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ABSTRACT

Electroencephalogram (EEG) signals are progressively growing data widely known as biomedical 
big data, which is applied in biomedical and healthcare research. The measurement and processing of 
EEG signal result in the probability of signal contamination through artifacts which can obstruct the 
important features and information quality existing in the signal. To diagnose the human neurological 
diseases like epilepsy, tumors, and problems associated with trauma, these artifacts must be properly 
pruned assuring that there is no loss of the main attributes of EEG signals. In this paper, the latest 
and updated information in terms of important key features are arranged and tabulated extensively 
by considering the 60 published technical research papers based on EEG artifact removal method. 
Moreover, the paper is a review vision about the works in the area of EEG applied to healthcare and 
summarizes the challenges, research gaps, and opportunities to improve the EEG big data artifacts 
removal more precisely.
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1. INTRODUCTION

The Big Data biological processes have very complex procedures, which imply neural as well as 
hormonal stimuli and responses. These biomedical signals generally represent a collective electrical 
signal attained from any organ, signifying a physical variable of interest. To store and handle these 
Big Data different technologies are frequently applied in the biomedical and health-care field (Luo 
& Zhao, 2016) to facilitate health-care activities. The energy management for real-time Big Data is 
a critical issue. Thus, energy and performance trade-off in resource optimized model design for Big 
Data is discussed in (E. Baccarelli & Stefa, 2016).
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The Biomedical Big Data cover a wide range of the following signal: electrooculogram (EOG), 
electroneurogram (ENG), electrogastrogram (EGG), phonocardiogram (PCG), carotid pulse (CP), 
vibromyogram(VMG), vibroarthogram(VAG), electrocardiogram (ECG), electroencephalogram 
(EEG), and electromyography (EMG). However, most widely used biomedical signals in healthcare 
applications are ECG, EEG, EMG, and EOG (Jiang & Lin, 2007), (Mowla & Paramesran, 2015).

The EEG signal is able to track changes within millisecond time-span, and is a good tool for 
analyzing brain activity (Urigüen & Zapirain, 2015). Moreover, this EEG signal is preferred to other 
signals. Certain physiological signal such as SET tracks changes in the blood circulation and positron 
emission (PET) measures the change in metabolism which is indirect indicators of electrical activity 
belonging to the brain, while EEG specifically tests the electrical activity of the brain. This software 
will assist in pre-processing (Roy & Shukla, 2019), (Bigdely & Robbins, 2016) of the EEG data to 
enable data sharing, archiving, large-scale machine learning/data mining and (meta-) analysis.

Usually, EEG Signals can be classified based on their frequency, amplitude and shape. The most 
common classification is based on the frequency of EEG signals (i.e. alpha, beta, theta, and delta) 
(Chen & Householder, 2018). Figure 1 shows the brain rhythms arranged according to increased 
frequencies. The brain waves with their frequency band and the corresponding brain activities are 
revealed in Table 1.

Table 1. Electroencephalography (EEG) Signal Frequency Bands.

Name Frequency Band (Hz) Predominantly Brain Activity

Delta 0.5 to 4 Sleeping

Theta 4 to 8 Dreaming, Meditation

Alpha 8 to 13 Relaxation

Beta 13 to 36 Alert/Working﻿
Problem Solving

Gamma 36 to 100 Multisensory semantic matching Perceptual function

Figure 1. Fundamental EEG Bands classification. (http://www.yalescientific.org/2013/12/the-brink-of-death-a-new-perspective/)
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Furthermore, EEG signals are highly sensitive to movement of the subject and noises being 
introduced externally likewise human head activation, eye movements, musculature, nearby electrical 
device interference. The movement in human body changes electrode conductivity or physicochemical 
reactions occurred at the electrode sites results in the artifacts. These artifacts can be categorized as 
muscle artifacts (EMG), glossokinetic artifacts, eye blink artifacts (EOG), eye movement artifacts, 
ECG artifacts, pulse artifacts, respiration artifacts, skin artifacts etc.

