure 19. Further, it is also observed that the set of results obtained 

Figure 10. View 1 (Frame 15 of Whale sharks in Philippines southern Leyte, Underwater video): (a) Original image; (b) Ground 
Truth; Segmented results using; (c) Stolkin et al.’s method; (d) H. Liu et al. (e) M. R. Prabowo et al. (f), (g) Proposed ST-MRF(1st 
model, finer scale & coarser scale) (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale) (j), (k) Proposed ST-MRF (3rd 
model, finer scale & coarser scale).
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for 3rd model is the best among all the three models. This notion has been reflected in the percentage 
of misclassification error presented in Table 6.

Figure 11. View 2 (Frame 16 of Whalesharks in Philippines southern Leyte, Underwater video): (a) Original image (b) Ground 
Truth; Segmented results using: (c) Stolkin et al.’s method (d) H. Liu et. al (e) M. R. Prabowo et al. (f), (g) Proposed ST-MRF (1st 
model, finer scale & coarser scale) (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale) (j),(k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).

Figure 12. View 3(Frame 17 of Whalesharks in Philippines southern Leyte, Underwater video): (a) Original image; (b) Ground 
Truth; Segmented results using; (c) Stolkin et al.’s method; (d) H. Liu et al.; (e) M. R. Prabowo et al. (f), (g) Proposed ST-MRF (1st 
model, finer scale & coarser scale) (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale) (j), (k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).
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8. QUANTITATIVE MEASURES

The accuracy of the segmented frames has been measured by the four quantitative measures such as: 
(i) Percentage of Misclassification Error, (ii) Dice Coefficient, (iii) Boundary Hamming Distance, 
(iv) Precision and Recall. The Percentage of Misclassification is defined as

Figure 13. View 4 (Frame 18 of whale sharks in Philippines southern Leyte, Underwater video): (a) Original image (b) Ground 
Truth; Segmented results using: (c) Stolkin et al.’s method (d)H.Liu et al.; (e) M. R. Prabowo et al.; (f), (g)Proposed ST-MRF(1st 
model, finer scale & coarser scale) (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).

Figure 14. View 5 (Frame 19 of whale sharks in Philippines southern Leyte, Underwater video): (a) Original image; (b) Ground 
Truth; Segmented results using; (c) Stolkin et al.’s method (d) H. Liu et al.; (e) M. R. Prabowo et al.; (f), (g) Proposed ST-MRF(1st 
model, finer scale & coarser scale); (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).
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Percentage of Misclassification Error (PME) = noofmisclassifiedpixels
Totalnumberofpixels

. × 100	

As observed from Table 6, the PME for the 3rd model have been found to be minimum for both 
fine and coarse scales. This indicates that segmentation at coarse scale is also acceptable. Figure 

Figure 15. View 6 (Frame 20 of whale sharks in Philippines southern Leyte, Underwater video): (a) Original image; (b) Ground 
Truth; Segmented results using; (c) Stolkin et al.’s method; (d) H. Liu et al.; (e) M. R. Prabowo et al.; (f), (g) Proposed ST-MRF (1st 
model, finer scale & coarser scale); (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).

Figure 16. View 7 (Frame 21 of whale sharks in Philippines southern Leyte, Underwater video): (a) Original image; (b) Ground 
Truth; Segmented results using; (c) Stolkin et al.’s method; (d) H. Liu et al.; (e) M. R. Prabowo et al.; (f), (g) Proposed ST-MRF(1st 
model, finer scale & coarser scale); (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).
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10 - Figure 17 present the segmented results for all the three models and all viewpoints. Further, 
it may be observed that for a given view, the PME decreases as we move from first to third model.

The second quantitative measure considered is the Dice Coefficient which is defined as

DC
S

S GT

F F=
×

+

2 ∩GT
	

Figure 17. View 8 (Frame 22 of whale sharks in Philippines southern Leyte, Underwater video): (a) Original image; (b) Ground 
Truth; Segmented results using; (c) Stolkin et al.’s method; (d) H. Liu et al.; (e) M. R. Prabowo et al.; (f), (g) Proposed ST-MRF (1st 
model, finer scale & coarser scale); (h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF 
(3rd model, finer scale & coarser scale).

Figure 18. View 4 (Frame 32 of Creepy chimera/Nautilus live video): (a) Original image; (b) Ground Truth; Segmented results using: 
(c) Stolkin et al.’s method; (d) H. Liu et al.; (e) M. R. Prabowo et al.; (f), (g) Proposed ST-MRF (1st model, finer scale & coarser scale); 
(h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF (3rd model, finer scale & coarser scale).



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 4 • October-December 2020

23

where, S denotes the segmented image, GT denotes the ground truth, FG and BG corresponds to 
foreground and background respectively.

For accurate segmentation, the Dice Coefficient values should be close to unity and in an ideal 
case unity. As observed from Table 7, the values corresponding to the third model at fine scale are 
close to unity. Further, as expected, the performance of the third model at fine scale is superior to 
that of the coarse scale. It is also observed that the performance of the 2nd model is superior to the 
first model.

