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ABSTRACT

Information systems are intended to be faithful accounts of real-world applications. As an integral part 
of the development process, analysts create conceptual models in order to understand the application 
and communicate requirements. Failure to do so has been a prominent reason for IT projects’ failure. 
Hence, improving the quality of models could have a major impact on the information systems’ success. 
To guide the modeling process, researchers use ontology to create more expressive representations 
of reality. However, improving expressiveness can make the models complicated and cause cognitive 
hurdles for users. Therefore, the question is whether ontological guidance is worth the trade-off between 
expressiveness and complexity. This paper describes a meta-analysis of empirical research examining 
the impact of ontological guidance on users’ understandability. The results show that ontological 
guidance can improve users’ understanding of conceptual models, especially those requiring deeper 
understanding, thus providing support for ontological guidance in conceptual modeling.
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INTRODUCTION

Systems analysts create conceptual models in order to understand information system (IS) application 
domains and communicate system requirements (Mylopoulos, 1992) with stakeholders, analysts, 
designers, and implementers. Failing to understand the domain requirements is a major cause of failure 
in IS development projects (Wand & Weber, 2002, p. 363). Correcting an error in understanding user 
requirements post-implementation of the IS is “100 times more costly than it is to correct it during 
requirements analysis” (Moody, 2005, p. 245). Thus, by enhancing the quality of conceptual models 
and one could expect a major impact on the success of IS projects.

Conceptual models are required to provide a faithful representation of the relevant aspects of the 
domain (Wand & Weber, 2002). Use of ontology, “a branch of philosophy that deals with the order 
and structure of reality in the broadest sense possible” (Angeles, 1981), has been proposed to guide 
what ought to be modeled (Wand & Weber, 1989) since they “account for the structure and behavior 
of the world in general” (Storey, 2017, p. 19). Models that are ontologically valid are considered 
to be more faithful to the reality and thus more ‘ontologically expressive’1 (Wand & Weber, 1993). 
However, a more expressive grammar tends to have additional constructs (in order to provide a more 
complete mapping between the grammar and constructs in the ontology) as well as guidelines to 
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make sure that the created model is clear (Wand & Weber 1993, p. 228). Thus, Wand and Weber 
(1993) posited that “the goals of expressive adequacy and simplicity are often in conflict. Additional 
constructs and production rules enhance expressive power at the cost of increased complexity” (p. 
234). The increased complexity might interfere with the process of creating conceptual models, and in 
interpretation of the models by users. Overall, modelers will face a trade-off between expressiveness 
and simplicity/parsimony (Khatri, Vessey, Ram & Ramesh 2006; Bowen, O’Farrell, & Rohde 20092).

The objective of the current paper is to investigate whether conceptual models that are more 
ontologically expressive can lead to better user understanding despite the possibility of adding to 
complexity. We use the term ‘ontological guidance’ to refer to conceptual models where the creators of 
the model sought guidance from ontology and tried to create conceptual models that are more faithful 
to reality (i.e., more ontologically expressive). Evaluating the clarity and completeness aspects of a 
representation (e.g., a conceptual model) is not contingent on using a particular ontological theory.

Systematic investigation of the value of using ontology requires that empirical work to have 
been previously conducted. Practically, all empirical work has been done using Bunge ontology 
(Bunge, 1977) (as adapted to information systems by Wand and Weber (1989, 1993, 1995, 2002)). 
Bunge’s ontology is considered the most widely used ontology in systems analysis and design and 
in conceptual modeling research (Allen & March, 2006a; Fonseca, 2007). Besides the wide adoption 
of this ontological theory in the IS discipline, Weber (1997) as well as Tilakaratna and Rajapakse 
(2017) consider Bunge’s ontology to be the most complete and best formulated ontology to evaluate 
information systems analysis and design (Weber, 1997 p. 33; Tilakaratna & Rajapakse, 2017, p. 2). 
The present paper synthesizes past empirical work without making any claims regarding merits of 
different ontological theories.

A large body of work has focused on development of ontological guidelines for different 
conceptual modeling grammars (e.g., Bera, Burton-Jones, & Wand 2011; Evermann & Wand 2006, 
Recker, Indulska, & Green 2006 – see Table 1) as well as evaluation of the effectiveness of the 
guidelines on users’ performance of cognitive tasks using conceptual models. An important issue 
has been the study of the trade-off between simplicity and expressiveness. For example, Bodart, 
Patel, Sim, and Weber (2001) evaluated the ontological expressiveness of entity-relationship (ER) 
diagrams using different measures of understanding. They showed that for certain measures (e.g., 
recall) simpler models led to better performance by subjects, while for problem solving tasks, the 
more expressive models were advantageous. Bowen, et al. (2009) investigated the effect of ontological 
guidance on models with varying complexities and found that users who write queries on larger but 
non-ontologically guided models tend to outperform ones using guided models.

This paper investigates the usefulness of applying ontological guidance (based on Bunge’s 
ontology) by conducting a quantitative and objective review of previous empirical work. The work 
we used had evaluated the effect of ontological guidance on users’ performance in order to better 
understand the trade-off between simplicity and expressiveness. We synthesized papers with different 
scopes (in terms of modeling languages). They all had the same overall theme of evaluating the impact 
of ontological guidance. We performed a meta-analysis on previous empirical work3 (Borenstein, 
Hedges, Higgins, & Rothstein 2011) and we used the random-effects model.

In an earlier paper, the authors (Saghafi & Wand, 2014) gathered a small number of empirical 
studies about the impact of ontological guidance on users’ understanding of conceptual models. 
There are both theoretical and empirical differences between the current paper and the earlier version, 
which lead to differences in scope, method, and depth of analysis. In the previous version we analyzed 
eight papers. Addressing the limited number of papers in the previous meta-analysis, we extended 
it by including 10 more papers to a pool of 18 studies, where many studies reported multiple effect 
sizes, leading to a total of 58 reported effect sizes. We also used a different meta-analysis model 
- the random effects model – discussed in Choice of Analysis Model section. We then statistically 
synthesized the reported effect sizes and presented the results using an elaborate categorization of 
dependent variables based on similarity of measures. We have now four theoretical levels of analysis. 
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We acknowledge the diversity of the papers included in the meta-analysis (from different modeling 
grammars to varying dependent variables measured). We incorporated diverse studies in our meta-
analysis, as discussed by Rosenthal and DiMatteo (2001), which might be analogized as mixing 
apples and oranges. Borenstein et al. (2011) state that “combining apples and oranges makes sense 
if your goal is to produce a fruit salad. The goal of a meta-analysis is only rarely to synthesize data 
from a set of identical studies” (Borenstein et al. 2011, p. 357).

Building on this argument, this diverse range of studies in our meta-analysis allows us to 
synthesize empirical studies on the subject of ontological guidance in conceptual modeling. By 
doing so, we hope to achieve an overarching view of the research and impact of ontological thinking 
in conceptual modeling.

Using meta-analysis and our categorization of dependent variables, we studied situations where 
the effect of ontological guidance could vary depending on the cognitive requirements of the task. 
Our analysis shows that ontological guidance, although may add cognitive complexity, can actually 
improve users’ understanding of conceptual models in tasks that require deeper understanding of 
the domain.

In the following sections, we first provide a brief review of different ontological foundations used 
in the information systems literature. We used Bunge’s ontology because of its available empirical 
work. Then, we study the effect of ontological guidance on different aspects of users’ performance by 
synthesizing the prior empirical research. Our findings address the trade-off between simplicity and 
complexity of conceptual models. Finally, we summarize the results and point to possible conclusions.