Figure 2 shows some of the artifacts who have the major influence on the quality and information 
of the data and therefore, leading to an erroneous form of signals. Therefore, it is required to identify 
and prune the artifacts from the desired signal for better analysis and diagnosis of human neurological 
diseases. In this review paper, around 200 research papers based on artifact removal techniques 
have been studied and state of the art analysis of about 60 research papers details are presented in 
a comparative tabular form. This information is useful to conclude and summarize the challenges 
and gaps present in Big EEG Data artifact removal field and opportunities needed to improve the 
quandary area.

Usually, the EEG epochs having the signal amplitude larger than selected threshold value have 
been rejected. This approach is stubborn and no adaption is allowed hence results in loss of meaning 
full information. Moreover, these artifacts will get overlapped with original EEG signal. Therefore, the 
threshold-based rejections will loss the important information. Thus, an automated component-based 
approach for artifact separation is required to solve this problem. The approach must transform the 
linear decomposition of signals into different source components. The components after decomposition 
will provide the information according to the different source types. Consequently, artifacts information 
is collected from separate sources and the final signal is reconstructed without these artifact sources 
to get artifact removed signal (Sweeney & Ward, 2013).

In general, the most frequently applied Big EEG Data artifact removal algorithms are:

•	 Blind Source Separations (ICA and CCA)
•	 EEMD
•	 Wavelet Transform (DWT and SWT)

The ephemeral information of these algorithms is discussed in next section.
The organization of this comprehensive review paper is as follows: section 2 overviews the existing 

artifact removal techniques employed for EEG artifact removal. In section 3, a comprehensive review 
of all the state-of-the-art EEG artifact removal-based research papers have been done. Various features 
from relevant artifact removal-based paper is compared in tabular form in section 4 and tables are 
attached as annexure. The summary prepared by the study of numerous research papers which are 
focused on specific artifact removal. Additionally, specific artifact removal methods are classified 
with our own experience in section 5. The conclusions are summed up with some recommendations 
in section 6. Some open issues related to artifact removal are also highlighted.

Figure 2. Superimposed recordings of the EOG, EEG, EMG, ECG (EKG)
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2. BIG EEG DATA ARTIFACT REMOVAL TECHNIQUES

2.1. Blind Source Separation Algorithm
The Blind source separation is based on an unsubstantiated learning algorithm for estimating and 
separating the sources and artifacts components. Most frequently, Blind Source Separation can be 
done through Independent component analysis (ICA) (Kanoga & Mitsukura, 2015) and Canonical 
Correlation Analysis (CCA) (Soomro & Yusoff, 2014).

2.1.1. Independent Component Analysis (ICA)
The EEG signal separation into independent components requires ICA algorithm which uses the 
statistical and computational techniques. The ICA algorithm considers mixture signal C c c c c

j n
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


1 2
 

as input and generated independent sources S s s s s
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 where W is the n m×  mixing matrix:
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Figure 3 shows the flow of ICA algorithm. Here, w
i
 is column vector and w

i
+  is temporary 

variable, g and g. .( ) ( )′  represents first and the second derivate of nonlinear and non-quadratic 
functions. When the convergence is received w

i+1
 must be made orthogonal with respect to Equation 

1 in order to differentiate the new components. Nevertheless, ICA algorithm is centered on higher 
order statistics and we cannot determine the order and variance of independent component. Therefore, 
second order statistics-based algorithm CCA is preferred for EEG artifact removal discussed in the 
next section.

2.1.2. Canonical Correlation Analysis (CCA)
Canonical correlation analysis (CCA) is first proposed by Hotelling. CCA is an algorithm for 
determination of the linear association between two set variables. This is done by using the data 
variance and co-variance matrix (Soomro & Yusoff, 2014).