The third quantitative measure Boundary Hamming Distance (BHD) is defined as

BHD
S GT S GT

BOUNDARY

B F BOUNDARY F B BOUNDARY= −
+{ }

1
∩ ∩

	

As observed from Table 8, the boundary hamming distance for the third model at finer scale 
is better than that of the coarse scale. This observation is made for all the views. The Boundary 
Hamming Distances are close to unity, but the distances obtained for fine scale images are higher 
than those of coarse scales. This is because of the blurred boundary in case of coarse scale and sharp 
boundaries at fine scale.

The next quantitative measures considered are Precision and Recall and are defined as

Precision Pr
TP

TP FP
( ) =

+
.	

Recall
TP

TP FN
Re( ) =

+
	

The Precision and Recall values are presented in Table 9 Table 10. As observed, the Precision 
and Recall values are higher in case of third model at fine scale than those of coarse scale. It is 

Figure 19. View 5 (Frame 33 of Creepy chimera/Nautilus live video): (a) Original image; (b) Ground Truth; Segmented results using: 
(c) Stolkin et al.’s method; (d) H. Liu et al.; (e) M. R. Prabowo et al.; (f), (g) Proposed ST-MRF (1st model, finer scale & coarser scale); 
(h), (i) Proposed ST-MRF (2nd model, finer scale & coarser scale); (j), (k) Proposed ST-MRF (3rd model, finer scale & coarser scale).
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further observed that the Precision and Recall values for all the models at fine scale are higher than 
those of coarse scale. However, as expected the results obtained for coarse scale are close to those at 
fine scale. The Recall values are high but not close to unity as in the case of Precision values. The 
corresponding values of all the three existing algorithms are lower. Hence, the algorithm could be 
successfully tested with two underwater video data sets. The performance of the proposed algorithms 
is superior to that of Stolkin’s EMRF, H. Liu et. al, M. R. Prabowo et. al algorithms.

9. CONCLUSION

This research has proposed new scheme to address the issue when both object and the camera are 
moving in the underwater environment. Since this problem is a challenging issue in a real-world 
scenario, which motivated us to consider in this research work. This has been viewed as an incomplete 
data problem and the problem has been solved in EM framework. In the proposed framework apriori 
knowledge of the camera model parameters are assumed to be available. Three Spatio Temporal MRF 
models have been proposed as a priori models which are used to estimate the labels in the MAP 
framework. In the M step, new features are computed to estimate the camera model’s intrinsic and 
extrinsic parameters. The three proposed algorithms could successfully be tested with frames derived 
from two video sequences. The results obtained for different frames correspond to fine scale operations 
and were found to be superior to that of existing three algorithms. The efficacy of the algorithms 
has also been tested at coarse resolution. The coarse resolution frames could be successfully used 
to detect the objects and it has been observed that the results are acceptable based on the different 
quantitative measures. But in case of coarse scale, the computational time has reduced substantially 
thus, making it a feasible candidate for real time applications.

Table 6. Percentage of misclassification error at fine and coarse scale

Fine Scale Coarse Scale

Original 
views

Stolkin’s 
Model

Liu et 
al.

Prabowo 
et. al.

1st Model 2nd 
Model

3rd 
Model

1st Model 2nd 
Model

3rd 
Model

Whale sharks in Philippines southern Leyte, Underwater video

View1 15.54 8.51 7.82 6.112 6.066 5.354 6.731 6.069 5.352

View2 6.71 9.0 6.33 1.496 1.466 0.925 1.499 1.469 0.926

View3 5.95 8.92 6.94 0.831 0.825 0.503 0.828 0.822 0.504

View4 6.34 7.34 7.86 6.221 6.001 5.002 6.218 6.002 5.000

View5 7.33 9.15 7.61 4.181 4.001 3.882 4.921 4.008 3.880

View6 6.19 7.76 9.69 0.613 0.560 0.320 0.610 0.558 0.318

View7 10.1 5.78 9.47 8.071 7.756 6.863 8.068 7.753 6.864

View8 6.69 8.8 8.51 0.461 0.449 0.293 0.465 0.445 0.290

Creepy chimera/Nautilus live video

View4 1.46 8.68 5.3 1.24 1.04 0.62 2.44 1.79 0.85

View5 1.20 4.2 6.6 0.82 0.74 0.41 1.88 1.76 1.05
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Table 7. Dice coefficients at fine and coarse scale

Fine Scale Coarse Scale

Original 
views

Stolkin’s 
Model

Liu 
et 
al.

Prabowo 
et al.

