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ABSTRACT

Deep learning methods are characterized by their capacity to learn data representation compared 
to the traditional machine learning algorithms. However, these methods are prone to overfitting on 
small volumes of data. The objective of this research is to overcome this limitation by improving 
the generalization in the proposed deep learning framework based on various techniques: data 
augmentation, small models, optimizer selection, and ensemble learning. For ensembling, the authors 
used selected models from different checkpoints and both voting and unweighted average methods 
for combination. The experimental study on the lymphomas histopathological dataset highlights 
the efficiency of the MobileNet2 network combined with the stochastic gradient descent (SGD) 
optimizer in terms of generalization. The best results have been achieved by the combination of the 
best three checkpoint models (98.67% of accuracy). These findings provide important insights into 
the efficiency of the checkpoint ensemble learning method for histopathological image classification.
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1. INTRODUCTION

The histopathology is a branch of histology where biological diseased tissues or cells are examined 
under a microscope. Usually, the pathologist observes the stained biopsies with hematoxylin and 
eosin (H&E) for prognosis, grading, and cancer identification. Nevertheless, the diagnostic of 
biopsies is a complex task and requires years of experience, which results a high variance between 
the pathologist’s diagnosis. Thus, to reduce this inter variability, computer-aided diagnostic systems 
(CAD) are employed as a second reader.

Previously, machine learning (ML) methods have been one of the most popular applications in 
CAD systems, their overall process depends on four main steps: the detection of regions of interest, 
feature extraction (GLCM (Vujasinovic et al., 2015), LBP (Hervé et al., 2011)), feature selection 
(RFA (Dif et al., 2019), MVO (Dif et al., 2018)) and classification (Komura et al., 2018). However, 
in histopathology, the extraction of handcrafted features is one of the greatest challenges because of 
the complex structure of cells and tissues, moreover, tumors can present distinct cytological features 
(Roberto et al., 2017). Recently, there has been a surge of interest in deep learning (DL) algorithms 
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for medical image analysis. The benefit of these methods compared to the traditional ML algorithms 
is their capacity to learn data representation, where the relevant characteristics are extracted through 
the classification process.

For histopathological image analysis, biopsy slides are digitized as whole slide images (WSI) 
(Janowczyk et al., 2016) by whole slide digital scanners (WSD) (Al-Janabi et al., 2012). The high 
resolution of WSI made digital pathology a popular application for DL methods (Litjens et al., 2017) 
in different tasks: mitosis detection (Cireşan et al., 2013), gland segmentation (Kainz et al., 2015), 
lymphoma subtype classification (Janowczyk et al., 2016). On the other hand, the limited number of 
available medical images and the difficulty of their annotation are the leading causes of overfitting. In 
the literature, several attempts have been made to prevent this problem by improving the generalization 
based on various techniques: transfer learning (Ng et al., 2015) and regularization strategies (dropout 
(Srivastava et al., 2014) and ensemble learning (Ju et al., 2018)).

The purpose of this research is to improve the generalization capacity of convolutional neural 
networks for lymphoma subtypes classification. Our work takes advantage of various regularization 
methods in a deep learning framework: data augmentation, the exploitation of small models 
(MobileNet), the selection of the suitable optimizer, and the checkpoint ensemble model selection. 
This study provides the first comprehensive assessment of checkpoint ensembling in histopathological 
applications based on the optimized MobileNet architecture.

The remaining part of the paper proceeds as follows: section1 presents the related works to the 
automated methods for lymphoma subtypes classification and the ensemble learning methods in deep 
learning. Section 2 details the process of the used methods. Section3 explains the proposed framework. 
Section 4 illustrates and discusses the obtained results and the last part concludes this work.

2. RELATED WORKS

2.1. Lymphomas Subtypes Classification
Lymphomas are tumors affecting lymphocytes (T-or B-cells) (Orlov et al., 2010). They are classified 
into Non‐Hodgkin’s lymphomas (NHL) and Hodgkin’s lymphomas (HL) (Chan et al., 2001). The 
NHL represents 90% of lymphomas (Shankland et al., 2012). It includes different subtypes such as 
Diffuse large B-cell lymphoma (DLBCL), which is the most common form, the chronic lymphocytic 
leukemia (CLL), follicular lymphoma (FL) and mantle cell lymphoma (MCL). These subtypes present 
aggressive (DLBC, MCL) or indolent (CLL, FL) NHLs, where the aggressive form progress rapidly 
compared to the indolent form.