The following are a number of linear combinations called A and B:

Figure 3. Independent component analysis algorithm flow-chart
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Let Cpp and Cqq be the variance of the Ap and BQ respectively and Cpq is the covariance between 
AP and BQ. Then the above equation can be rewritten as:
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To achieve the best of self correlations, this P *  should be maximum. Therefore, this optimization 
can be resolved by:

C C C C A A
pp pq qq qp P P
− − =1 1 ρ 	 (5)

C C C C B B
qq qp pp pq Q Q
− − =1 1 ρ 	 (6)

This ρ  signifies the Eigen value which is identical to square of � *P :

ρ = P * 	 (7)

This canonical pair will be calculated and detached by calculating self-correlation and a mutual 
uncorrelation between sources input. Next subsection will discuss another effective EEG artifact 
removal algorithm namely Enhanced Empirical Mode Decomposition (EEMD).

2.2. Enhanced Empirical Mode Decomposition (EEMD)
Empirical mode decomposition algorithm is a non-linear way of representing a non-stationary signal 
into sum of zero-mean sections. This method disassembles a signal through an iterative method known 
as sifting in many intrinsic mode functions. The IMF1 function is the mean of the top and bottom 
enclosure of the original EEG signal, x(t). Then the residual signal is obtained by subtracting IMF1 
from x(t). This cycle is iterated until the stop criterion is met (the remainder of the energy signal is 
near zero). The left residual signal is:

P t P t IMF t
n n n( ) = ( )− ( )−1

	 (8)

where P t x t
n ( ) = ( ) .

Finally, the signal is reconstructed by adding all IMFs and residual signal as:
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The detection method of IMFs is sensitive to unwanted signal components in the surrounding. 
Such noises affect the process of EMD. Mode mixing therefore is used in order to eliminate 
the disparate amplitude oscillations of almost all IMF peaks, which can be randomly available 
in the entire dataset. Consequence, the EMD algorithm version as Ensemble Empirical Mode 
Decomposition (EEMD) was introduced as more powerful and noise-assisted (Chen & Peng, 
2014), which solves this mode of mixing dilemma and uses the average EMD ensembles which 
filter out IMFs for the signal provided. This method also depends on the noise level and amount 
of tests applied to the input signal. One another artifact removal approach is Wavelet Transform 
discussed briefly in the next section.

3. WAVELET TRANSFORM

The wavelet technique is used for more accurately filtering the corrupted signal. In the first stage, 
the mother wavelet should be selected and in the second step, the shape selection should be selected 
according to the source type. The signal is then subdivided into a variety of mother wavelet variants 
of time shifted and scaled version. Details and estimates were calculated at each level of the wavelet 
transformation. Then, artifact components are detected and removed by thresholds and finally other 
components are introduced to restore the refined signal without artifacts (Ghandeharion & Erfanian, 
2010).

The most widely used transforming wavelet is Discrete Wavelet Transform. However, neural 
signal information is important when removing EEG artifacts. Some recent work therefore shows 
that SWT is a great tool to extract signal artifacts that retain neural knowledge of the original signal 
(Chang & Im, 2016).

Stationary Wavelet Transform (SWT), as no down sampling of the data is involved, is translation 
invariant (Ghandeharion & Erfanian, 2010). The invariance of translation is achieved by removing 
down-and-up DWT samplers. In addition, the coefficients of the filter were up sampled 2 1j�� �  at the 
jth  level in the algorithm stage. In order to remove unpredictable motion artifact behavior from EEG 

signals, the SWT algorithm is preferred. The EEG signal is smooth over the duration as it includes 
all its important characteristics only.

These algorithms are frequently applied for available artifact suppression from EEG Big 
Data. Based on study and analysis of around 60 artifact removal research papers, the application 
frequency of artifact removal algorithms is summarized in Table 2. This extensive study is 
devoted to acquiring the best artifact removal algorithms for effective suppression of different 
artifacts from EEG signal.

