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ABSTRACT

Various perishable agricultural products are recalled due to harmful health risks. Blockchain has 
been used to reduce the amount of such products wasted and disposed. Specifically, a supply chain 
with a wholesaler, a retailer, and customers is considered where the retailer decides when to switch 
from a conventional supply chain information management system (SCIMS) to a blockchain-based 
SCIMS. This article models the uncertain customers’ demand as a geometric Brownian motion 
process and shows how to obtain the optimal demand threshold above which the switch occurs 
and the corresponding expected time. Next, the model is extended by incorporating two types of 
government subsidies (i.e., a fixed subsidy on the switching cost and a variable subsidy per unit 
demand). Through sensitivity analysis and numerical studies, the impacts of key parameters on the 
optimal demand threshold and expected time of switching are presented. Finally, managerial insights 
and policy implications are derived.
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INTRODUCTION

It has been frequently reported that various perishable agricultural products such as romaine lettuce 
are recalled and disposed due to harmful health risks. In such a case, in a conventional supply chain 
information management system (SCIMS), the traceability of the source of the harmful health risks 
is low and time-consuming (Blissett & Harreld, 2008). The reason is that, data is simply recorded on 
paper for traceability purposes by numerous stakeholders in the supply chain of perishable agricultural 
products, while the rest use digital methods (Yiannas, 2018). This leads to the inconsistency in the use 
of SCIMS, and stakeholders are not able to communicate with each other or to effectively trace the 
origins of products on a short notice. As a result, a large amount of perishable agricultural products that 
are potentially not contaminated are wasted and disposed as precaution during perishable agricultural 
product recalls. This situation calls for a solution for an enhanced traceability in the supply chain of 
perishable agricultural products.
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creativecommons.org/licenses/by/4.0/) which permits unrestricted use, distribution, and production in any medium, provided the author of 

the original work and original publication source are properly credited. 



International Journal of Operations Research and Information Systems
Volume 11 • Issue 4 • October-December 2020

2

To address this problem, the perishable food industry has been implementing blockchain, “… 
a shared, immutable ledger that facilitates the process of recording transactions and tracking assets 
in a business network” (Gupta, 2018). In a blockchain network, timestamped transaction data is 
stored in blocks that are linked in a chain by hashes. This mechanism prevents the alternation or 
insertion of any block. In a blockchain based SCIMS, all the information throughout every step such 
as product identification, batch codes, purchase orders, and time codes of harvesting, processing, 
shipping, and receiving, is collected and shared by all stakeholders (e.g., farms, distribution centers, 
stores; Walmart Food Safety & Health, 2018). With Hyperledger Fabric (a blockchain framework), 
blockchain offers a more efficient way to precisely pinpoint where the contamination originated, and 
to reduce the unnecessarily broad recalls (Guo, Liu, & Zhang, 2018). For example, in a pilot study 
of mango products, blockchain substantially reduced the time to identify the originating farm, from 
nearly seven days to 2.2 seconds (Yiannas, 2018).

Also, typically, large retailers (e.g., Walmart, Sam’s Club) perform like pioneers in the adoption 
of new technology. In 2018, Walmart and Sam’s Club required all the leafy green vegetables suppliers 
to utilize blockchain for traceability purposes by September 2019 to reduce the loss of retailers and 
suppliers during recalls (Walmart, 2018).

Meanwhile, government often grants subsidies for the welfare of the public, especially when it 
is related to information technology. For instance, government subsidized supermarkets opened in 
high-need areas to improve the food environment in underserved neighborhoods (Elbel, Moran, Dixon, 
Kiszko, Cantor, Abrams & Mijanovich, 2015). In 2019, through the Health Resources and Services 
Administration (HRSA), the U.S. Department of Health and Human Services (HHS) subsidized 49 
Health Center Controlled Networks (HCCNs) with almost $42 million to expand the use of health 
information technology (HHS, 2019). Considering that the blockchain enhances the traceability in 
the supply chain and reduces the harmful health risks, it is reasonable to assume that government 
provides the retailers in perishable product supply chain with subsidies to facilitate their switching 
to a blockchain based SCIMS.

Considering the lump sum switching cost and a series of transition actions that occur at the time 
of switching, the retailer’s decision on switching from the conventional SCIMS to the blockchain 
based SCIMS is large and highly irreversible. Moreover, such switch decision is often made under 
uncertainties such as the demand uncertainty of retail customers. That is, when the retail customers’ 
demand is low, for the retailer, the profit saved by the blockchain based SCIMS may not offset the 
costs associated with the switching. Method-wise, real options approach is used in this paper as it 
captures the uncertainty in the decision-making process as opposed to traditional Net Present Value 
(NPV) approach. A real option refers to the right but not the obligation to make decisions on taking 
the ownership of a real asset or project at a specific time in the future (Tallon, Kauffman, Lucas, 
Whinston, & Zhu, 2002; Wu, Wu, & Wen, 2010). Real options originated from the finance area and 
has been extended to the decision making in the engineering discipline.