APPLICATION OF ONTOLOGy IN THe IS DISCIPLINe

Philosophers have been studying the question of what exists in the world since ancient times (Almeida 
2013), from Aristotle to contemporary philosophers (e.g., Bunge 1977; Searle 2006). The branch of 
philosophy that deals with the structure of reality in the broadest sense is called ontology (Angeles 
1981). Here we focus only on applications of ontology in information systems. The underlying premise 
is that information systems are representations or models of real-world applications (Wand & Weber 
1993). Thus, success of an information system is contingent on how effectively and faithfully the 
representations are generated and interpreted by analysts and designers (Moody 2005; Wand & Weber 
1995). In order to build faithful representations of reality, modelers can seek guidance from ontologies 
(Allen & March, 2006a; Fonseca, 2007) to base their models on the assumed structure of reality.

In Bunge’s ontology, we consider the world to be made of things that possess properties. The 
properties are represented as attributes by human observers. The values of those attributes constitute 
the state of the thing at a given time (Wand & Weber 1990). The combinations of attribute-values 
that are possible within a domain are called lawful states. An event describes changes in the state of 
a thing (Wand & Weber 1993), and are subject to their own laws. An information system is also a 
thing (representing the real-world) where “lawful states of the information system should reflect the 
lawful states of the real-world system” (Wand & Wang 1996, p. 89).

IS scholars have used other ontologies as well. Most notable are Allen and March (2006a, 2006b, 
2012), who are proponents of using Searle’s ontology (Searle 2006) instead of Bunge’s. The focus 
of Searle’s ontology (Searle 2006) is on social or institutional reality. The institutional reality is the 
“world of conceptual objects created by human intentionality and the characteristics ascribed to 
material or conceptual objects for human purposes” (Allen & March 2006a, p. 1). Allen and March 
(2006a) believe that “the domain of Bunge’s ontology is the physical world, and it has no place 
for human intentions, interpretations, or meaning” (p. 1). Therefore, it is unfit to present the social 
concepts4. Despite this claim, Volume 4 of Bunge’s Treatise on Basic Philosophy (Bunge, 1979) is 
about systems, which also include social systems. In Chapter 5, Bunge examines “the social aspect 
of man, centering [his] attention on social relations and the resulting social structure” (p. 187)5.
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Use of another ontological theory is discussed by Guizzardi, Herre, and Wagner (2002). They used 
the general ontological language (GOL) proposed by Degen, Heller, Herre, and Smith (2001). GOL is 
based on set theory and divides the “world into two sorts of entities. On the one hand are urelements, 
which form an ultimate layer of entities lacking any set-theoretic structure in their make-up. On the 
other hand are sets, which rise above these urelements in the familiar cumulative hierarchy” (Degen 
et al., 2001, p. 35). Urelements are “individuals” with properties such as quantity, space, and time. 
Sets are constructs that are made of individuals - akin to the “kind” concept in Bunge’s ontology. 
GOL is similar to Bunge’s ontology in considering entities as building blocks of the world.

To demonstrate the similarities, Guizzardi, et al. (2002) mapped constructs of GOL to Bunge 
and identified counterparts in respective ontologies. Later, Guizzardi, Wagner, and Sinderen (2004) 
proposed that ontological guidelines based on GOL could be used in the Unified Modeling Language 
(UML) grammar. Similarly, Evermann and Wand (2006) used Bunge’s ontology to propose ontological 
guidelines in UML. To compare these guidelines (based on GOL and Bunge’s ontology), Hadar and 
Soffer (2006) performed a qualitative analysis of the UML class diagrams created by 11 software 
developer professionals. They identified seven different types of modeling variations (six related to 
syntax and semantics and one different naming conventions)6 with vagueness in the guidelines “for 
deciding how to map reality into modeling constructs” (Hadar & Soffer 2006, p. 568). They examined 
how ontological guidelines can reconcile (or prevent) these variations. The framework by Evermann 
and Wand (2006) had conclusive rules for five of those variation types and implicit guidance for 
one. The guidelines developed by Guizzardi et al. (2004) provided conclusive rules for two types of 
variations, partial rules for another two, implicit guidance for one, and no guidance for the remaining 
two variation types. Based on Hadar and Soffer’s analysis, guidelines rooted in Bunge’s ontology 
have a wider coverage and applicability in reconciling modeling variations.

In addition to the debates on types of ontologies to be used, there are empirical works that 
demonstrate that employing ontological guidance could make the models complicated and thus 
negatively affect users’ performance. Bodart et al. (2001) showed that users had lower recall of 
ontologically guided models in comparison with non-guided models because ontologically guided 
models tend to have more constructs present. Using data analysis, Bowen et al. (2009) studied users’ 
ability to formulate data queries using conceptual models. They moderated the complexity of their 
tasks by presenting simple models (with fewer constructs) and complex models (with higher number 
of constructs) to their subjects. Their experiment showed that ontological guidance could improve 
the accuracy of users’ queries on databases (i.e., correctness of the result) based on simple models, 
while it had a negative effect on performance of users working with more complex models. They 
showed that ontological guidance could overcomplicate data models and might negatively affect 
users’ queries’ accuracy.

Users’ ability to formulate queries based on logical data models is not necessarily equivalent 
to users understanding of conceptual models (Bowen et al. 2009; Tilakaratna & Rajapakse, 2017). 
Database query studies (Allen & March 2006; Bowen, O’Farrell, and Rohde 2004; 2009) had evaluated 
the impact of using ontological guidance on users’ ability to use “logical database models” (i.e., query 
databases). Database models are representations of how data is modeled in a database management 
system, and are used for formulating database queries. Schema of a normalized database may not be 
necessarily easier to understand by a business analyst (who is not necessarily a database administrator). 
Moreover, as Bowen et al. 2009 point out, “the primary external factor affecting performance [when 
using logical database models] is the participants’ knowledge of SQL with minimal impacts related 
to creativity or business experience” (p. 575). Queries may be run on a logical database model that is 
semantically void (similar to Parsons’ 2011 study that showed relationships between entities named 
‘alpha’ and ‘beta’). However, a deep-level problem solving question about a domain cannot simply 
be answered without integrating information from the model with prior knowledge and experiences. 
In short, these types of models are not within the scope of our paper, as the primary purpose is not 
necessarily human users’ understanding of the model.
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Motivation
Our meta-analysis intends to study the trade-off of using ontological guidance where conceptual 
models becoming more faithful to reality and at the same time more complex. As mentioned, we use 
Bunge’s ontology because it is the only ontology to have substantial empirical work to test (Weber, 
1997, Wand and Weber 2017).

Prior research focused on the development of ontological guidelines (i.e., production rules) based 
on Bunge’s ontology for different conceptual modeling grammars (e.g., Recker et al. 2006, Evermann 
& Wand 2006, and Bera et al. 2011; see Table 1). The approach has also been used to evaluate the 
effectiveness of the guidelines on users’ performance of cognitive tasks using conceptual models 
(Bodart et al., 2001; Burton-Jones & Meso, 2006). Ontological guidance has been manifested in two 
forms. First and foremost being the idea of “ontological expressiveness”, that an ontologically clear 
and complete conceptual modeling grammar can generate better modeling scripts (Wand & Weber, 
1993). Ontological expressiveness has been used to guide conceptual modelers when using grammars 
such as ER (Bodart et al., 2001; Bowen et al. 2004), UML (Evermann & Wand 2006), and business 
process models (Recker, Rosemann, Green, & Indulska 2011). Second, ontological guidance was 
applied to good decomposition principles (Wand & Weber 1990) and evaluated by Burton-Jones and 
Meso (2006, 2008). Decomposition means breaking down the system structure to levels of detail 
intended to help understand phenomena of interest within the system (Wand & Weber 1995).

While we used papers related to BPMN, ER, OWL, UML and DFDs, they all had the same 
overall theme of evaluating the impact of ontological guidance on understanding the resulting model. 
Ontological guidance was used as an independent variable in the random-effects meta-analysis model. 
We note that the theoretical principles behind ontological expressiveness and good decomposition 
model do not depend on the Bunge–Wand–Weber (BWW) ontology and could be applied to evaluate 
the expressiveness of models referencing other ontologies (e.g., GOL).