Table 2 gives the recommendation that BSS-ICA algorithms are frequently applied artifacts 
suppression algorithm in single and two stages. However, this algorithm is based on higher order 
statistics and it results in complex and time-consuming approaches. Further, CCA algorithms are 
preferred over ICA due to simplicity (based on second order statistics). Moreover, EEMD algorithms 
are applied for single channel signal in order to convert single channel signal to multi-channel signals. 
The Wavelet Transform algorithms are also frequently applied both in single and two stages and 
some algorithm based on neural network and optimization algorithms are also applied for artifacts 
suppression. The state of art based on the type of artifact and applied artifacts removal algorithms 
is discussed in the next section.
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4. LITERATURE SURVEY

The most frequent EEG signal artifacts are EMG, EOG, and ECG. The state of the art is classified 
according to artifact types and their removal. The first review is emphasized on the research work done 
for removal of EOG and then focused on EMG artifact removal and as well as automatic detection 
and removal of artifacts have been reviewed and summarized.

Among all the artifacts EOG is the most dominant artifact. EOG artifacts are affecting the 
EEG signals at Frontal electrodes due to eye movements and eye blinks. These signals will spread 
throughout the scalp and contaminate the pure EEG signal. These artifacts are of high amplitude 
and low frequency in nature. As these EOG artifacts overlap spectrally to EEG signals, therefore it is 
very hard to eliminate by using conventional method (Jadhav & Naik, 2014). ICA-LMS (Least Mean 
Square) algorithm have applied by (Mosquera & Vázquez, 2010) and compared its performance with 
Recursive Least Squares (RLS) to eliminate EOG artifacts from EEG signal. In (Matiko & Tudor, 
2013) more effective ICA algorithm has been used to eliminate the EOG and wavelet-based amplitude 
modulation features and support vector machine classifier is implemented to extract the features of 
the EEG. This method is complex and has large computational time.

The computational time for EOG artifact removal has been minimized by using the Short Time 
Fourier Transform (STFT) in (Huang & Fang, 2013) with less memory requirement. A wavelet 
transform-based adaptive filtering approach to eliminate rapid eye movement is proposed more 
accurately by (Betta & Menicucci, 2013). Further, Soomro et al. (Soomro & Jatoi, 2013), (Soomro 
& Malik, 2013) and (Soomro & Yusoff, 2014) have applied EEMD-CCA methodology to minimize 
the EOG artifact and compared their performance with EEMD-ICA approach of artifact removal and 
concluded that EEMD-CCA is more efficient with less computational time and much better signal 
artifact ratio (SAR) and correlation coefficient.

In (Bizopoulos & Fotiadis, 2013) research has been improved with artifact detection and removal 
of EOG artifacts. In this work, detection is based on Normalized Correlation Coefficient (NCC) and 
EOG artifact removal is done by using EEMD approach, though detection is not so accurate. The 
sample entropy enhanced Wavelet-ICA have suggested by (Mahajan & Morshed, 2013) for removal 
of EOG artifact and compared the performance with Zeroing-ICA and Wavelet ICA and proved better. 
Further, performance is improved by using improved multi-scale sample entropy and kurtosis with 
wavelet transform to recognize and eradicate the independent blink component (Mahajan & Morshed, 
2015). To remove Ocular Artifacts more effectively in (Ge & Hong, 2014) the Fourth Order Tensor 

Table 2. Frequency of artifact removal algorithms on electroencephalography (EEG)

Sr. No. EEG Artifacts Removal Algorithms Number of Stages Application 
Frequency 

(Hz)

1. Blind Source 
Separation

Independent Component Analysis 
(ICA)

Single Stage 11

Two-stage 20

Canonical Correlation Analysis 
(CCA)

Single Stage 04

Two-stage 06

2. Enhanced Empirical Mode Decomposition (EEMD) Single Stage 04

Two-stage 13

3. Wavelet Transform (WT) Single Stage 11

Two-stage 15

4. Others (Neural Network based) Single and two stages 04
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Method (FOOBI) is applied and compared the performance with ICA and showed that FOOBI is 
better than ICA.