Several works have been interested in the NHL segmentation (Tosta et al., 2017) and classification. 
This work aims to enhance the NHL subtypes classification.

(Shamir et al., 2008) proposed the IICBU benchmark suite, which is composed of 9 biological 
datasets, where the size of images varied from 25 x 25 to 1388 x 1040. Their purpose was to support 
the computer vision experts for proposing accurate methods for biological images classification. 
Their experimental study based on the weighted neighbor distance (WND-CHARM) approach has 
proved the degree of complexity of the automated lymphomas classification, which encouraged the 
computer vision community to develop more robust methods.

Table 1 provides a summary of the literature relating to the NHL subtypes classification. The 
proposed strategies are categorized into machine and deep learning methods. Previously, most studies 
in this field have only focused on the ML applications, where the extraction of the handcrafted features 
has attracted considerable attention because of the complex morphology of histopathological images.

Various strategies have been proposed for feature extraction. For instance, (Orlov et al., 2010) 
proposed the exploitation of the transform-based global features for classification. First, they 
transformed the raw pixels into spectral planes, then, different global features have been computed: 
texture, polynomial, and other statistical features. Finally, the obtained features were filtered by the 
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feature selection methods: fisher discriminant analysis (FLD), minimum redundancy maximum 
relevance (mRmR) and fisher correlation (F/C).

In another investigation, (Meng et al., 2010) presented a new approach based on collateral 
representative subspace projection modeling (C-RSPM). They started by dividing each image into 25 
blocks, then, a set of 505 features (color and texture) have been extracted from these blocks. Finally, 
fifty features were selected by the Chi-square feature selection method. Another investigation (Di 
Ruberto et al., 2015) has adapted three greyscale texture models to color texture features for feature 
extraction from the lymphomas colored images. Another example is the work of (Nava et al., 2016) 
that proposes a combination of discrete orthogonal moments (DOMs) on the pre-trained images by 
the color deconvolution method. (Song et al., 2016) suggested that the exploitation of the subcategory 
discriminant transform (SDT) method on the extracted features is important to minimize the within-
class variance and to optimize the between-class difference. The main characteristic of the works 
described above is their independence on the segmentation methods. The proposed investigation 
by (Tosta et al., 2018) suggests the use of an unsupervised segmentation method based on genetic 
algorithms (GA) for CLL and FL neoplastic nuclei segmentation, where they employed four fitness 
functions (Fisher information, entropies of Renyi, Shannon and Tsallis) to evaluate the GA solutions.

According to Table 1, various feature extraction methods have been used, where it was hard to 
define the suitable feature extraction method. Therefore, to enhance the set of the extracted features, 

Table 1. The proposed methods in the literature for lymphoma subtypes classification

Method Article Classifier Feature extraction Feature 
selection

Machine 
learning

(Shamir et al., 2008) WND-CHARM -

(Meng et al., 2010) (C-RSPM) + 
WMVA

Color and texture features Chi-square

(Orlov et al., 2010) WND Global features (texture, 
polynomial and statistical)

FLD, mRmR, 
F/C

(Di Ruberto et al., 2015) Support vector 
machine (SVM)

Modified GLCM -

(Nava et al., 2016) KFDA Discrete orthogonal moments 
(DOMs)

RELIEF

(Song et al., 2016) SVM Visual texture descriptors (IFV, 
LBP, HOG, GIST, CENTRIST)

SDT

(Tosta et al., 2018) SVM Segmentation with GA -

Machine 
learning with 
CNN models 

as feature 
extractors

(Codella et al., 2016) Non-linear 
SVMs

Low-level features (color 
histogram, edge histogram, LBP, 

transferred CNN ImageNet model)

(Song et al., 2017) SVM Pre-trained VGG-VD CFV

(Song et al., 2017b) SVM Local features (SHIFT, pre-trained 
VGG-VD)

SDR

(Bai et al., 2019) Random forest LTP, MLPQ, CLBP, RIC, FBSIF, 
AHP, GOLD, HOG, MOR, CLM, 

LET, GoogleNet, VGGNet, 
ResNet, Inception, IncResv2

-

(Nanni et al., 2018) SVM LBP, texture representations and 
statistical features, CNNs learned 

features.