Introducing the Papers Gathered for the Meta-Analysis
Papers included in this meta-analysis investigated various aspects of the application of ontological 
guidance in IS modeling. All the papers in our pool focused on the task of interpreting the models – 
as opposed to creating conceptual models – for the purpose of understanding the application domain 
(Mylopoulos 1992). The task of understanding may have different requirements; some may be 
performed by just using the material from the model, while some may require integration of users’ 
prior knowledge with the given material in order to perform the experimental task. These will be 
further discussed in the Cognitive Theories and the Selection of Papers in the Pool sections.

As shown in Table 1, some studies focused on ontological clarity, some on completeness, and 
some on both dimensions of ontological expressiveness (Wand & Weber, 19931). The authors only 
reported independent and dependent variables that were directly related to application of ontology 
and users’ understanding of conceptual models. Some of the papers in the pool had included other 
variables as covariates or moderators in their hypotheses testing. Bodart et al. (2001), Gemino and 
Wand (2005) and Bera, Burton-Jones, and Wand (2014) had considered task complexity as a covariate. 
Khatri et al. (2006) and Burton-Jones and Meso (2008) had investigated the role of prior domain 
knowledge on users’ performance. We did not incorporate these covariates into the meta-analysis 
since only few papers had measured them.

The dependent variables focused on different aspects of users’ understanding of conceptual 
models. Table 2 presents a list of various dependent variables used by the studies in the meta-analysis 
pool along with the definition of each measure.

Dependent variables used in these studies focus on different aspects of understanding (e.g., 
perceptions of understanding and knowledge identification – terms used in the source material). Thus, 
we categorized the measures based on similarity of scope in order to analyze them from a higher level 
of abstraction. As shown in Figure 1, the highest level of abstraction aggregated all variables that 
reflected users’ understanding of conceptual models. The decomposition of variables in lower levels 



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

51

is based on different dimensions of cognition that are discussed in some of the cognitive theories 
used by the papers in our pool (see the Cognitive Theories section).

For the second level in this abstraction, the variables that objectively measured users’ 
understanding of conceptual models (by evaluating users’ answers to questions) were placed in the 
category of actual understanding, while the variables that relied on users’ self-reported subjective 
evaluation (e.g., perceived understanding or confidence in correctness of answers) were placed in 
the category of perceived understanding.

The third level of this hierarchy focuses on different types of actual understanding of conceptual 
models. Using the distinction made by Mayer (2003), the tasks that could be performed based solely 
on the presented material were categorized as surface-level understanding. The tasks that required 
integration of prior knowledge with information presented in the experimental material were classified 
as deep-level understanding (manifested in variables such as problem solving, knowledge identification, 
and quality evaluation effectiveness, as defined in Table 2). The papers in our meta-analysis pool 
did not make the distinction between perceptions of surface-level understanding and perceptions of 
deep-level understanding. Hence, the authors do not use surface vs. deep level as a grouping factor 
for perceptions of understanding.

Finally, the fourth level of the hierarchy categorizes variables that measure performance of tasks 
that can be done by referring solely to the material from the presented models (i.e., surface-level 
understanding). The authors considered three categories at this level: First, recall accuracy; this variable, 
as used by Bodart et al. (2001), measures the number of constructs from the model (e.g., entities, 
relationships, cardinalities) that participants can recall from memory after the conceptual model is 
taken from them. The other two categories at this level distinguish between objective evaluations of 
tasks that can be done using the presented model. One category encompasses experimental questions 
that were related to some aspects of the domain – these variables were categorized as surface-level 
understanding of the domain (as appearing in the model itself). The other relates to variables that 
can be done without relying on the semantics of the domain (e.g., models that were void of semantics 
(Parsons & Cole 2005)). We named those surface level understanding of the model.

In short, although the dependent and independent variables and the experiments in these papers 
were not identical, they were focusing on one abstract question: would presence of ontological guidance 
improve users’ understandability of conceptual models? The main purpose was to see if ontological 
guidance is ‘worth’ the added cognitive effort by the users in interpreting them. This motivated us to 
synthesize the findings of past empirical works on this topic and analyze their findings.

Cognitive Theories
The ontological expressiveness theory discusses levels of completeness and clarity of models. 
Since the dependent variables (from studies in the meta-analysis pool) are all related to some aspect 
of cognition, some researchers use cognitive theories to justify their hypotheses regarding users’ 
understanding of conceptual models. Below, we discuss theories of multimedia learning, semantic 
network, and cognitive fit. We conclude the section by making a comparison of predictions made 
by the three theories.

Cognitive Theory of Multimedia Learning (CTML)
Mayer’s (2003) theory of multimedia learning (from the field of educational psychology) has been 
used frequently to evaluate conceptual modeling grammars. The underlying premise is that “when 
conceptual models include both words and graphic elements, they can be considered multimedia 
messages” (Gemino & Wand 2005, p. 308). This theory makes two propositions: (1) processing of 
information in the human mind is done through visual (eyes) and auditory (ears) channels and (2) 
the human cognitive capacity is limited (Mayer 2003). The theory suggests that learning is achieved 
when the presented material is integrated with previous knowledge (Mayer 2003).
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Table 1. Studies included in the meta-analysis

Authors Independent 
Variable(s)

Nature of 
Study

Task Dependent Variable(s) Cognitive Foundations

Bera et al. 
(2011)

Ontological 
guidance on OWL 
ontologies

Intra-grammar 
– OWL 
ontologies

Interpreting 
the model

- Knowledge identification 
- Perceived understanding 
- Perceived ease of understanding

Cognitive fit, Multimedia 
learning

Bera et al. 
(2014)

- Ontology-based 
rules 
- Domain 
knowledge

Intra-grammar 
– ER

Interpreting 
the model

- Problem solving Multimedia learning

Bodart et al. 
(2001)

Optional vs. 
Mandatory 
properties

Intra-grammar 
– ER

Interpreting 
the model

- Recall accuracy 
- Response accuracy 
- Response time 
- Problem solving

Semantic networks, 
Multimedia learning

Burton-Jones 
and Weber 
(1999)

- Ontological 
clarity 
- Domain 
knowledge

Intra-grammar 
– ER

Interpreting 
the model

- Problem solving 
- Perceived ease of understanding

Problem solving

Burton-Jones 
and Weber 
(2003)

Ontological clarity Intra-grammar 
– ER

Interpreting 
the model

- Domain comprehension 
- Confidence

None

Burton-Jones 
and Meso (2006)

Good 
Decomposition 
Model

Intra-grammar 
– ER

Interpreting 
the model

- Problem solving 
- Cloze test (domain comprehension) 
- Perceived ease of understanding

Semantic networks, 
Problem solving

Burton-Jones 
and Meso (2008)

Good 
Decomposition 
Model

Intra-grammar 
– ER

Interpreting 
the model

- Domain comprehension 
- Problem solving 
- Perceived ease of understanding

Cognitive fit, Multimedia 
learning, Cognitive 
economy

Burton-Jones, et 
al. (2012)

Optional vs. 
Mandatory 
properties

Intra-grammar 
– UML

Interpreting 
the model

- Domain comprehension Cognitive complexity

Evermann and 
Wand (2006)

Ontological 
guidance in UML

Intra-grammar 
– UML

Interpreting 
the model

- Problem solving 
- Domain comprehension

Semantic networks, 
Multimedia learning, 
Problem solving theory

Gemino and 
Wand (2005)

- Optional vs. 
Mandatory 
properties 
- Task complexity

Intra-grammar 
– ER

Interpreting 
the model

- Problem solving 
- Cloze test 
- Perceived ease of understanding

Theory of multimedia 
learning

Khatri et al. 
(2006)

Ontological 
completeness

Intra-grammar 
– ER

Interpreting 
the model

- Problem solving 
- Model comprehension 
- Perceived ease of understanding 
- Completion time

Cognitive fit

Milton, 
Rajapakse, and 
Weber (2012)