Under these circumstances, it is highly desirable to understand how a retailer can make 
economically rational decisions on switching from a conventional SCIMS to a blockchain based 
SCIMS, and how the government subsidies influence the retailer’s decision on such a switch. Towards 
these goals, in this paper, under the assumption that the retail customers’ demand for a single perishable 
agricultural product follows a Geometric Brownian Motion (GBM) process, the authors (1) valuate 
the traceability in the supply chain to determine the optimal time for a retailer to switch from a real 
options perspective in the basic model, (2) extend the basic model by incorporating two types of 
government subsidies, namely, a fixed subsidy on the switching cost and a variable subsidy per unit 
demand, and determine the new optimal time for the retailer to switch, (3) derive managerial insights 
and economic implications for the retailer’s switch decision from analytical/numerical sensitivity 
analyses, and (4) provide policy implications from the government’s perspective.

The critical contributions of this research include: (1) closed-form solutions for the optimal 
threshold of retail customers’ demand above which the SCIMS switch occurs and the corresponding 
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expected time without/with the presentence of government subsidies, (2) an insight that, as the retail 
customers’ demand becomes more volatile, the retailer should defer the switch of SCIMS, (3) from 
a government’s perspective, a small amount of variable subsidy is more efficient for a rapid switch 
among retailers, while a fixed subsidy anticipates for a more even pace of switch. Also, the fixed 
subsidy is more efficient at a higher level as opposed to the variable subsidy that is more efficient 
at a lower level.

The remainder of this article is organized as follows. A review of literature on the blockchain 
and real options is presented in the next section. Then the authors present the model formulation 
and analysis for a basic model and an extended model with two government subsidies. After that, 
a numerical example of romaine lettuce is conducted to further demonstrate how the change of 
key parameters impacts the optimal threshold of demand and expected time of switching. Finally, 
conclusions, limitations and future research are presented respectively.

LITERATURE REVIEW

Blockchain
The development of blockchain has boosted a series of discussions and attempts on its application in 
perishable agricultural supply chains. For instance, Tian (2016) developed a conceptual framework of 
an agricultural product supply chain traceability system combining blockchain with RFID technology. 
Moreover, it is estimated that every year, around 1/3 of food is lost or wasted in the world (FAO, 
2020). Among such loss and waste, 8% is caused by improper packaging and storage, especially for 
perishable products such as fresh produce, meat, dairy products since they require strict temperature 
and packaging conditions (Blockchain Guru, 2019). One promising solution is to use RFID tags and 
sensors to track the transportation and storage conditions along the shipping journey and to use Smart 
Contracts (a special feature of blockchain) to notify all stakeholders in the network whenever abnormal 
conditions occur. Also, according to IBM Research (2020), 45% of fruits and vegetables are spoiled 
and wasted because of a chaotic distribution system. This is because the imprecise nature of supply 
chains based on such systems forces farmers to make planting and harvesting decisions based on 
guesswork, and sellers to predict customer demand and behavior based on incomplete information. 
The solution to this problem is to implement a blockchain-enabled food supply chain that is enhanced 
by Internet of Things (IoT) devices and Artificial Intelligence (AI) computing. That is, IoT sensors 
track fruits, vegetables, or any other food items along the journey from field to grocery store, and AI-
enhanced, real-time data enables retailers to have better understanding on consumers eating patterns. 
In this way, both farmers and suppliers know the amount of perishable produce they should grow or 
order to meet the demand, and thus the perishable produce is fresher, and less amount is thrown away.

Regarding the reduction of the wastage and disposal in the perishable agricultural supply chain in 
this paper, the advantages and disadvantages of using the blockchain based SCIMS are summarized 
in Table 1.

Real Options
Derived from financial options, real options approach has been broadly applied in solving decision-
making problems as it incorporates the flexibility the decision makers confront in operating decisions 
(Trigeorgis & Tsekrekos, 2017). In existing literature, there are mainly three option valuation 
approaches, i.e., partial differential equations (Black and Scholes, 1973), trees and lattices (Cox, 
Ross, & Rubinstein, 1979), and simulations (Boyle, 1977). Examples of using real options approach 
in investments under uncertainties are as follows. Schwartz and Zozaya-Gorostiza (2003) evaluated IT 
investment projects by modeling the uncertainties in project costs and cash flows simultaneously. Tauer 
(2006) established entry and exit decision models for dairy farmers under the milk price uncertainty. 
Takashima and Yagi (2009) modeled a single investment and a sequential investment using real 
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options approach and showed the influence of a catastrophic event on the flexibility of the sequential 
one by comparing the option values of both investments under the cash flow uncertainty. They also 
determined the optimal investment timing and location of the power plant given construction costs 
and the catastrophic event are dependent on the location. Wu and Liou (2011) evaluated enterprise 
resource planning (ERP) investment incorporating revenue and cost uncertainties and determined 
the optimal threshold of the ratio of revenue to cost.

In terms of technology transition problems, in most cases, deterministic models are used. However, 
they are not able to incorporate uncertainties. For instance, in 2010, Cook and Ali used the NPV 
approach to evaluate quality improvement projects. Woo, Kim, Sung, Lee, Shin, and Lee (2019) 
evaluated the biopharmaceutical technology regarding new drug development using an improved 
risk adjusted NPV valuation model.

To the authors’ knowledge, no stochastic models can be found that have an emphasis in demand 
volatility where the blockchain based SCIMS reduces wastage and disposal, and the retailer in the 
perishable agricultural product supply chain faces the SCIMS switch decision. Although real options 
approach has a number of advantages such that it captures the uncertainties as opposed to deterministic 
models, there are circumstances where it is not worthy (see Table 2).