-

Deep learning (Janowczyk et al., 2016) AlexNet (Cifar-10 version) -
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one of the more practical ways was the exploitation of the deep learning methods as feature extractors. 
For instance, (Codella et al., 2016) proposed a multi-stage visual learning approach, where variable 
low-level features have been combined with the extracted feature based on a pre-trained CNN model. 
In another approach, (Song et al., 2017; Song (b) et al., 2017) proposed a supervised intra-embedding 
method, where the features have been extracted based on the Convnet-based FV (CFV), as an extension, 
they proposed to combine the resulting vector with other types of local features. Despite the proposed 
methods that suggest to combine first the set of extracted features and classify them based on one 
learning algorithm, other investigations classify separately the extracted features by different methods, 
and then combine the scores of the resulting models based on ensemble learning methods (Bai et 
al., 2019; Nanni et al., 2018). For instance, (Bai et al., 2019) combined a random forest classifier 
trained on extracted textural and statistical features and a softmax classifier trained on the extracted 
features by a pre-trained inceptionNet. Their study has indicated the potential of the used distance 
matrix weighting (DMW) method to combines the patch-level results. Another example is the work 
of (Nanni et al., 2018) that proposes a framework of texture descriptors and CNNs learned features, 
where they combined the obtained scores based on sum rule.

The use of the deep learning methods for classification has received little attention within the 
lymphoma’s subtypes classification task. To the best of our knowledge, (Janowczyk et al., 2016) 
made the first attempt to train a convolutional neural network from scratch for lymphomas subtypes 
classification.

2.2. Ensemble Deep Learning
Overfitting presents the high variance between the train and the test sets performances. To reduce 
this variance, the exploitation of regularization strategies such as dropout (Srivastava et al., 2014), 
and ensemble learning methods (Ju et al., 2018) is recommended.

Ensemble learning methods combine the decision of several models to improve both performance 
and generalization. Several attempts have been made to prove the efficiency of ensemble learning on 
deep neural networks: stacking (Deng et al., 2014), boosting (Mosca et al., 2016), voting (Xu et al., 
2017) and averaging (Chen et al., 2016; Krizhevsky et al., 2012; Zeiler et al., 2014; Simonyan et al., 
2014; Szegedy et al., 2015; He et al., 2016). Where, various strategies have been used to generate the 
set of models by varying in initialization methods, architectures, optimizers, and the training dataset.

The main drawbacks of DL algorithms is their high computational complexity and the material’s 
requirements illustrated in Table 2, which limits the use of the traditional model generalization methods 
for training more than one model. A reasonable approach to tackle this issue was the exploitation of the 
iterative learning process of neural networks to produce a checkpoints ensemble within one training 
process, also known as self-ensemble. These methods have been employed in various domains: text 
categorization (Wang et al., 2014), translation systems (Sennrich et al., 2016; Vaswani et al., 2017), 
abstractive summarization (Kobayashi et al., 2018), malware detection (Sang et al., 2018), images 
classification (Ju et al., 2018), medical images segmentation (Fok et al., 2018; Jung et al., 2018), facial 
emotion recognition (Sang & Ha, 2018) and large scale video labeling (Skalic et al., 2017). Table 3 
summarizes the used DNN architectures in the proposed checkpoint ensemble methods.

Different strategies have been adopted to select the appropriate checkpoints. For instance, (Chen 
et al., 2017) have averaged between the best three checkpoint models within the set of deep models, 
where they proved the efficiency of prediction averaging compared to weight averaging between deep 
neural networks. In the same way, (Fok et al., 2018) combined between the best 2 to 5 models, and 
(Sang et al., 2018) have averaged between 25 best models. Other major studies suggest combining 
between the last checkpoints (Sennrich et al., 2016; Vaswani et al., 2017; Ju et al., 2018). For instance, 
(Sennrich et al., 2016) proposed to combine the last four models that have been saved every 30 000 
mini-batch. Similarly, (Vaswani et al., 2017) have averaged between the last 5 and 20 checkpoints 
saved at 10-minute intervals. Other investigations suggest combining the generated models from the 
last epochs (Sang & Ha, 2018; Kobayashi et al., 2018).
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3. NETWORKS AND OPTIMIZERS

3.1. Networks
MobileNet (Howard et al., 2017) is a convolutional neural network designed especially for mobiles 
and embedded vision applications. The purpose of this architecture is to design small models through 
the depthwise separable convolution (DSC) modules and thus to optimize both recognition time 
and memory requirements. Moreover, MobileNet introduces the concepts of width and resolution 
multipliers to customize the model according to the device restrictions.