Ontological clarity Intra-grammar 
– UML

Interpreting 
the model

- Quality evaluation None

Moody (2002a) Ontological clarity Intra-grammar 
– DFD

Interpreting 
the model

- Model Comprehension 
- Verification Accuracy 
- Completion time

None

Moody (2002b) Ontological clarity Intra-grammar 
– DFD

Interpreting 
the model

- Model comprehension 
- Documentation Correctness 
- Perceived understanding 
- Completion time

None

Parsons (2011) - Ontological 
deficiency 
- Model Semantics 
- Task complexity

Intra-grammar 
– ER

Interpreting 
the model

- Cloze test 
- Model comprehension 
- Confidence

Theory of multimedia 
learning

Recker et al. 
(2011)

Ontological clarity Intra-grammar 
– BPMN

Interpreting 
the model

- Perceived ease of understanding 
- Perceived understanding

None

Shanks, 
Nuredini, Tobin, 
Moody, and 
Weber (2002)

Ontological clarity Intra-grammar 
– ER

Interpreting 
the model

- Problem solving 
- Domain comprehension 
- Completion time

None

Shanks, Tansley, 
Nuredini, Tobin, 
and Weber 
(2008)

Modeling 
composites 
as entities or 
relationships

Intra-grammar 
– ER

Interpreting 
the model

- Problem solving 
- Completion time 
- Perceived ease of understanding

None
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Some of the papers in our meta-analysis (e.g., Bodart et al. 2001 and Burton-Jones & Meso 
2006) used the distinction made by Mayer (2003) between “surface-level” understanding and “deep-
level” understanding. Surface-level understanding refers to tasks that can be performed using the 
presented material that is retained in the working memory. Deep-level understanding, in addition to 
the information from the presented material, requires integration of the cognitive model formed in 
the working memory with prior knowledge in the long-term memory.

CTML measures learning through two variables:

1.  Retention or comprehension refers to the ability to use visual and verbal models in the working 
memory. Gemino and Wand (2005) suggest assessing retention of domain information by asking 
questions answerable directly from the presented material. They further suggest that since human 
cognitive capacity is limited, even a simpler model might be too much to retain in working memory 
and hence, may not be significantly advantageous over a more complex model (as discussed 
above). They predicted that the more expressive model could produce better verbal and visual 
models in the working memory and thus could improve domain comprehension by users;

2.  Transfer or problem solving refers to the ability to use knowledge gained from the material to 
solve problems that are related but not directly answerable from the presented material (Gemino 
& Wand 2005). Problem solving is based on integration of verbal and visual models with prior 
knowledge in long-term memory. Bodart et al. (2001) and Gemino and Wand (2005) posited that 
a clearer and more complete model would be better integrated with prior knowledge. This led 
to the prediction that subjects receiving ontologically guided models would perform deep-level 
understanding, or problem solving tasks better than subjects who use models not constructed 
with ontological guidance.

Theory of Semantic Networks
The theory of semantic networks (Collins & Quillian 1969) posits that the “human semantic memory 
is structured as a network of nodes linked via directed pathways” (Bodart et al., 2001, p. 388). In 
Bodart et al. (2001), nodes could refer to entities, attributes of entities, classes, or attributes of classes, 
and the paths could be any type of relationship between nodes. This theory was also used for making 
predictions by Burton-Jones and Meso (2006) and Evermann and Wand (2006).

Based on the nodes and links conceptualization of semantic networks, Anderson and Pirolli 
(1984) presented the theory of spreading activation to describe the human cognition process where 
information is “spread from node to node along network lines” (Anderson & Pirolli 1984, p. 791) 

Figure 1. Performance measures observed in the meta-analysis
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making knowledge available for processing in the human brain. They claim that as the spreading 
distance (between the nodes) increases, the strength of processing decays. Using these two related 
theories (semantic networks and spreading activation) in the context of understanding conceptual 
models, Bodart et al. (2001) considered three relevant factors for making predictions about the 
relationship between ontological expressiveness of conceptual models and user understanding:

1.  Number of Constructs: Increasing the number of constructs in the conceptual model could 
decrease the likelihood that constructs will be recalled by users as the greater number of nodes in 

Table 2. Dependent variables in the meta-analysis

Dependent Variable Explanation Grouping in Meta-
Analysis

Cloze test, 
and Domain 
Comprehension

Questions about the domain that are directly answerable from the 
model (Gemino & Wand, 2005).

Actual performance: 
Surface level / Domain

Model 
Comprehension

Evaluating what is directly observable from the model. This 
evaluation is also used for semantically void (Parsons 2011).

Actual performance

Confidence in 
Correctness of 
Answers

Subjects’ prediction of the correctness of their answers. It can be 
measured using a Likert scale (such as Allen and March (2002b), 
Bowen et al. (2009), and Parsons (2011)).

Perceived Cognitive 
Performance

Quality Evaluation 
Effectiveness

Correct identification of (all the) defects in a model (Milton et al. 
2012, p. 34). This task requires reference to prior knowledge in 
order to distinguish correct versus defective models.

Actual Performance – 
Deep Level

Verification 
Accuracy

“The ability to identify discrepancies between a data model and a 
given set of user requirements” (Moody, 2002a).

Actual Performance – 
Deep Level

Model Recall 
Accuracy

Proportion of conceptual model constructs (e.g. entities, 
relationships) that participants recalled correctly, divided by the 
total number of constructs in the presented model (Bodart et 
al., 2001). This variable was measured after the diagrams were 
removed from the participants.

Actual Performance – 
Surface Level – Recall

Documentation 
Correctness

The level of completeness of written documentation that was based 
on a conceptual model (Moody, 2002b).

Actual Performance – 
Deep Level

Perceived 
Understanding 
(model or domain)

The effort required to understand a diagram (Burton-Jones & 
Meso, 2006).

Perceived Cognitive 
Performance

Perceived Ease 
of Understanding 
(model or domain)

The degree to which the subject “believes that using a particular 
[conceptual model] would be free of effort” or easy to use (Moody, 
2002b, p. 219).

Perceived Cognitive 
Performance

Problem solving Answering questions that require integration of prior knowledge 
with what is observable from the presented material (Gemino & 
Wand, 2005).

Actual Performance – 
Deep Level

Knowledge 
Identification

Knowledge is used by agents to determine the actions required to 
attain their goals (Bera et al., 2011; Newell, 1982). Knowledge 
identification is “the task of asking the right questions to determine 
what actions need to be taken to change the current state of affairs” 
(Bera et al., 2011, p. 885), based on the conceptual model of the 
domain.

Actual Performance – 
Deep Level

Response or 
Completion Time

Time taken by a participant to answer questions (Bodart et al., 
2001).

Task completion time
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the human semantic network could decay the spread of activation. Thus, using a more ontologically 
expressive model decreases the likelihood that users recall the constructs (due to complexity);

2.  Facilitating Elaboration: Elaboration is the cognitive process of establishing paths between 
the nodes in the semantic network (Collins & Loftus 1975). Using a more expressive model can 
lead to a clearer and more complete semantic network in the human brain. A better cognitive 
model can facilitate identification of alternative paths between nodes and improve the elaboration 
process. In other words, if traversing along one path failed, another one might be identified;

3.  Inferential Reconstruction: The ability to infer what is plausible in light of information 
remembered from the model (Bodart et al., 2001). The theory of semantic networks predicts that 
using a more expressive model can facilitate inferring routes between nodes that might not be 
directly connected. This aspect is also related to elaboration process, because better inferential 
reconstruction can be done when better elaboration is achieved.

In short, the first factor predicts that recalling the more comprehensive model would be more 
difficult (i.e., surface-level model recall), while the second and third factors predict that the more 
comprehensive model would lead to creation of a clearer and more complete semantic model in the 
users’ mind, thus improving the performance of tasks that require elaboration and inference (i.e., 
deep-level understanding).

Problem Solving Theory and the Theory of Cognitive Fit
Newell and Simon (1972) suggest that a person’s ability to reason depends on the quality of their 
mental representation of the domain. They assume that the mental representation is constructed as a 
“problem space” in the person’s memory.