MODEL FORMULATION AND ANALYSIS

Basic Model
In a supply chain of a single perishable agricultural product consisting of a wholesaler, a retailer, and 
retail customers (see Figure 1), the authors consider a switching problem of the retailer’s perspective 
from a conventional SCIMS to a blockchain based SCIMS. The reason for this switch is that the 
blockchain based SCIMS facilitates the traceability of the perishable product, which in turn will 

Table 1. Advantages and disadvantages of using the blockchain based SCIMS to reduce the wastage and disposal in the 
supply chain of perishable agricultural products

Advantage

- Blockchain provides end-to-end traceability which allows the stakeholders in the supply 
chain to access the remaining shelf life of perishable food by tracking its journey and 
freshness (IBM, 2018).﻿
- Blockchain invites stakeholders to trade in trusting relationship (Zhang, Lee, & van de 
Ligt, 2016).﻿
- Blockchain efficiently improves the traceability of food regarding its safety and 
transparency in agriculture and food supply chains (Kamilaris, Fonts, & Prenafeta-Boldύ, 
2019).

Disadvantages
- When the demand is low, the profit saved from the reduction of wastage and disposal 
may not offset the costs associated with the retailer’s switch to the blockchain based 
SCIMS.

Table 2. Advantages and disadvantages of using real options approach to solve for the switching problem

Advantages

- Real options approach captures uncertainties and provides straightforward closed-
form solutions (Miller & Park, 2002).﻿
- Real options approach is not critically dependent on an accurate prediction of the 
retail customers’ demand. Instead, economic thresholds are provided that are typically 
not regrettable.

Disadvantages - When the demand has little volatility, using real options approach to solve the problem 
is not well worth.
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reduce the wastage and disposal because, for example, in a case of virus or bacteria outbreak, the 
contaminated products can be pinpointed in a rapid manner.

To facilitate the modeling and analysis, the following assumptions are proposed.

Assumption 1: The retail customers’ demand for a single perishable agricultural product at time 
point t , D

t
 (lb at a day), follows a GBM process where the time granularity is a day:

dD D dt D dz
t t t t
= +α σ 	 (1)

where α  (% per day; > 0) and σ  (% per square root of day; >0) are the instantaneous growth rate 
and volatility of the demand, respectively. dz

t
 is the increment of a Wiener process, and dz dt

t
=   , 

 ~ ,N 0 1( ) .

Proposition 1: Suppose the retail customers’ demand at time point 0 is D
0

, the expected value of 
D
t
 is E D D e

t
t( ) = 0
α  (Dixit & Pindyck, 1994, p. 71-72). See Appendix 1 for proof.

Assumption 1 is based on the observation that the retail customers’ demand for a perishable 
agricultural product increases on average and fluctuates over time. Empirical data support can be 
found in Table 3, where the authors estimate the consumption of fresh lettuce (romaine and leaf) at 
a day in Houston, TX from 2000 to 2017. As is shown in Figure 2, the consumption of fresh lettuce 
at a day has a positive growth rate with fluctuations over time.

For the ease of reference, the rest notations used in this paper are summarized in Table 4.
The unit selling price P  and the unit purchase price C  are assumed to remain unchanged over 

time. Meanwhile, the costs associated with processing activities (e.g., shipping, storage, disposal) 
and the corresponding labor costs are not taken into consideration.

For the conventional SCIMS, the authors make the following assumptions.

Assumption 2: At time point t , w  fraction of the demand D
t
 is wasted and disposed as precaution 

during recalls. Hence, the total amount of the perishable product that the retailer purchases from 
the wholesaler is 1+( )w Dt  (lb at a day).

w  is a constant that can be estimated from historical data by dividing the total amount of the 
perishable product wasted and disposed as precaution during recalls over the retail customers’ demand 
within last year. This assumption yields the following proposition.

Proposition 2: The total amount of the perishable product that the retailer purchases from the 
wholesaler at time point t  before switching, 1+( )w Dt  (lb at a day) also follows a GBM process 
with the same growth rate and volatility as D

t
. See Appendix 2 for proof.

Figure 1. Supply chain of a single perishable agricultural products
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Table 3. Estimated consumption of fresh lettuce at a day in Houston, TX from 2000 to 2017

Year Annual per capita (lb) 
(Shahbandeh, 2019)

Population (million) 
(U.S. Census Bureau, 

2019)

Daily consumption 
(lb) 

(Estimated)

2000 8.4 1.9774 45,507

2001 8.0 1.9943 43,711

2002 9.6 2.0156 53,013

2003 10.8 2.0197 59,761

2004 12.0 2.0174 66,325

2005 9.7 2.0219 53,733

2006 12.0 2.0587 67,683

2007 11.5 2.0651 65,065

2008 10.4 2.0844 59,391

2009 10.0 2.1186 58,044

2010 12.0 2.0993 69,018

2011 11.7 2.1255 68,132

2012 11.9 2.1598 70,415

2013 11.4 2.1982 68,656

2014 10.8 2.2388 66,244

2015 11.9 2.2822 74,406

2016 14.5 2.3045 91,549

2017 15.0 2.3127 95,042

Figure 2. Estimated consumption of fresh lettuce over time (Houston, TX, from 2000 to 2017)
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Assumption 3: The payment for using the conventional SCIMS (i.e., costs associated with phone 
calls, emails, paper copies) are ignored.