The DSC factorizes the convolution into a depthwise (DC) and a pointwise convolution (PC). 
First, the DC performs a single 3x3 filter per input channel, then the PC combines the output by 1x1 
filters. Equation 1 presents the reduction factor in terms of the number of multiplications performed 
by DSC compared to a standard convolution. N is the number of filters and D

K
 is the kernel size.

CSD

C N D
k

= +











1 1

2
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Table 2. Material requirements and run time to train convolutional neural networks on the ImageNet dataset

Network Time Materiel

AlexNet (Krizhevsky et al., 2012) Five to six days Two NVIDIA GTX580 3GB GPUs

ZFNet (Zeiler et al., 2014) 12 days Single NVIDIA GTX580 GPU

Inception (Szegedy et al., 2015) One week (estimation) Few high-end GPUs

VGGNet (Simonyan et al., 2014) 23 weeks depending on the 
architecture. Four NVIDIA Titan Black GPUs

Xception (Chollet, 2017) 3 days 60 NVIDIA K80 GPUs

Table 3. The previously combined DNN architectures by the checkpoint ensemble method

Reference Architecture

(Chen et al., 2017)
Vanilla neural network﻿

Convolutional neural network﻿
Long Short term memory network

(Sennrich et al., 2016) Encoder-decoder networks

(Vaswani et al., 2017) Transformer network based on encoder-decoder network

(Ju et al., 2018) NIN, VGGNet, ResNet

(Sang & Ha, 2018) DenseNet﻿
Mixture of Neural-Network Experts (MoNN)

(Skalic et al., 2017) Long Short-Term Memory (LSTM)﻿
Gated Recurrent Units (GRU)

(Kobayashi et al., 2018) LSTM encoder/decoder

(Fok et al., 2018) ResNet34

(Sang et al., 2018) RNSALL based on the ResNet model
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MobileNetV2 (Sandler et al., 2018) is an extended version of the MobileNet. The idea is to 
apply depthwise convolutional filters on larger intermediate tensors by expending the convolutional 
layers to maintain more information. Then, the original size is restored by a projection (1x1 filters). 
MobileNetV2 is based on the standard residual connections (He et al., 2016) to prevent the vanishing 
gradient problem. Figure 1 highlights the difference between a standard convolution, a depthwise 
separable convolution, and the introduced inverted residuals and linear bottlenecks in the mobileNetV2.

3.2. Optimizers
The backpropagation algorithm is used to update the network’s parameters, the purpose of such method 
is to optimize the loss value based on various optimizers such as: the stochastic gradient descent 
(Robbins et al., 1951), Adam (Kingma et al., 2014), Rmsprop (Tieleman et al., 2017), momentum 
(Rumelhart et al., 1988) and Adagrad (Duchi et al., 2011).

The gradient descent (GD) optimizer updates the parameters according to Equation 2, where w 
is the parameter to update, ∇  is the gradient, L is the cost function and η  is the learning rate. There 
are three variants of GD: the batch gradient descent (BGD), the stochastic gradient descent (SGD) 
and the mini-batch gradient descent (Ruder et al., 2016). In the BGD, the gradient of the whole dataset 
is computed at each update which can slow the training time for large datasets. Whereas in the SGD, 
the gradient is based on a single example and the computed gradient represents an approximation to 
the real one. The mini-batch gradient descent is designed to make a tradeoff between the exact behavior 
of BGD and the stochastic behavior of SGD, it considers only a portion of k training examples from 
the whole dataset to compute the gradient. To speed up the mini-batch learning, different methods 
have been proposed, such as momentum and RmsProp.

w w L w
t t

w

t+( ) ( ) ( )= − ∇ ( )1
� �η 	 (2)