Similar to the theory of problem solving, theory of cognitive fit (Vessey 1991) suggests that 
when individuals need to solve problems in a domain, their performance will improve when the 
mental representation of the problem matches the representation of the real-world domain (Shaft & 
Vessey 2006).

Comparison of Predictions Made by the Three Theories
Here the authors refer to our proposed classification scheme of performance measures in Figure 1 
and focus on the leaf-nodes in that diagram. Table 3 compares the predictions made on measures 
of perceived understanding, deep-level understanding, model recall, and surface-level domain and 
model comprehension. This comparison (Table 3) reflects the breadth of coverage of these theories, 
and their similarities and differences in predictions on different dependent variables.

MeTA-ANALySIS MeTHOD

Choice of Analysis Model
A meta-analysis could be conceptualized as either a fixed- or random-effects model (Borenstein et al., 
2011). A fixed-effects model assumes that all the studies in the meta-analysis are identical and they 
share a common effect size. Any variation that exists between the findings of different studies in the 
pool would be due to sampling error. “Put another way, all factors that could influence the effect size 
are the same in all the studies” (Borenstein et al., 2011, p. 63). The random-effects model, on the other 
hand, incorporates a group of studies in meta-analysis, assuming that they have “enough in common 
that it makes sense to synthesize the information, but there is generally no reason to assume that they 
are identical” (Borenstein et al., 2011, p. 69). The variation between different studies is attributed to 
sampling error as well as to the random effects variable. Random effects variable accounts for the 
variation between studies, such as the chosen variables for the study, and the experimental methods.
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Table 3. Comparing predictions made on measures of understanding

Measure Cognitive Theory of 
Multimedia Learning

Semantic Networks Theory Problem Solving and 
Cognitive Fit Theories

Perceived 
Understanding

Bera et al. (2011) used 
CTML to predict that users 
would perceive ontologically 
expressive models easier to 
understand as there is “less 
need to mentally reorganize 
the information to perform the 
task”, since more expressive 
models are better domain 
representations.

No predictions made using this 
theory in our pool of papers.

Burton-Jones and Meso 
(2008) posited that 
ontologically expressive 
models would provide a more 
expressive representation 
of the problem space; thus, 
users would “perceive the 
[problem solving] effort to be 
worthwhile” (p. 754) compared 
to less expressive models.

Deep-level 
Understanding

Based on this theory, Gemino 
and Wand (2005) predicted 
that ontological expressiveness 
of a representation facilitates 
the integration of the model 
with prior memory. This leads 
to better problem solving, 
or in other words, deep level 
understanding.

Ontologically guided models 
lead to more precise semantic 
networks in users’ minds. 
Tasks requiring “a deep-level 
understanding of a domain 
mean they must forcefully 
engage elaborative and 
inferential reconstruction 
cognitive processes” (Bodart 
et al. 2001, p. 389).

Burton-Jones and Meso 
(2006) claimed that more 
ontologically expressive 
models enhance analysts’ 
ability to construct more 
accurate problem spaces in 
their memories, which in turn 
enables them to perform better 
in problem solving tasks.

Model Recall No predictions made using this 
theory in our pool of papers.

According to Bodart et al. 
(2001), the more ontologically 
expressive model tends to have 
“a larger number of construct 
instances to be remembered, 
which undermines a user’s 
ability to recall” (p. 389). 
On the other hand, Burton-
Jones and Meso (2006) 
predicted that recall of more 
ontologically expressive 
models would be more 
accurate since these models 
enable “faster and more 
accurate recall” (p. 45) due to 
the strength of the connections 
between nodes in the semantic 
network in a subjects’ memory.

Surface-level understanding 
is not within the scope of this 
theory.

Surface-
level Domain 
Comprehension

Burton-Jones and Meso 
(2008) proposed that less 
ontologically expressive 
models require extraneous 
cognitive load by users in 
order to comprehend the 
relevant information from the 
model. Thus, less ontologically 
expressive models inhibit 
users’ comprehension.

Bodart et al. (2001) claimed 
that ontologically expressive 
models would afford better 
elaboration processes and 
positively affect users’ 
comprehension.

Surface-level understanding 
is not within the scope of this 
theory.

Surface-
level Model 
Comprehension

No predictions made using this 
theory in our pool of papers, 
but using this theory, one 
could make predictions similar 
to domain comprehension.

No predictions made using this 
theory in our pool of papers, 
but using this theory, one 
could make predictions similar 
to domain comprehension.

Surface-level understanding 
is not within the scope of this 
theory.

Task Completion 
Time

No predictions made using this 
theory in our pool.

No predictions made using this 
theory in our pool.

No predictions made using this 
theory in our pool.



Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

57

The studies gathered in our pool had different independent and dependent variables, yet they all 
focused on the influence of ontological guidance on some measures of cognitive tasks performed by 
users. Because the studies in the pool are not identical, we chose the random-effects model for this 
meta-analysis. In our initial study (Saghafi & Wand, 2014), the authors chose the fixed-effects model, 
as recommended by Borenstein et al. (2011), since the sample was considerably smaller.

Selection of Papers in the Pool
Using online databases7 – namely Business Source Complete, Web of Science, and JSTOR – and 
data from a paper by Burton-Jones, Green, Indulska, Recker, and Weber (2017), titled “Assessing 
Representation Theory with a Framework for Pursuing Success and Failure”8, we ended up 
with a pool of 314 papers. From this pool, we selected papers where the researches had actually 
conducted empirical experiments using ontologically guided conceptual models that were rooted in 
Bunge’s ontology. We set the scope of the meta-analysis to empirical studies that focused on model 
interpretation rather than creation9. Thus, we eliminated papers describing research on users’ ability to 
create models (e.g., Hadar & Soffer 2006). We conducted the meta-analysis with 18 papers (including 
58 reported effect sizes) of empirical work on understanding conceptual models10.

Variables Used in the Study
As illustrated in Figure 1 and Table 2, the studies in the meta-analysis reported different dependent 
variables. We excluded recall accuracy and task completion time. Recall accuracy11 was excluded 
because we assume that analysts in the real world will have access to models during the analysis and 
design process and rarely need to recall models from memory (Parsons and Cole, 2005). Considering 
this factor (i.e., constant access to the models), we also excluded a problem solving measure from 
Bodart et al. (2001), as subjects did not have access to conceptual models for that portion of the study 
(i.e., Experiment III in Bodart et al. 2011); however, problem solving measures from other papers in 
our meta-analysis pool were included.

As for task completion time, there were no predictions in the cognitive theories about the 
relationship between presence of ontological guidance and task completion.

Table 2 provides a list of the dependent variables that were incorporated in our meta-analysis. 
For this study, we chose a meta-dependent-variable called “understanding of conceptual models”, 
which incorporated all the dependent variables from Table 2 (excluding recall accuracy and task 
completion time as stated above).

Meta-Analysis Hypotheses
Using the predictions of Table 3, we propose four potential hypotheses to test in this meta-analysis. 
Our first hypothesis is regarding users’ perceptions of understanding of conceptual models, which 
relates to the partitioning of cognitive performance measures (between perceptions of understanding 
and actual understanding - see Figure 1). We make a similar prediction to the one made by Burton-
Jones and Meso (2008) based on the problem solving theory (Newell & Simon 1972). We predict that 
users of ontologically guided models would have a more expressive representation of the problem 
space and would “perceive the [problem solving] effort to be worthwhile” (Burton-Jones & Meso, 
2008, p. 754) compared with users of less expressive models. Hence:

Hypothesis 1: Users will have higher perceptions of understanding when working with ontologically 
guided models compared with non-guided models.

The second hypothesis focuses on tasks that require deeper levels of understanding of conceptual 
models. Referring to the CTML (Mayer, 2003), users need to integrate the information from conceptual 
models with their prior knowledge in order to solve problems. We predict that retention and transfer 
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of model information is facilitated when the models are clearer and more complete with respect to 
the structure of reality (i.e., more ontologically expressive). Thus:

Hypothesis 2: Users of ontologically guided models will achieve deeper levels of understanding 
compared with those using non-guided models.