Assumption 4: At certain time point, the retailer switches from the conventional SCIMS to the 
blockchain based SCIMS at a switching cost of I $( ) .

Referring to the definition of adoption costs of information technology upgrades in Mukherji, 
Rajagopalan, & Tanniru’s work (2006), in this paper, the switching cost I  is defined as the cost 
associated with purchasing or upgrading necessary equipment, as well as training and transitioning 
employees completely to the blockchain based SCIMS.

For the blockchain based SCIMS, the authors make the following assumptions.

Assumption 5: At time point t , the amount of wastage and disposal as precaution during recalls is 
reduced to r r�( )0 1< <  fraction of that amount before switching. That is, the total amount of 
product the retailer purchases from the wholesaler is 1+( )rw Dt  (lb at a day).

By collecting the product information and storing it on the network, blockchain creates a more 
transparent supply chain where the source of contamination can be rapidly identified and thus, 
unnecessarily broad recalls are reduced (Guo et al., 2018). For instance, in a case of dairy products 
contamination, Marin, Marin and Vidu (2019) claimed that blockchain can trace the originating farm 
within seconds, and only a batch of dairy products needs to be removed from distribution. With the 
above qualitative data support, the authors assume that the blockchain based SCIMS reduces the 
amount of wastage and disposal of perishable agricultural products as precaution during recalls use 

Table 4. Notations and descriptions

Notation Description

P Unit selling price that is paid by retail customers to the retailer ($/lb)

C Unit purchase price that is paid by the retailer to the wholesaler ($/lb)

w The ratio of the amount of the wastage and disposal as precaution during recalls over the 
demand at time point t

I Switching cost incurred to the retailer at the time of switching ($)

r The ratio of the amount of wastage and disposal as precaution during recalls using the 
blockchain based SCIMS over that amount using the conventional SCIMS

C
b Payment for using the blockchain based SCIMS that is paid by the retailer to IBM ($/day)

ρ Discount rate for money (% per day)

V
1 Project value function in phase 1 ($)

V
2 Project value function in phase 2 ($)

D*
Optimal threshold of demand above which the SCIMS switch occurs ($/lb)

T *
Expected time of switching (day)
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a coefficient r  to denote the reduction efficiency. Notably, a smaller r  indicates more amount of 
the perishable product is saved from being wasted and disposed. This assumption yields the following 
proposition.

Proposition 3: The total amount of the perishable product that the retailer purchases from the 
wholesaler at time point t  after switching, 1+( )rw Dt  (lb at a day) also follows a GBM process 
with the same growth rate and volatility as D

t
. See Appendix 3 for proof.

Assumption 6: Once the retailer switches to the blockchain based SCIMS, the retailer will use it 
forever.

The timeline with respect to the switching of SCIMS is divided into two phases by T * , namely, 
phase 1 and phase 2 (see Figure 3).

The problem can be described as a maximization of the total expected discounted value by 
choosing T *  as follows:

maxE e PD C w D dt Ie e PD C rw
T

t
t t

T

T

t
t

0

1 1

*

*

*

∫ ∫− − −− +( )



 − + − +(ρ ρ

∞
ρ )) −





















D C dt
t b

	 (2)

where T inf t D D
t

* *= ≥ ≥{ | }0 .

Phase 2: After Switching

At time point t  in phase 2, when operating, the retailer has a cash flow of max PD C rw D C
t t b
− +( ) −



1 0, . 

This implies that when P rw C> +( )1  and:

D D
C

P C rwt min
b> =

− +( )1
	

the retailer makes profit from the selling of the perishable agricultural product. Under a technical 
condition of ρ α− > 0 , the project value at time point t , V D

t2 ( ) , is equal to the expected value of 
discounted future cash flows as follows (Murto, 2007). The proof is given in Appendix 4:

Figure 3. The timeline with respect to the switching of SCIMS
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V D E e PD C rw D C dx
t

t

x t

x x b2
1( ) = − +( ) −

















∫

− −( )
∞

ρ


=

− +( )





−
−

P C rw D Ct b
1

ρ α ρ
	 (3)

Phase 1: Before Switching

In phase 1, when operating, the cash flow function at time point t  is given bymax ,PD C w D
t t
− +( )



1 0 . 

Similarly, in order for the retailer to make profit, P  is supposed to be greater than 1+( )w C , and 
there is no requirement for D

t
. The project value at time point t , V D

t1 ( ) , must satisfy the following 
Bellman optimality principle equation:

ρV D dt PD C w D dt E dV D D
t t t t t1 1

1( ) = − +( ) +

 ( )[ | ] 	 (4)

Equation (4) means that at time point t , the return for holding the switching option should be 
equal to the immediate profit when holding the switching option plus the expected appreciation of 
the project value conditioning on the demand level.

By applying Ito’s Lemma on dV
1

, the following differential equation can be derived:

1

2
02 2

2
1
2

1
1

σ α ρD
V

D
D
V

D
V P C D CwD

t

t

t
t

t t

∂

∂
+

∂

∂
− + −( ) − = 	 (5)

Equation (5) is subject to the following two boundary conditions (Siddiqui & Takashima, 2012):

V D V D I
1 2

* *( ) = ( )− 	 (6)

V D V D
1 2
' '* *( ) = ( ) 	 (7)

Equation (6) and Equation (7) are the value matching condition and smooth pasting condition, 
respectively. The value matching condition ensures that at the time of exercising the switching option, 
the project value before switching is equal to the project value after switching minus the switching 
cost. The smooth pasting condition guarantees that the slopes of the left-hand side and the right-hand 
side of the value matching condition are equal at the optimal threshold of demand.