The RmsProp optimizer is a modified version of Rprop (Riedmiller et al., 1993). It combines 
between Rprop and SGD by dividing the learning rate by an exponentially decaying average of the 

Figure 1. The structure of (a) standard convolutions, (b) depthwise separable convolutions (Howard et al., 2017) and (c) inverted 
residuals and linear bottlenecks structures (Sandler et al., 2018)
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squared gradients (Tieleman et al., 2017). Equation 3 illustrates the RmsProp process, where g is the 
gradient root mean square, and α  is the decay rate.
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4.THE PROPOSED FRAMEWORK

Figure 2 presents the proposed framework, which is based on three main modules: preprocessing, 
training and ensemble learning.

4.1. Preprocessing
Figure 3 illustrates the preprocessing scheme, which is based on mean normalization, patch extraction, 
rotations, and random corps.

The purpose of mean normalization is to center the data around zero means by subtracting from 
each image the mean of all images. Equation 4 presents the mean normalization process, where m

i j,
 

is the pixel value of the image matrix m and N is the number of images.

m t m t
m t

Ni j i j
k

N

i j
k

, ,

,( ) = −( )−
−( )

=∑1
1

1 	 (4)

Figure 2. The proposed framework components
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The resulting normalized images are then augmented by patch extraction (Figure 4) and rotations, 
this step seeks to take advantage of the high resolution of histopathological images to overcome 
overfitting on the small volumes of data. In this study, each image was divided into 144 x 144 non 
overlapped patches, then, the resulting patches were rotated by 0 and 90 degrees. These rotations 
contribute to improve the image analysis process since the pathologist can observe the biopsies from 
different angles. Finally, random samples of 128px x128px are extracted during training to improve 
the generalization.

4.2. Training and Ensemble Learning
Time and memory usage are critical for real deployments of computer vision systems, which present 
major challenges for convolutional neural networks (Table 4), moreover, these algorithms are prone to 
overfitting on small volumes of data. A reasonable approach to tackle these issues is the exploitation 
of small models since they have less overfitting problems and memory requirements (Howard et al., 
2017). Thus, we selected the MobileNet architecture, due to its small number of parameters compared 
to other CNN architectures. This architecture is based on the depth-wise separable convolutions 
modules, that help to create very small image classification models.

Table 5 shows the number of parameters according to the input size (128 × 128) in the proposed 
framework.

Accurate models are characterized by their capacity to perform well on unseen samples during 
training and optimization. Therefore, to prevent overfitting, another used strategy was to select models 
according to their generalization efficiency. Our method was to follow up the learning process and 
to measure the gap between the accuracy curves of train, validation and test sets, where we used 
different types of optimizes: SGD with a variable learning rate, and the RmsProp optimizer. Then, 
test images are classified base on a vote between the classes of their sub-patches according to algorithm 
1 (C is the number of classes, and P is the number of patches, if the t th  patch is classified with the 
class j then dt j, =1 else dt j, = 0 .

Finally, we proposed to combine the resulting models by an ensemble learning strategy to reduce 
their high variance. Usually, ensemble learning methods are characterized by three steps: model 
generation, model selection, and combination. In this research we used the checkpoint ensemble 

Figure 3. The preprocessing scheme
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Figure 4. The extracted patches from a CLL digitized image

Table 4. The number of parameters and layers in CNN’s architectures

Architecture Number of parameters (Million) Number of layers

AlexNet (Krizhevsky et al., 2012) 60 8

VGGNET (Simonyan et al., 2014) 133 to 144 11-19

Inception (Szegedy et al., 2015) 6.8 22

ResNet (He et al., 2016) 21.8 to 60.2 (Boulch, 2017) 18-152

ShuffleNet (Zhang et al., 2018) 3.4 50

(Howard et al., 2017) 4.2 28

(Sandler et al., 2018) 3.4 20

Table 5. The number of parameters in the used MobileNet architectures

Parameters MobileNetV1 MobileNetV2

Total 3 231 939 2 261 827

Trainable 3 210 051 2 227 715

Non-trainable 21 888 34 112
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method (algorithm 2), this technique requires only one training to generate N models instead of N 
training, which optimizes the training run time complexity. First, the set of models was generated by 
saving models at 3-minute intervals. Then, we employed two static ensemble selection strategies: the 
most accurate N models on the validation set and the last N saved models. Finally, voting and 
unweighted averaging methods were used to combine the selected models. Equation 5 illustrates the 
majority of voting process, where J is the selected class, C is the number of classes and N is the 
number of models if the tth  classifier chooses the class j then d

t j,
= 1  else d

t j,
= 0 . Equation 6 

presents the unweighted average process, where y x
t ( )  is the weights vector of the tth  classifier for 

the sample x.