Hypotheses 3 and 4 revolve around measures of surface-level understanding. As discussed earlier, 
some of the papers in our meta-analysis pool tasked subjects with activities that could be done using 
only the presented model, without requiring integration with prior knowledge (e.g., Shanks et al. 
2002, Burton-Jones & Meso 2006). There were also surface-level understanding tasks that could be 
completed without relying on the semantics of the domain, which we grouped under surface-level 
understanding of the models category, or model comprehension (e.g., Moody 2002a; b, Evermann 
& Wand 2006). This measure is also used when semantically void models are presented to subjects 
(as done by Parsons (2011)). Although the number of studies is limited, we included this variable in 
our hypothesis testing since it is an aspect of users’ understanding of conceptual models.

Similar to how Bodart et al. (2001) used theory of semantic networks to hypothesize about 
users’ surface-level understanding, we claim that more expressive models can lead to better (or 
more expressive) cognitive models in subjects’ working memory, and thus they would be better able 
to identify alternative paths between nodes in the semantic network. Hence, a more ontologically 
expressive model can improve the elaboration process.

Hypothesis 3: Users of ontologically guided models will achieve better comprehension of domains 
compared with users of non-guided models.

Hypothesis 4: Users of ontologically guided models will achieve better comprehension of models 
compared with users of non-guided models.

Data Analysis
As mentioned earlier (Table 1), the papers in our meta-analysis pool had measured different dependent 
variables in their empirical experiments. Besides the difference in types of variables, the findings were 
also reported using different statistical measures (e.g. t-values, F-values, and regressions coefficients). 
To synthesize the reported measures, we converted all the reported measures to Cohen’s d12, which 
is the standardized mean difference between two experimental groups – in this case ontologically 
guided models vs. non-guided models. Cohen’s d demonstrates the difference between the two group’s 
means in terms of standard deviation (e.g., Cohen’s d of 1.00 means that treatment group’s mean 
is one standard deviation greater than the control group’s mean). We abstracted all the (included) 
dependent variables to “understanding of conceptual models” and synthesized the reported effect 
sizes – as reported in Table 4 and discussed below in more detail. In addition to the first round of 
analysis (i.e., encompassing all the variable types), we grouped similar dependent variables (the 
schema in Figure 2) and performed three additional rounds of analysis.

We also point out that except for the experiments done by Burton-Jones and Meso (2006), 
which included three levels of good, moderate, and bad decomposition (or ontological guidance), the 
remaining papers in our pool only compared ontologically-guided and non-guided models (i.e., two 
levels). We are not claiming that non-guided models are completely void of ontology, as ontological 
thinking about things in the world, their attributes, and events are ingrained in all modeling grammars. 
However, we treated the specific presence of ontological guidance – which leads to clearer and more 
complete models – to be a binary variable in our meta-analysis14.

The first round of meta-analysis used 18 papers, with 58 reported effect sizes in total (Table 
4). The Cohen’s d was 0.56, which indicates that on average, ontological guidance can improve 
understanding of conceptual models by 0.56 standard deviations (compared with the performance 
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of subjects who used non-guided models). For this random effects meta-analysis (which contains 
reported effect sizes that are non-identical), we report a 95 percent confidence interval while taking 
into account the sampling errors of the studies in the meta-analysis pool. The confidence interval 
contains the distribution where 95 percent (as is common in the literature) “of true effects are expected 
to be found” (Borenstein et al., 2011, p. 350). For the first round of the meta-analysis, the confidence 
interval of the average effect size (with 95% certainty) was from –0.53 to 1.63. In other words, 95 
percent of the time the range of impact of ontological guidance on subjects’ performance is from 
–0.53 to 1.63 standard deviations (compared with average performance without ontological guidance). 
The wide confidence interval of our analysis (which includes negative values) is likely due to the 
random effects component that varies between different studies (as incorporated into the random-
effect model in the meta-analysis). By not including the random effects variable (i.e., going with the 
assumption of having identical studies in the pool and using the fixed-effects meta-analysis model), 
the confidence interval would have been considerably narrower (0.36 to 0.70, i.e., significant effect 
on cognitive performance). In order to somewhat reduce the randomness in the analysis, we grouped 
reported effect sizes based on similarity of scope (following the abstraction hierarchy in Figure 1).

The second round separated actual measures of cognitive performance (i.e., problem solving, 
knowledge identification, quality evaluation, comprehension) from perceived measures (i.e., perceived 
understanding, perceived ease of understanding, and confidence in answers). In the meta-analysis on 
measures of actual cognitive performance, 17 papers were represented containing 38 reported effect 
sizes. Cohen’s d was 0.61 with a 95 percent confidence interval of –0.41 to 1.62.

The analysis of perceived measures of cognitive performance was performed on 12 papers with 
20 reported effect sizes. Cohen’s d was 0.37 with a 95 percent confidence interval of –0.58 to 1.32; 
this confidence interval rejects Hypothesis 1 (i.e., increase in users’ perceptions of understanding 
when using ontologically guided models). The lack of support for this hypothesis could be attributed 
to reasons such as the random effects (i.e., having multiple non-identical studies with too much 
variation in the meta-analysis pool), or many of the studies measuring perceptions of understanding 
after tasks that required either surface-level or deep-level understanding, and in certain cases both 
types of understandings (e.g., study by Gemino & Wand, 2005).

Table 4. Meta-analyses done in this study

Round Focus of Analysis 
(as Named in the 

Hierarchy in Figure 1)

No. of 
Papers

No. of 
Effect 
Sizes

No. of 
Dependent 
Variables

Cumulated 
Subjects by 
Effect Size

Average 
Cohen’s 

d

Confidence 
Interval 

(95%)

1 Cognitive Performance on 
Conceptual Models

18 58 9 1648 0.56 –0.53 to 
1.63

2 Actual Cognitive 
Performance

17 38 7 1025 0.61 –0.41 to 
1.62

Perceived Cognitive 
Performance

12 20 2 1216 0.37 –0.58 to 
1.32

3 Actual Performance - 
Surface Level

10 18 2 603 0.6 –1.07 to 
2.25

Actual Performance - Deep 
Level13

14 20 5 791 0.64 0.02 to 1.44

4 Actual Performance - 
Surface Level - Domain

7 11 1 502 0.91 –1.06 to 
2.88

Actual Performance - 
Surface Level - Model

4 7 1 181 0.1 –0.25 to 
0.47
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The third round focused on the actual measures of understanding. Following Mayer’s (2003) 
distinction between surface-level and deep-level understandings, two groups were created. Meta-
analysis of surface-level understanding was done on nine papers with 18 reported effect sizes. Cohen’s 
d was 0.6 with a 95 percent confidence interval of –1.07 to 2.25.

The most reliable effect was observed in the group of measures focusing on deep-level 
understanding. This analysis included 14 papers, with 20 reported effect sizes. The average Cohen’s 
d was 0.64, with the 95 percent confidence interval of 0.02 to 1.4415. Both lower and upper bounds 
of the interval being positive confirms Hypothesis 2, or in other words, it indicates that ontological 
guidance has a uniform and positive effect on improving deep-level understanding.

The fourth round focused on the measures of surface-level understanding. In the pool of papers 
used in the meta-analysis, the authors had distinguished between comprehension of conceptual 
models at the domain level versus the model level. We followed their suggestions and created two 
groups of domain and model surface-level understanding. The effect of surface-level understanding of 
domains was strong (0.91), while the confidence interval is wide (from –1.06 to 2.88), hence rejecting 
Hypothesis 3 regarding improvements in domain comprehension using ontologically guided models. 
Even though the Cohen’s d of 0.91 might indicate a strong effect, the wide confidence interval could 
be an artifact of the high degree of variance in the random-effects meta-analysis model.