Under technical conditions of ρ α− > 0  and α σ
− >

2

2
0  (Dixit & Pindyck, 1994), the general 

solution to Equation (5) is given by (see Appendix 5 for proof):

V D AD
P C w D

t t

t

1 1
1

1
( ) = +

− +( )





−
β

ρ α
	 (8)

where:
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β
σ
σ

α
σ

α ρσ
1 2

2 2
2

21

2 2
2= − + −










+


















, β

1
1> 	

Using the two boundary conditions, the coefficient A
1
 and the optimal threshold of demand D*  

can be solved. That is:

A
Cw r

D
1

1

1

1

1

=
−( )

−( ) −ρ α β β*
	

and D*  is given by:

D

C
I

Cw r

b

* =

+









−( )

−( ) −( )
ρ

ρ α β

β

1

1
1 1

	 (9)

It can be verified that the expected time for the retailer to optimally switch is (Appendix 6 for 
proof):

T

C
I

Cw r
D

b

* =

+









−( )

−( ) −( )
−






ln ln
ρ

ρ α β

β

1

1

01 1







−










/ α σ
1

2
2 	 (10)

Extended Model With Subsidies
Next, the basic model is extended by incorporating two types of government subsidies. That is, 
government provides the retailer with a one-time fixed subsidy of U $( )  on the switching cost to 
initiate the switch of SCIMS, and a variable subsidy S  ($/lb) per unit demand for using the blockchain 
based SCIMS in the supply chain of the perishable agricultural product.

Phase 2: After Switching
In  phase  2 ,  when  ope ra t i ng ,  t he  r e t a i l e r ’s  ca sh  f l ow a t  t ime  po in t  t  i s 
max PD C rw D C SD

t t b t
− +( ) − +



1 0, ,  and i t  i s  required that  P rw C> +( )1  and 

D D
C

P C rw St min
b> =

− +( )+1
. Given ρ α− > 0 , the project value, V D

t2 ( ) , is equal to the 

expected value of discounted cash flows as follows (Murto, 2007). The proof is given in Appendix 7:
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V D E e PD C rw D SD C dx
t

t

x t

x x x b2
1( ) = − +( ) + −













∫

− −( )
∞

ρ 




=
− +( )+





−
−

P C rw S D Ct b
1

ρ α ρ

	

(11)

Phase 1: Before Switching

When operating, the project value at time point t , V D
t1 ( ) , remains the same as Equation (8) in the 

basic model, i.e.:

V D AD
P C w D

t t

t

1 1
1

1
( ) = +

− +( )





−
β

ρ α
	

but now V D
t1 ( )  is subjective to the following two boundary conditions:

V D V D I U
1 2

* *( ) = ( )− −( ) 	 (12)

V D V D
1 2
' '* *( ) = ( ) 	 (13)

Equation (12) is the value matching condition, which suggests that at the time of exercising the 
switching option, the project value before switching should be equal to the project value after switching 
minus the switching cost net of the fixed subsidy. Equation (13) is the smooth pasting condition, and 
it ensures the slopes of both sides of Equation (12) are equal at the switching time.

Sequentially, it can be verified that A
Cw r S

D
1

1 1

1

1

1

=
−( )+

−( ) −ρ α β β*
, and the optimal threshold of 

demand D*  is:

D

C
I U

Cw r S

b

* =

+ −









−( )

−( )+



 −( )

ρ
ρ α β

β

1

1
1 1

	 (14)

Similarly, with the two types of government subsidies, the expected time of switching becomes:

T

C
I U

Cw r S
D

b

* =

+ −








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−( )

−( )+



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−ln ln
ρ

ρ α β

β

1

1

0
1 1
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
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


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−










/ α σ
1

2
2 	 (15)
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Analytical Sensitivity Analysis

Among the ten parameters that determine the optimal threshold of demand D* , the authors conduct 
analytical sensitivity analysis on seven of them (C , w , r , I , C

b
, U , S ), and numerically examine 

the impact of the rest three (σ , α  and ρ ) on D*  as the partial derivatives with respect to them 
cannot not explicitly obtained. Also, since in the stochastic optimal control theory, the optimal project 
value corresponds to timing, sensitivity analysis on T *  is included as well.

Corollary 1: Given ρ α>  and α σ
− >

2

2
0 , ∂
∂
<

D

C

*

0 , ∂
∂
<

T

C

*

0 , ∂
∂
<

D

w

*

0 , and ∂
∂
<

T

w

*

0 .

The proof is given in Appendix 8. This corollary indicates that when the unit purchase price of the 
perishable product increases or a larger proportion of the perishable product is wasted and disposed 
as precaution during recalls, the optimal threshold of demand and the expected time of switching 
decrease. In such cases, the retailer loses more money due to the wastage and disposal. Consequently, 
the retailer will switch to the blockchain based SCIMS earlier from an economic perspective.

Corollary 2: Given ρ α>  and α σ
− >

2

2
0 , ∂
∂
>

D

r

*

0 , �
*∂

∂
>

T

r
0 .