J argmax d
j c

t

N

t j
=

∈{ }
=
∑�

, ,.., ,1 2
1

	 (5)
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Algorithm 1. The testing process
Inputs: Test, Model.
Output: Test Accuracy.
Begin 
Patches = Φ
for each (Image Test) do
Classes = Φ
Patches = Patch Extraction(Image) 
for each(Patch  Patches) do
Classes = Classes  ∪  Model.Classify(Patch)

Class argmax d
j c

t

P

t j
= { }

=
∑�

� , ,.., , 1 2
1

Test _Accuracy = Compute_Test_Accuracy(Test) 
End. 
Algorithm 2. The combination process between the MobileNet 
checkpoints 
Inputs: Models, Validation, Test, Selection ∈ {Best, Last}, 
Combination ∈ {Vote, Average}, N: number of selected models.
Output: Test Accuracy.
Begin 
if(Selection == Best) then
Models = Descending_Sort(Models, Validation) 
Sub_Models = Models[1,N] 
if (Combination == Vote) then
Test_Accuracy = vote(Sub_Models, Test) 
else 
Test_Accuracy = average(Sub_Models, Test) 
End.
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5. EXPERIMENTAL STUDY

In this study, the proposed approach was evaluated on the lymphoma histopathological dataset (Shamir 
et al., 2008), which was collected from 30 histological stained slides of lymph nodes. First, these 
slides were digitized by the Zeiss Axioscope light microscope and the AXio Cam MR5 camera. Then, 
high-resolution regions of interest have been extracted from the digitized images (1388 × 1040). 
Table 6 describes the number of images/patches in each sub-category (CLL, FL, MCL), where the 
different patches have been extracted from each image based on the data augmentation techniques 
described in the previous section.

For training, we employed both MobileNetV1 and MobileNetV2 networks, and two types of 
optimizers (Stochastic gradient descent and Rmsprop). Then, the stratified hold out method have 
been used to evaluate the trained networks: 20% for test, 20% of the rest of images for validation and 
80% for training.

Table 7 presents the used parameters for training, where we employed a variable learning rate, 
with exponential decay for the SGD optimizer. The purpose of this variation is to prevent the slow 
convergence for small learning rate values and to overcome the oscillation problem in case of high 
learning rate values. The batch size was selected according to the memory requirements, and the loss 
value was computed based on the categorical cross-entropy loss function. This function is designed 
for the multi-label classification problems (Equation 7: S

p
 is the positive class score and C is the 

number of classes).
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The first set of analyses compares transfer learning and training from scratch techniques. The 
transfer learning process was carried out based on the transferred weights from the mobileNetV1 
ImageNet model and the softmax classifier. To adapt the input images size to the ImageNet model 
requirements, we used two strategies: resize the high-resolution images to 224 x 224 and extract 
224 x 224 sub-patches. The results, as shown in Table 8, indicate the efficiency of the patch-wise 
classification strategy, which is explained by the limitations of resizing.

Figure 5 highlights the cross-entropy convergence loss of the mobileNetV1 associated with 
RmsProp (a) and SGD (b) optimizers. Comparing the two curves, it can be seen that that SGD (loss 
= 0.3) has a fast convergence behavior compared to RmsProp (loss = 0.054).

Figure 6 shows the accuracy curves of models on: train, validation and test sets: (a) MobileNetV1 
with RmsProp, (b) MobileNetV1 with SGD, (c) MobileNetV1 with SGD and dropout and (d) 
MobileNetV2 with SGD.