The surface-level understanding of models (or model comprehension) was represented by 
only four papers with seven effect sizes (Khatri et al. 2006; Moody, 2002a, 2002b; Parsons, 2011). 
The average effect size was 0.01 with a 95 percent confidence interval of –0.25 to 0.47. This leads 
to rejection of Hypothesis 4, which had predicted a positive effect on model comprehension by 
ontologically guided models.

Figure 2 summarizes the meta-analysis’ findings based on different measures of performance.

SUMMARy OF FINDINGS, DISCUSSION AND IMPLICATIONS

The following points summarize our findings:

• Ontological guidance has a significant effect on improving users’ deep-level understanding 
(Cohen’s d = 0.64 with the confidence interval of 0.02 to 1.44);

Figure 2. Average effect sizes of the meta-analysis based on performance measures. d: Cohen’s d; CI: 95% confidence interval.
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• Ontological guidance has weak or no effect on users’ (actual) surface-level understanding of 
models (Cohen’s d = 0.1) with non-significant statistical results.

The significant effect of ontological guidance on deep-level understanding – which, according 
to Mayer (2003) requires integration of working memory with prior knowledge – was predicted by 
the cognitive theory of multimedia learning as well as the theory of semantic networks. According 
to the theory of multimedia learning, the ontologically expressive models lead to formation of higher 
quality models in the working memory, which will be better integrated with prior knowledge and 
result in better deep-level understanding. The theory of semantic networks (Collins & Quillian, 1969) 
together with the theory of spreading activations (Anderson & Pirolli, 1984) also predict that the more 
expressive model will lead to better elaboration and inferential reconstruction in the minds of users 
(Bodart et al., 2001). Therefore, it seems that users’ problem solving performance (using conceptual 
models) improves, despite having additional constructs resulting from employing ontological guidance.

When focusing on surface-level understanding, we observe that model comprehension is 
not affected (Cohen’s d = 0.1). To explain this phenomenon, we refer to the distinction between 
evaluations of the syntax, semantics, and pragmatics of conceptual modeling grammars proposed by 
Burton-Jones et al. (2009). Syntactic evaluation might “involve examining valid ways in which scripts 
can be created using a grammar or examining alternative ways that individuals form scripts using 
the grammar” (Burton-Jones, Wand, and Weber 2009, p. 497). Semantic evaluation examines “the 
meaning of the constructs in the grammar” (Burton-Jones et al., 2009, p. 497) and how the meaning 
“can be conveyed more clearly and completely” (Bera et al, 2014 p. 1). Pragmatic evaluation of the 
conceptual domain reflects the context; more specifically the contextual conditions “in which models 
are more likely to be understood or preferred” (Bera et al., 2014 p. 1). Using this distinction, we 
contend that surface-level understanding of the model reflects mainly the syntactic evaluation of the 
constructs. This was done by Parsons (2011), who removed meaning from the constructs, and instead 
used symbols such as alpha and beta for constructs and relationships. One could argue that syntactic 
model comprehension might have lesser ties in this case to the real world, thus weakening the effect 
of ontological expressiveness (namely, completeness and clarity) on the model’s representation of 
the real world16.

As for the moderate to weak influence of ontological guidance on perceived understanding, we 
note that the measures of perceived understanding were collected under varied conditions. For example, 
Recker et al. (2011) conducted a survey to measure perceptions of professionals without asking them 
to perform any experimental tasks. Burton-Jones and Meso (2006, 2008) measured perceptions of 
users after they had completed both problem solving and cloze-test (surface-level understanding) 
tasks. However, surface-level understanding of the domain reflects meaning as well as the context of 
usage, specifically, the application domain. In this case, the impact of ontological guidance on users’ 
performance shows a rather large effect size of 0.91, although, it was not statistically significant.

With regards to practical implications, we believe that incorporating ontological thinking in 
training of analysts could improve their domain understanding in requirements engineering and systems 
analysis phases. More specifically, if practitioners learn to create more ontologically expressive models, 
other analysts or future users who refer to the documented models will be able to better understand 
them – particularly for tasks that require deeper levels of understanding.

Limitations, Strengths, and weaknesses of the Study
As shown in Table 4, the only significant result (with a positive confidence interval) was related 
to measures of deep-level understanding (represented by 14 papers, and 20 effect sizes in our 
meta-analysis pool). The possible reason for a wide confidence interval for other dimensions of 
understanding could be the limited work on those measures. As mentioned earlier, we dealt with a 
heterogeneous sample of studies (i.e., different grammars, also different independent and dependent 
variable) in the meta-analysis pool. “In fact, random variation alone can easily lead to large disparities 
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in P values, far beyond falling just to either side of the 0.05” (Amrhein, Greenland, & McShane 2019, 
p. 306). In addition, limited number of studies for certain tasks (e.g., only seven for surface-level 
domain comprehension) could be a major reason for the wide confidence intervals that we observed.

Publication Bias
In a systematic review such as our meta-analysis, a particular concern to address is publication bias, 
described as “the studies with statistically significant results are more likely to find their way into the 
published literature than studies that report results that are not statistically significant” (Borenstein et 
al., 2011, p. 278). Unpublished studies are metaphorically “archived in the file-drawer”. To address 
this “file-drawer threat”, we can calculate fail-safe N. This measure estimates the number of studies 
with insignificant effect sizes (that might be in the file drawer), and which, if incorporated into the 
meta-analysis, can reduce the overall effect size (Borenstein et al., 2011, p. 284) to a pre-determined 
criterion effect size. The literature suggests setting the criterion effect size at 0.1 (Orwin, 1983). In 
other words, fail-safe N would be the number of studies with a zero effect size that, if incorporated 
into the meta-analysis, could reduce the overall effect size (i.e., Cohen’s d) to the criterion effect size 
(e.g., dc = 0.1). We calculated the fail-safe Nfs, with respect to the number of reported effect sizes 
included in the meta-analysis (K), using the equation below (Rosenthal & DiMatteo 2002):

Nfs = [K(d – dc)]/dc 

Fail-safe N for the only significant effect of our meta-analysis (i.e., deep-level understanding) 
was 108, which indicates the strength of the effect. We need to point out that fail-safe N is not the 
number of studies that could make our interval cross zero (and become a non-significant effect). It 
implies that if 108 non-significant findings are added to the study, they could bring down the average 
effect size of the deep-level understanding from 0.64 down to a pre-set criterion effect size of Cohen’s 
d = 0.1 (as the literature suggested that threshold).

CONCLUSION AND FUTURe ReSeARCH

Scholars in the information systems domain have debated whether ontological guidance should be 
employed because the ontological expressiveness of models comes at the price of losing simplicity. 
Among various ontological theories used as guidance, the Bunge–Wand–Weber ontology (Wand & 
Weber, 1989) is the most widely used ontological theory in the information systems field (Allen & 
March, 2006a, Fonseca, 2007). Other theories have also been discussed in the literature, most notably 
by Allen and March (2006a, 2006b, 2012), who are the proponents of using Searle’s ontology (Searle, 
2006). However, these theories do not have a substantial amount of empirical work to justify a meta-
analysis. We need to emphasize that our goal was not to support a particular ontology. Due to the 
precedence set by prior research’s focus on Bunge’s ontology, we synthesized and reported empirical 
studies that had studied the BWW ontology. As discussed in the literature, “additional constructs 
and production rules enhance expressive power at the cost of increased complexity” (Wand & Weber 
1993, p. 234). Our goal was to better understand the trade-off between model complexity and users’ 
understandability. We found that in deep-levels understanding (e.g., problem solving) tasks, the trade-
off of having perhaps more constructs was indeed worth it, as human performance using ontologically 
guided models was significantly better.