The proof is given in Appendix 9. The positive partial derivatives suggest that, a larger coefficient 
of reduction efficiency leads to a higher optimal threshold of demand and the expected time of 
switching. This is because a larger r  implies that less amount of perishable agricultural product is 
saved from being wasted and disposed by the blockchain based SCIMS. As a result, it is economically 
rational for the retailer to defer the switching option.

Corollary 3: Given ρ α>  and α σ
− >

2

2
0 , ∂
∂
>

D

I

*

0 , �
*∂

∂
>

T

I
0 , ∂
∂

>
D

C
b

*

0 , and ∂
∂

>
T

C
b

*

0 .

The proof is given in Appendix 10. Corollary 3 suggests that as the switching cost or the payment 
for using the blockchain based SCIMS increases, the optimal threshold of demand and the expected 
time of increase. This makes economic sense because, under such circumstances, the retailer benefits 
less from the SCIMS switch, so there is less incentive for the retailer to switch. Therefore, the retailer 
will wait longer before exercising the switching option.

Corollary 4: Given ρ α>  and α σ
− >

2

2
0 , ∂
∂
<

D

U

*

0 , ∂
∂

<
T

U

*

0 , ∂
∂
<

D

S

*

0 , and ∂
∂
<

T

S

*

0 .

The proof is given in Appendix 11. The interpretation of Corollary 4 is as follows. When 
government provides the retailer with higher fixed subsidy on the switching cost or higher variable 
subsidy per unit demand, the retailer has a lower switching cost or a higher cash flow after switching. 
Either way, the retailer will be more eager to switch from an economic perspective, so the optimal 
threshold of demand and expected time of switching will decrease.

NUMERICAL STUDY

In this section, the authors conduct a numerical study on romaine lettuce to further demonstrate the 
findings in the previous section. The parameter values and references are summarized in Table 5, 
where some parameter values are hypothetical due to the lack of numerical data.



International Journal of Operations Research and Information Systems
Volume 11 • Issue 4 • October-December 2020

13

The key numerical results in Table 6 show that, in the basic model where no subsidies are provided, 
the optimal threshold of demand is 2,100,161 (lb at a day) and the corresponding expected time of 
switching is 76 (day). With the presentence of two types of government subsidies, in the extended 
model, the optimal threshold of demand is reduced to 625,047 (lb at a day), and correspondingly, the 
expected time of switching is reduced to 48 (day). Also, the minimum demand level for the retailer 
to make profit from the selling of the perishable product is reduced from 238 (lb at a day) to 218 (lb 
at a day) when the two government subsidies are provided.

Table 5. Parameters and values

Parameter Value References

α 0.0505 Shahbandeh (2019); U.S. Census Bureau (2019);﻿
Method 3 in Croghan, Jackman and Min’s paper (2017)σ 0.1202

D
0 78,552 (lb at day) Population USA (2019); Shahbandeh, 2019)

P 0.94 ($/lb) USDA (2019)

C 0.36 ($/lb) USDA (2019)

w 0.137 ExerciseBike (2019)

C
b 133.33 ($/day) IBM Cloud (2019)

ρ 0.0543 Damodaran (2019)

r 0.4 Hypothetical

I 1,000,000 ($) Hypothetical

U 200,000 ($) Hypothetical

S 0.05 ($/lb) Hypothetical

Table 6. Numerical results

Notation Value (basic model - no subsidies) Value (extended model - with subsidies)

β
1 1.0653 1.0653

A
1 2.8255 8.2255

D
min 238 (lb at a day) 218 (lb at a day)

D*
2,100,161 (lb at a day) 625,047 (lb at a day)

T *
76 (day) 48 (day)
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Next, numerical sensitivity analysis is conducted on σ , α  and ρ , since their impact on D*  
and T *  has not been analytically examined.

Figure 4 illustrates that as the demand becomes more volatile, the optimal threshold of demand 
and the expected time of switching increase, meaning that the exercise of the retailer’s switching option 
should be deferred. This is because, with a higher demand uncertainty, the flexibility to exercise the 
switching option at any time point becomes more valuable. Hence, it is economically rational for the 
retailer to hold the switching option longer and wait for more information.

In terms of the growth rate of demand, when it increases, the optimal threshold of demand and 
the expected time of switching decrease (see Figure 5). This is because when the retail customers’ 
demand for the perishable product is rapidly growing, the retailer’s benefit from using the blockchain 
based SCIMS is amplified. Therefore, the retailer prefers to exercise the switching option earlier.

Figure 4. Variation of D*  and T *  with respect to σ

Figure 5. Variation of D*  and T *  with respect to α
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As can be observed from Figure 6, when the discount rate for money increases, the optimal 
threshold of demand and the expected time of switching increase. The reason is that, when money 
is heavily discounted, the retailer’s loss due to wastage and disposal during recalls is trivial. 
Consequently, there is less incentive for the retailer to switch from the conventional SCIMS to 
the blockchain based SCIMS.