The MobileNetV1+ RmsProp curve highlights an oscillation and a high variance between the 
train and the test/validation accuracies. Whereas, MobileNetV1+ SGD reports an important correlation 

Table 6. The Number of images/patches in the lymphoma dataset

Total number of images/ patches Number of images/ patches by category

375/41860
CLL FL MCL

113/12600 140/15680 122/13580



International Journal of Cognitive Informatics and Natural Intelligence
Volume 14 • Issue 4 • October-December 2020

73

between the training and the validation/test curves starting from the 20k iteration, which provides 
an important insight on the capacity of the generated model in terms of generalization. Increasing 
the dropout rate from 0.01 to 0.2 confirmed this hypothesis, where the generated curves are similar 
in the case of the two dropout rate values. Finally, when comparing the two results on MobileNetV1 
and MobileNetV2, it can be seen that MobileNetV2 provides more generalization on the test set.

For inference, we selected from the set of checkpoint models the model that maximizes the 
validation accuracy. Table 9 reports the obtained results by the selected model, where we observe 
that the difference between the train and validation sets accuracies was not significant. Whereas, 
it reveals that there has been a slight decrease for the test set due to the adopted voting strategy to 

Table 7. The experimental study parameters

Parameter Value

Maximum number of steps 60 000

Batch size (train/evaluation) 128/100

Learning rate (lr)﻿
(exponential decay)

Initial lr 0.05

Lr decay 0.9

Final lr 10 4− ×�lr

RmsProp
Momentum 0.9

Epsilon 0.9

Dropout rate 1.0

Loss function Cross entropy

Dropout rate 0.2

Table 8. Transfer learning results

Patch size Test accuracy

Resize Full Image 0.6533

224 x 224 Patches 0.7333

Figure 5. MobileNet loss curves based on RmsProp and SGD optimizers Train and validation loss curves
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evaluate the wall test image. Taken together, these results indicate the efficiency of training from 
scratch compared to transfer learning for lymphomas subtypes classification.

Turning now to the experimental study based on the 5-cross-validation evaluation method and 
the MobileNetV2. The evaluation method splits the dataset into five groups and the model is trained 
five times on each group to generate five different models. For prediction, the results of models are 
averaged. The purpose of this method is to generate more confident models compared to a single 
evaluation, also it helps to improve the generalization ability of the classification framework and to 
overcome different problems like overfitting. The obtained results are illustrated in Table 10. The 
findings report a significant difference between the obtained results by the models 2 and 3, which 
provide further support for this evaluation method to reduce the high variance between neural networks 
results. The false generated predictions by the model 2 highlight its confusion between the MCL and 
the CLL classes, where two MCL and two CLL images have been misclassified.

Figure 6. Train, validation and test accuracy curves of MobileNetV1 and MobileNetV2 models

Table 9. The obtained results by MobilenetV1 and MobileNetV2 on the train, validation and test sets (accuracy)

Network Optimizer Train Validation Test

MobilenetV1 RmsProp 0.9995    0.9866 0.9200

SGD 0.9998    0.9990 1

SGD (dropout) 0.9996    0.9981 0.9733

MobileNetV2 SGD 0.9996    0.9996 0.9867
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In the final part of the experiments, we explored the ensemble checkpoint method, where two 
static ensemble selection strategies have been used: N best models and N last checkpoint models. Then, 
the selected models have been combined based on voting and averaging methods. Table 11 illustrates 
the obtained results on the test set, where the number of checkpoint models is 2 to 50 models. The 
findings reported here suggest that 3 to 4 models are enough to enhance the accuracy from 97.87% to 
98.67% for the two strategies. Whereas a loss of accuracy was detected when combining 15 to 20 best 
models, which reveals that there was no clear evidence on the impact of the number of models on the 
results, as the loss of accuracy is related to the presence of week learners. The obtained results by the 
averaging method show that combining the last checkpoints tends to perform better than combining 
the best models, it can thus be related to the lack of diversity between the best models.

In summary, the findings reported here suggest the efficiency of the SDG compared to the 
Rmsprop optimizer for the MobileNet network and the lymphomas classification task. Moreover, 
these results provide further support for the hypothesis on the efficiency of checkpoint ensemble 
methods in deep learning applications. This study has been one of the first attempts to thoroughly 
examine the checkpoint ensembling for histopathological images classification.