Because each study in our pool focused on a different aspect of ontological guidance, we chose 
the random-effect model for this meta-analysis. The random effects variable component between 
the studies leads to wide confidence intervals for the findings (Amrhein et al. 2019) – see Table 4. 
Identifying the variations in a treatment is one of the reasons for doing a meta-analysis (Borenstein 
et al. 2011). We noticed the significant effect of ontological guidance on deep-level understanding of 
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conceptual models. For such tasks the confidence interval of this effect was positive 95 percent of the 
time. Although we are reflecting findings of past studies, as all meta-analyses do, we also addressed 
the opposing views about value of ontological guidance and the trade-off between ontological 
expressiveness and complexity.

Our meta-analysis finds conclusive results in favor of ontological guidance on one dimension 
of understanding (namely deep-level). We hope our meta-analysis leads other researchers to focus 
on less charted territories where there were fewer effect sizes (e.g., surface-level understanding of 
models or domains, perceptions). The causal and moderating factors that influence the impact of 
ontological guidance could be the subjects of future research to find more conclusive results under 
varying circumstances.

Moreover, studies similar to that of Hadar and Soffer (2006) regarding the coverage of different 
ontologies (e.g., BWW vs. Searle) for different modeling grammars (e.g., ER, BPMN) can be 
conducted to help researchers and practitioners in choosing the ontological theory that best suits 
their requirements.
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eNDNOTeS

1  An ontologically complete grammar is one in which there is a total mapping between constructs of the 
conceptual modeling grammar and the ontological concepts (such as thing, property, and event). Ontological 
clarity is described based on three types of deficiencies: (i) construct overload occurs when a construct 
from the grammar is used to model two or more concepts from ontology, (ii) construct redundancy occurs 
if two or more constructs map to the same ontological concept, and (iii) excess construct occurs when a 
construct from the grammar does not map to any ontological concepts.

2  “For two equivalent models, the more expressive model exhibits greater overall complexity than the 
parsimonious model” (Bowen, O’Farrell, and Rohde 2009, p. 568).

3  Another approach for synthesizing prior work is conducting narrative reviews (i.e., qualitative 
interpretations of different studies). However, narrative reviews are subjective evaluations and become 
very difficult when there are more than a few studies involved (Borenstein et al. 2011). Meta-analysis, 
on the other hand, is a statistical analysis that leads to objective results.

4  As an example, March and Allen (2014) refer to the inception of the state of Utah as an institutional 
fact that Bunge’s ontology – according to them – fails to represent. Based on Searle’s ontology (Searle, 
2006), a speech act (declaration) by the United States government on January 4, 1896, made Utah a state. 
Acceptance of this declaration by citizens of United States (i.e., collective intentionality) transformed this 
declaration into an institutional fact.

5 Shanks and Weber (2012) disagreed with Allen and March’s (2012) interpretation. They refer to Bunge’s 
(1977, p. 58) distinction between conceptual objects and substantial objects (or things) and posit that “the 
real world of substantial objects ultimately is unknowable. As a result, humans use conceptual objects 
to express their understanding of the real world” (Shanks & Weber, 2012 p. 968). In fact, “the only way 
humans can engage in discourse about or think about concrete things (and events that occur to concrete 
things) is via the concepts (conceptual models) that humans have devised to describe the things (and the 
events that occur to them)” (Shanks & Weber 2012, p. 968). Based on this argument, they believe that 
Bunge’s ontology can indeed be used as a theoretical foundation for modeling conceptual objects using 
the example of the state of Utah (from March & Allen (2014)), based on Shanks and Weber’s explanation, 
Bunge’s ontology is indeed capable of representing a conceptual object such as the state of Utah (its 
recognition can be captured using the notion of an “event” in Bunge’s ontology).

6 According to Soffer and Hadar (2007), different analysts create different models given the same domain. 
They defined model variations as “the differences in constructs and relations between adequately 
constructed models” (p. 599).

http://dx.doi.org/10.1145/331983.331989
http://dx.doi.org/10.1145/240455.240479
http://dx.doi.org/10.1109/32.60316
http://dx.doi.org/10.1111/j.1365-2575.1993.tb00127.x
http://dx.doi.org/10.1111/j.1365-2575.1995.tb00108.x
http://dx.doi.org/10.1287/isre.13.4.363.69
http://dx.doi.org/10.4018/JDM.2017010101


Journal of Database Management
Volume 31 • Issue 4 • October-December 2020

68

7  The keywords that we searched for were: “Ontology”, “Bunge”, and “Empirical”.
8  Personal communication. Appendix B of (Burton-Jones et al. 2017) describes their data collection method. 

Their data from was cross-referenced with ours to make sure all the relevant papers are included.
9  We acknowledge that in practice, creation and interpretation of models are not mutually exclusive. Often 

people who create the model are also the ones who use them to improve their understanding of the domain 
as well as in the development of information systems. In our meta-analysis, however, subjects had no 
involvement in creation of the experimental material.

10  We incorporated the dependent variables separately from each other in our random-effects model. In other 
words, since we did not have access to the raw data from the studies in the pool, we could not determine 
the covariance of individual subjects’ performance across different measures. Thus, using the random 
effects model, we treated the measures as independent from each other. Van den Noortgate, López-López, 
Marín-Martínez, and Sánchez-Meca (2015) have demonstrated that using the random effects model for 
analyzing multiple outcomes could lead to “appropriate mean effect size estimates, standard error estimates, 
and confidence interval coverage proportions in a variety of realistic situations” (p. 1274).

11  We do not claim memory recall is a poor measure by any means. Many of our academic examinations 
(with the purpose of measuring subject comprehension) have some free-recall components. As stated, 
we assume that practitioners will always have access to the conceptual models during the analysis and 
design phases (Parsons & Cole 2005).

12  Cohen’s d = (u1 – u2)/Swithin, where u1 and u2 are the sample means in two groups, and Swithin is the within-
groups standard deviation (Borenstein et al., 2011).

13  One of the papers included in our meta-analysis was the study done by Shanks et al. (2008), which was 
the topic of a discussion by Allen and March (2012) for not operationalizing the ontological guidance 
correctly. Later, Shanks and Weber (2012) provided a response to justify the validity of their experiment. 
We eliminated the study by Shanks et al. (2008) from our meta-analysis pool and reanalyzed the data. The 
tests with non-significant results remained non-significant, although with minor changes in the average 
effect size and confidence intervals. Our significant findings regarding the impact of ontological guidance 
on deep-level understanding remained unchanged as well, with average effect size of Cohen’s d = 0.62, 
and 95% confidence interval of 0.18 to 1.07. Considering that Shanks et al.’s (2008) findings regarding 
deep-level understanding had the effect size of Cohen’s d = 2.65, its removal reduced the variance and 
led to a narrower confidence interval.

14  In order to synthesize the study by Burton-Jones and Meso (2006), we only contrasted the performance of 
users in good and bad decomposition conditions (while ignoring the mediocre decommission condition).

15  As mentioned earlier, this hypothesis remained significant even after removing the study by Shanks et 
al. (2008), with average effect size of Cohen’s d = 0.62, and 95% confidence interval of 0.18 to 1.07.

16  However, surface-level understanding of the domain reflects meaning as well as the context of usage, 
specifically, the application domain. In this case, the impact of ontological guidance on users’ performance 
shows a rather large effect size of 0.91 (due to added expressiveness to the models), although, it was not 
statistically significant.

Arash Saghafi is an Assistant Professor at the Department of Management, Tilburg School of Economics and 
Management, Tilburg University, The Netherlands. His degrees include a BSc in Software Engineering from 
Sharif University of Technology, and MM, MScB, and PhD from University of British Columbia. His research has 
focused on data modelling and analytics, application of ontology in conceptual modelling, and empirical evaluation 
of design artifacts.

Yair Wand is Professor Emeritus in MIS at the Sauder School of Business, University of British Columbia, Canada. 
He received his D.Sc. in Operations Research from The Technion—Israel Institute of Technology, his M.Sc. in 
Physics from the Weizmann Institute—Israel, and B.Sc. in Physics from the Hebrew University, Jerusalem. His 
current research interests include theoretical foundations for information systems analysis and design, development 
and evaluation of systems analysis methods, and conceptual modelling.