Although the magnitude of the partial derivative of D*  and T *  with respect to U  and S  have 
been given in the sensitivity analysis section, the authors include Figure 7 and Figure 8 to discuss 
the convexness and concaveness of these curves. Intuitively, the optimal threshold of demand linearly 
decreases as the fixed subsidy on switching cost increases, and convex decreases as the variable 
subsidy per unit demand increases. Specifically, when the variable subsidy S  increases from 0 to 
0.1 ($/lb), the optimal threshold of demand D*  substantially decreased from 1 68 106. × (lb at a day) 
to 0 38 106. ×  (lb at a day). However, when S  increases from 0.3 ($/lb) to 0.4 ($/lb), D*  decreased 

Figure 6. Variation of D*  and T *  with respect to ρ

Figure 7. Variation of D*  and T *  with respect to U
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from 0 15 106. ×  (lb at a day) to 0 11 106. ×  (lb at a day). This implies that, from a perspective of the 
optimal demand threshold reduction, a small amount of variable subsidy is more economically efficient 
than the fixed subsidy if the government expects retailers to rapidly switch to the blockchain based 
SCIMS. On the other hand, the fixed subsidy is more viable than the variable subsidy when government 
anticipates an even switch among retailers.

As for the expected time of switching, it is concave decreasing when the fixed subsidy increases, 
and convex decreasing when the variable subsidy increases. This means that, regarding the expected 
switching time reduction, fixed subsidy is more efficient at a higher level, while variable subsidy is 
more efficient at a lower level.

CONCLUSION

This paper considers a retailer in a supply chain of a perishable agricultural product who faces a 
volatile retail customers’ demand and decides when to switch to a blockchain based SCIMS from 
a conventional SCIMS. The authors investigated how economic rational decisions can be made on 
such a switch from a real option perspective under the assumption that the retail customers’ demand 
for a single perishable agricultural product follows a GBM process. Specifically, without/with the 
presentence of a fixed subsidy and a variable subsidy from the government, the authors constructed 
mathematical models and obtained the closed-form solutions of the demand thresholds for the retailer 
to optimally switch and the corresponding expected switching time. By analytically and numerically 
examining the impact of key parameters on the optimal threshold of demand and the expected time of 
switching, a series of managerial insights and policy implications are derived. For instance, the retailer 
is recommended to defer the switching option when the customers’ demand is volatile. Furthermore, 
from the government’s perspective, a small amount of variable subsidy should be promoted if the 
government anticipates the retailers to rapidly switch to the blockchain based SCIMS in a short time, 
while a fixed subsidy is recommended if an even pace of switch among retailers is expected. Also, 
fixed subsidy is more efficient at a higher level as opposed to variable subsidy that is more efficient 
at a lower level.

The novelty of this paper is to show under what conditions a retailer can switch from a conventional 
SCIMS to a blockchain based SCIMS as well as the expected time for the switch when the demand 
uncertainty is characterized by a GBM process.

Figure 8. Variation of D*  and T *  with respect to S
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LIMITATIONS AND FUTURE RESEARCH

The limitations of this paper are as follows. To start, the assumption that the blockchain based SCIMS 
reduces the amount of wastage and disposal to r  fraction of that using the conventional SCIMS 
(assumption 5) is based on qualitative inference and lacks quantitative data support. Secondly, the 
authors assume that once the retailer switches to the blockchain based SCIMS, the retailer will use 
it forever (assumption 6). Nonetheless, in reality, technology innovations are commonly observed 
and full of uncertainties. It is likely that blockchain will require updates or be replaced by a more 
advanced SCIMS in the future. Thirdly, in this paper, the authors only incorporate the demand 
uncertainty, while the retailer’s switch decision can also be impacted by other uncertainties such as 
the unit selling price.

In the future, the authors may incorporate the uncertainties of technology innovation and unit 
selling price in the models. Or, with the development of blockchain, quantitative data support can 
be used to justify assumption 5. Future research directions can also be focused on decision models 
for other stakeholders in the supply chain of perishable agricultural products such as the wholesaler 
or the farm cooperative. Finally, discussions can be expanded to the valuation of the blockchain 
based system regarding other properties such as transparency, immutability, irrefutability in various 
industries (e.g., financial, insurance, manufacturing industry).
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APPENDIX 1: PROOF OF PROPOSITION 1

Define F D
t t
= ( )ln . By Ito’s Lemma, the total differential of function F

t
 is as follows (Dixit & 

Pindyck, 1994, p. 80):

dF
F

t
dt

F

D
dD

F

D
dD

t
t t

t

t

t

t
=
∂

∂
+
∂

∂
+
∂

∂
( )1

2

2

2

2
	

= +( )+ −











+( )1 1

2

1
2

2

D
Ddt D dz

D
D dt D dz

t
t t t

t

t t t
α σ α σ 	

= +( )− + +( )α σ α σ α σdt dz dt dz dt dz
t t t

1

2
22 2 2 2 	 (1-1)

where 
∂

∂
=

F

t
t 0  (because the function F D

t t
= ( )ln  has a steady state regardless of the value of t ), 

∂

∂
=

F

D D
t

t t

1 , and 
∂

∂
= −

2

2 2

1F

D D
t

t t

. Since dz dt
t
=   , dz dt

t
2 2=   and dtdz dt

t
= 

3

2 . Terms in dt2  

and dt
3

2  go to zero faster than dt  as it becomes infinitesimally small, so they can be ignored (Dixit 
& Pindyck, 1994, p. 80). Also:

dz dt E dt Variance E dt dt dt
t
2 2 2

2
21 0= ≅ ( ) = ( )+ ( )



{ } = +( ) =    	

Hence:

dF dt dz dt dt dz
t t t
= +( )− ( ) = −










+α σ σ α σ σ

1

2

1

2
2 2 	 (1-2)