Table 12 compares the obtained and the literature results on the lymphoma dataset. The best 
obtained results in the machine learning category have been achieved based on the segmented images 
with GA (Tosta et al., 2018) and the extracted visual texture descriptors (Song et al., 2016). Whereas 
in the proposed hybrid methods between machine and deep learning strategies, we observe that 
the hybridization between local features and the extracted features from pre-trained CNN models 
achieved good results compared to some machine learning methods (Shamir et al., 2008; Meng 
et al., 2010; Nava et al., 2016). The final part highlights the results of the deep learning methods, 
where we observe the efficiency of the MobileNetV2 compared to the AlexNet network. Moreover, 
these results reveal that deeper networks such as ResNet50, DenseNet were less promising. On the 
other hand, the comparative study between InceptionV3 and MobileNet reveals that results are close. 
Overall, this study reveals the importance of MobileNets compared to other deeper networks such 
as ResNet50, DenseNet, and InceptionV3 in terms of precision and computational complexity for 
lymphomas subtypes classification.

Table 10. The obtained results by the MobileNetV2 based on the five cross-validation evaluation method

Division 1 2 3 4 5 Average

Validation 0.9996 0.9981 0.9977 0.9983 0.9987 0.9985

Test 0.9867 0.9467 1 1 0.9600 0.9787

Table 11. The obtained results by the ensemble checkpoint method based on the last and the best combination strategies

Models Method Best models Last 
checkpoints Method Best models Last 

checkpoints

2

Vote

0.9813 0.9786

Average

0.9840 0.9813

3 0.9867 0.9813 0.9840 0.9867

4 0.9867 0.9867 0.9840 0.9813

5 0.9867 0.9840 0.9840 0.9867

10 0.9867 0.9840 0.9813 0.9840

15 0.9840 0.9867 0.9840 0.9840

20 0.9840 0.9867 0.9840 0.9840

50 0.9867 0.9867 0.9813 0.9813
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6. CONCLUSION

In this research, we presented a deep neural network framework based on MobileNet architecture. 
The main purpose of this study was to use a maximum of regularization techniques to overcome 
overfitting: data augmentation, small models, K-cross-validation and ensemble learning. First, the 
train set has been augmented by data augmentation techniques. Then, the appropriate model in terms 
of generalization has been selected from the set of generated models by the combination of two 
MobileNets architectures with two types of optimizers. Finally, we combined checkpoint models by 
voting and averaging. The proposed framework was tested on the lymphoma dataset, and the best 
results have been obtained by the voting method between the 3 best checkpoints. The comparative 
study with the literature results provides important insights into the benefit of checkpoint ensembling 
in computer-aided diagnostic systems. However, the averaging and voting methods are sensitive to 
week learners, which can produce a loss in accuracy.

As perspective to this work, we are looking to work on other more challenging histopathological 
datasets such as BreakHis and the ovarian carcinoma dataset and other ensemble learning methods 
such as meta-learners.

6.1. Compliance With Ethical Standards
The authors declare that they have no conflict of interest. This article does not contain any studies 
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Table 12. Comparison between the obtained and the literature results

Method Reference Evaluation Method Accuracy (%)

Machine learning

(Shamir et al., 2008) - 85

(Meng et al., 2010) 3-cross-validation 92.70

(Nava et al., 2016) 10-cross-validation 93.83

(Song et al., 2016) 5- cross-validation 96.8

(Di Ruberto et al., 2015) cross-validation 96.4

(Tosta et al., 2018) 10-cross-validation 98.14

(Orlov et al., 2010) 8-cross-validation 98-99

Machine + Deep 
learning

(Codella et al., 2016) 3-cross-validation 95.5

(Song et al., 2017) 4-cross-validation 96.5

(Nanni et al., 2018) - 97.33

(Song et al., 2017b) 4-cross-validation 97.9

(Bai et al., 2019) hold out 99.1

(Nanni et al., 2019) 5-cross-validation 96.87

Deep learning

(Janowczyk et al., 2016) 5-cross-validation 96.58

(Nanni (b) et al., 2019) 5-cross-validation
ResNet50 92.00

DenseNet 93.60

Ours Hold-out Inception-v3 97.78

Ours (MobileNetV2) 5-cross-validation 97.87

Ours (ensemble MobileNetV2) 5-cross-validation 98.67
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