An automatic detection and suppression of ocular artifact is suggested by (Majmudar & 
Morshed, 2015) with DWT algorithm and compared its performance with SWT. The result shows 
that DWT processing time is 25 times faster than SWT for EOG artifact elimination. However, 
neural information is not preserved so well. Therefore, a real-time approach based on artificial 
intelligence (AI) to remove EOG artifacts has been employed by using Wavelet Neural Network 
algorithm (WNN). In the WNN algorithm, EOG behaviors have been learned first and then after 
training artifacts are removed accordingly. This approach is more computationally efficient in 
real-time application than ICA (Nguyen & Li, 2015). An improved approach with a combination 
of ICA and WNN is proposed by (Burger & Heever, 2015) to remove EOG from EEG signal. 
These detection algorithms are complex and have more computation time. A wavelet-based 
approach is proposed in (Zhao & Qiu, 2015) to remove EOG with CCA as well and proved better 
performance compared with ICA, CCA, and WICA.

To reduce the complexity of the medical systems for healthcare, the single channel systems are 
preferred over multichannel systems. Therefore, Single channel EEG ocular artifact removal has been 
suggested by (Patel & Mariyappa, 2015) with EEMD-PCA approach and recommended this method 
for large input EEG data. The faster artifact removal algorithm termed as Complete EEMD (CEEMD) 
and ICA been proposed by (Kanoga & Mitsukura, 2015) to eliminate eye blink artifact from single 
channel EEG. Auxiliary, performance is compared and showed better than WICA, EMDICA and 
EEMDICA. Further, EOG artifact removal method based on Wavelet Transform (DWT and SWT) with 
the universal and statistical threshold have proposed by (Khatun & Morshed, 2015) and concluded 
that SWT with statistical threshold shows better performance than DWT for preserving the neural 
information of EEG while DWT with statistical threshold has fast execution time in comparison to 
another method.

Further, some research works have focused on adaptive artifact removal for EOG and EMG both, 
as in (Mowla & Paramesran, 2015). The artifacts are identified foremost with the classification and 
then EOG artifacts have been removed by Second Order Blind Identification (SOBI)-SWT and EMG 
artifacts filtered with CCA-SWT. This adaptive algorithm presented improved results in comparison 
to existing methods of artifact removal.

Recently EMG artifact removal has been focused by some researchers. The artifacts 
potential were generated due to the movement or contraction of muscles, swallow, walks 
and talks. The EMG artifacts are of wide spectral distribution than the signal generated in 
the human brain. Moreover, this EMG can be easily removed on the basis of duration and 
frequency. The performance of EMD, CCA, ICA and WT for EMG artifact removal have 
compared (Safieddine & Merlet, 2012) and concluded that for low SNR, EMD-ICA combination 
algorithm is effective and for high SNR, 2T-EMD or Contrast Maximisation 2 (CoM2) works 
better than other methods. Correspondingly DWT or CCA is preferred if numerical complexity 
is taken into account.

In addition, for EMG artifact removal (Teng & Wang, 2014) the multivariate-EMD method 
was compared to the ICA based approach by using SNR and MSE as parameter. However, (Chen 
& Ward, 2014) proposed EEMD-CCA and EEMD-IVA (Single Channel EEG data deletion EMG) 
and concluded that EEMD-CCA is outperformed by IVA. In addition, the EEMD-MCCA method is 
extended and the best results are shown (Chen & Peng, 2014). The EMG artifacts have suppressed in 
(Anastasiadou & Mitsis, 2014), (Anastasiadou & Mitsis, 2015) by CCA and CCA-WT methodology 
to remove EMG and applied, analyzed practically for patients with epilepsy. All the EEG artifacts 
removal-based research papers are compared in tabular form by considering some important key 
features and attached as the annexure.
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5. ASSESSMENT TABLE