1st Model 2nd 
Model

3rd 
Model

1st 
Model

2nd 
Model

3rd 
Model

Whale sharks in Philippines southern Leyte, Underwater video

View1 .664 .847 .860 0.919 0.922 0.931 0.908 0.920 0.935

View2 .854 .838 .887 0.926 0.935 0.943 0.924 0.931 0.941

View3 .870 .840 .876 0.936 0.941 0.951 0.932 0.945 0.950

View4 .863 .868 .860 0.891 0.893 0.899 0.894 0.890 0.900

View5 .842 .837 .864 0.924 0.927 0.933 0.893 0.924 0.935

View6 .866 .862 .827 0.939 0.941 0.945 0.944 0.945 0.947

View7 .855 .897 .831 0.852 0.854 0.859 0.858 0.859 0.859

View8 .782 .841 .848 0.945 0.947 0.950 0.943 0.949 0.951

Creepy chimera/Nautilus live video

View4 .885 .913 .946 .977 .979 .984 .966 .970 .973

View5 .887 .957 .933 .981 .982 .985 .967 .968 .973

Table 8. Boundary hamming distance at fine and coarse scale

Fine Scale Coarse Scale

Original 
views

Stolkin’s 
Model

Liu et al. Prabowo 
et al.

1st 
Model

2nd 
Model

3rd 
Model

1st Model 2nd 
Model

3rd 
Model

Whale sharks in Philippines southern Leyte, Underwater video

View1 .925 .655 .654 0.875 0.876 0.865 0.870 0.872 0.835

View2 .911 .611 .678 0.910 0.908 0.909 906 0.905 0.906

View3 952 .709 .619 0.946 0.947 0.947 0.943 0.945 0.948

View4 .943 .716 .549 0.948 0.948 0.948 0.944 0.942 0.945

View5 .901 .699 .618 0.867 0.867 0.868 0.860 0.863 0.863

View6 .905 .618 .517 0.926 0.926 0.928 0.923 0.922 0.923

View7 .918 .761 .597 0.940 0.940 0.940 0.933 0.933 0.932

View8 .900 .674 .518 0.889 0.884 0.881 0.885 0.882 0.882

Creepy chimera/Nautilus live video

View4 .842 .454 .695 .874 .883 .915 .880 .882 .882

View5 .881 .753 .631 .902 .909 .929 .901 .905 .920
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Table 9. Precision at Fine and Coarse Scale

Fine Scale Coarse Scale

Original 
views

Stolkin’s 
Model

Liu et al. Prabowo 
et al.

1st 
Model

2nd 
Model

3rd 
Model

1st Model 2nd 
Model

3rd 
Model

Whale sharks in Philippines southern Leyte, Underwater video

View1 .993 .932 .640 0.995 0.995 0.995 0.978 0.978 0.979

View2 .996 .918 .713 0.997 0.998 0.998 0.976 0.978 0.978

View3 993 .931 .700 0.993 0.993 0.994 0.829 0.829 0.827

View4 .993 .851 .627 0.997 0.997 0.997 0.801 0.804 0.805

View5 .990 .905 .649 0.993 0.994 0.995 0.893 0.895 0.896

View6 .986 .969 .559 0.989 0.995 0.995 0.964 0.966 0.967

View7 .984 .972 .562 0.995 0.989 0.990 0.871 0.874 0.874

View8 .993 .513 .528 0.995 0.995 0.995 0.972 0.976 0.977

Creepy chimera/Nautilus live video

View4 .993 .181 .580 .996 .996 .997 .996 .996 .998

View5 .995 .879 .588 .997 .998 .998 .997 .998 .998

Table 10. Recall at Fine and Coarse Scale

Fine Scale Coarse Scale

Original 
views

Stolkin’s 
Model

Liu et al. Prabowo 
et al.

1st 
Model

2nd 
Model

3rd 
Model

1st 
Model

2nd 
Model

3rd 
Model

Whale sharks in Philippines southern Leyte, Underwater video

View1 .974 .262 .707 0.976 0.976 0.974 0.905 0.907 0.900

View2 .982 .261 .782 0.985 0.984 0.984 0.913 0.911 0.911

View3 994 .280 .748 0.995 0.995 0.995 0.893 0.893 0.892

View4 .990 .446 .801 0.992 0.991 0.992 0.876 0.874 0.874

View5 .971 .235 .739 0.976 0.977 0.977 0.879 0.875 0.874

View6 .973 .340 .742 0.976 0.976 0.974 0.947 0.946 0.944

View7 .998 .515 .803 0.998 0.998 0.998 0.880 0.876 0.875

View8 .988 .258 .512 0.990 0.989 0.988 0.937 0.938 0.938

Creepy chimera/Nautilus live video

View4 .729 .114 .482 .773 .813 .899 .945 .981 .998

View5 .834 .456 .197 .890 .901 .959 .959 .968 .994
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Table 11. Execution time (ET) of Stolkin’s Model and 1st Model (Fine and Coarse Scale) (Whalesharks in Philippines southern 
Leyte, Underwater video)

Original views ET of Stolkin’s Model 

(sec) 480 270×( )
ET of Fine Scale (sec) 

480 270×( )
ET of Coarse Scale (sec) 

120 67×( )

View1 142 142 8

View2 141 143 9

View3 143 143 8

View4 143 145 10

View5 144 145 10

View6 145 147 11

View7 141 143 9

View8 140 143 9
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