This implies that over finite time interval t , the change in F
t

 (the natural logarithm of D
t
) is normally 

d i s t r i b u t e d  w i t h  m e a n  α σ−










1

2
2 t  a n d  v a r i a n c e  o f  σ2t .  T h e r e f o r e , 

ln lnD D dt dz
t t( ) = ( )+ −










+

0
21

2
α σ σ , where D

0
 is the value of D

t
 at time point 0. Stated 

otherwise, D
t
 is a lognormal process and can be written as D e

dt dzt

0

1

2
2α σ σ−










+

 (Luenburger, 1998, p. 
308-309).
For a random variable X N�~� ,�µ σ2( ) , the moment generating function (MGF) is as follows (Miller, 
Miller & Freund, 2014, p. 187):

M s E e e s
X

sX
s s

( ) = ( ) = −∞ < <∞
+µ σ
1

2
2 2

, 	 (1-3)
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For a random variable F N t t
t
�~� ,�α σ σ−





















1

2
2 2 , the MGF is given by (Sigman, 2006, p. 3):

M s E e e s
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ts ts
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t( ) = ( ) = −∞ < <∞
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






+α σ σ

1

2

1

2
2 2 2

, 	 (1-4)

Therefore, the expected value of D
t
 can be calculated by setting s = 1 :

E D E D e D M D e D e
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t t
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APPENDIX 2: PROOF OF PROPOSITION 2

Define G w D
t t
= +( )1 . By Ito’s Lemma, the total differential of function G

t
 is given by:

dG
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t
dt

G

D
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D
dD w D dt D dz
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t t
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t t t t
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
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	 (2-1)

where 
∂

∂
=

G

t
t 0  (because the function G w D

t t
= +( )1  has a steady state regardless of the value 

of t ), 
∂

∂
= +

G

D
wt

t

1 , and 
∂

∂
=

2

2
0

G

D
t

t

.

Hence, G
t
, i.e., 1+( )w Dt , follows a GBM process with the same growth rate α  and volatility 

σ  as D
t
.
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APPENDIX 3: PROOF OF PROPOSITION 3

Similarly, define H rw D
t t
= +( )1 . By Ito’s Lemma, the total differential of function H

t
 is 

given by:

dH
H

t
dt
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	 (3-1)

where 
∂

∂
=

H

t
t 0  (because the function H rw D

t t
= +( )1  has a steady state regardless of the value 

of t ), 
∂

∂
= +

H

D
rwt

t

1 , and 
∂

∂
=

2

2
0

H

D
t

t

.

Hence, H
t
, i.e., 1+( )rw Dt , follows a GBM process with the same growth rate α  and volatility 

σ  as D
t
.
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APPENDIX 4: PROOF OF EQUATION (3)

V D E e PD C rw D C dx
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APPENDIX 5: PROOF OF EQUATION (8)

A particular solution to Equation (5) can be verified to be V D
P C w D

t

t

1

1
( ) =

− +( )





−ρ α
 under a 

technical condition of ρ α− > 0 . Also, a homogeneous solution to Equation (5) can be written as 

V D AD AD
t t t1 1 2

1 2( ) = +β β  under a technical condition of α σ
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2
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0 , where:
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are the two roots of the fundamental quadratic equation � = −( )+ − =
1

2
1 02σ β β αβ ρ . It can be 

verified that β
1

1>  and β
2
0<  (Dixit and Pindyck’s, 1994, p. 143). So, the general solution to 

Equation (5) is:
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1 1 2
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and A
1
 and A

2
 are constants to be determined.

The signs of constants A
1
 and A

2
 can be discussed as follows. Assuming A

1
 is negative, since 

β
1

 is greater than 1, when D
t
 goes to positive infinity, the term AD

t1
1β  goes to negative infinity. 

This is against economic implications as larger demand is supposed to bring the retailer with more 
profit and thus, contributes to a higher project value. Therefore, A

1
 cannot be negative. Similarly, if 

A
2

 is positive, when D
t
 is small and approaches to zero, the term AD

t2
2β  goes to positive infinity 

since β
2
 is negative. This also violates the economic signification because smaller demand should 

contribute to lower profit as well as lower project value. Hence, A
2

 cannot be positive. Conversely, 

if A
2

 is negative, 
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= <−
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D
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t

t
t

2

2 2

1
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2 0

β

ββ , meaning that the project value decreases as the 

demand increases. This does not make economic sense since the project value should increase with 
an increase in the demand, so A

2
 cannot be negative either. Since A

2
 cannot be either positive or 

nega t ive ,  i t  i s  r equ i red  to  be  0 .  The re fo re ,  t he  gene ra l  so lu t ion  becomes 
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APPENDIX 6: PROOF OF THE EXPECTED TIME OF SWITCHING

In Appendix 1, the authors show that the change in F
t

 (the natural logarithm of D
t
) is normally 

distributed with mean α σ−








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2
2 t  and variance of σ2t . Since the natural logarithm is a monotonically 

increasing function, the expected time for the retailer to optimally switch can be interpreted as the 
expected passage time from D

0
 to D* :
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APPENDIX 7: PROOF OF EQUATION (11)
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APPENDIX 8: PROOF OF COROLLARY 1

By Equation (14), Equation (15) and technical conditions of ρ α>  and α σ
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APPENDIX 9: PROOF OF COROLLARY 2

By Equation (14), Equation (15) and technical conditions of ρ α>  and α σ
− >
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