The numerous state-of-the-art research papers based on EEG artifact removal have been studied and 
summarized based on some features and tabulated as in Annexure section. The EEG Signal artifacts 
removal algorithm effectiveness are characterized by some evaluation metrics such as Efficiency, 
Feasibility, Complexity, Speed, Correlation Coefficient, Peak to Signal Noise Ratio (PSNR), Root 
Mean Square Error (RMSE), etc. All these evaluation metrics are compared and tabulated according to 
the research work done for specific artifact removal. Initially classification is focused on the progress 
of research work done for EOG artifact removal as tabulated in Annexure A and further classified 
for adaptive artifact removal as in Annexure B. The progress of the work for EMG artifact removal 
is presented in Annexure C. Annexure D contains the algorithms and their effectiveness evaluation 
for automatic artifact detection and removal. The study and analysis of these tabular comparisons 
suggest valuable conclusion which is discussed in subsequent section.

6. SUMMARY

In the healthcare system as the ambulatory device applications have increased, the EEG-based 
applications have been also increased accordingly. In real time applications, some unintended signals 
(i.e. artifacts) need to remove so as to improve the analysis and diagnosis of human neurological 
diseases for healthcare. Most undesired Big EEG Data artifact elements are EMG, EOG, ECG and 
motion artifacts. The taxonomy of artifacts removal algorithms according to artifacts are shown in 
Figure 4.

Figure 4 summarizes the various state of the art algorithms applied exclusively to remove the 
artifacts in the EEG signal. The algorithms are classified according to the artifacts types. It has been 
also analyzed from the above figure that two-stage algorithms are more effective to remove the 
artifacts than single stage algorithms. Moreover, the type of signal input is also an important aspect 
of analysis. If the signal is multichannel signal then ICA or Wavelet Transform based algorithms are 
applied to suppress the artifacts, however, if EEG signal is single channel then EMD based approaches 

Figure 4. Artifact removal based algorithms tree
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are applied initially to convert single channel signal to multichannel and then BSS or WT based 
approaches have been applied to eliminate the artifacts more effectively.

The major cause of EMG artifacts is due to frontalis and temporal muscles. In the classical work 
(Mijovic & Huffel, 2010) EEMD-ICA method have applied to remove the muscle artifact; however, 
this muscle artifact removal process was improved by (Chen & Ward, 2014) through EEMD-CCA 
algorithm. This EEMD-CCA algorithm is compared and proved better than the performance of 
EEMD-ICA. Further, in (Chen & Peng, 2014) EEMD–MCCA is applied to improve the EMG artifact 
removal by increasing PSNR and reducing the RMSE values in comparison to the existing muscle 
artifact removal methodologies available. The algorithm CCA-WT has implemented by (Anastasiadou 
& Mitsis, 2015) to attain best correlation coefficients for removal of EMG artifacts.

The most corrupting artifact in EEG signal is Electrooculogram (EOG), generated due to eyelid 
movement and eye blinking. The Haar wavelet-based ICA method is applied in (Mahajan & Morshed, 
2013) to suppress EOG artifacts and used entropy as a statistical measure. Further, in (Mahajan & 
Morshed, 2015) an automatic EOG artifact detection with WICA has been employed and statistical 
measure is considered as modified multi-scale entropy. To compare the performance the ROC curve 
is plotted which shows significant improvement in sensitivity and specificity. The complexity and 
computational time of artifact removal algorithm are reduced by CCA method in (Soomro & Yusoff, 
2014) and compared with an existing ICA method to remove EOG artifacts. Further, (Mowla & 
Paramesran, 2015) have implemented SOBI-SWT to improve the EOG artifact removal performance.

The automatic detection and correction of artifact algorithm have been employed by (Chuang & 
Lin, 2014) with the independent component ensemble to remove eye blink, EOG, EMG adaptively. 
Further, (Radüntz & Meffert, 2015) have used ICA-LDA algorithm as an automatic, reliable, real-
time capable and practical tool for automatic detection and correction of artifacts from EEG signal.

Above study and investigation summarize that the particular artifact removal algorithms are 
effective according to the type of input artifacts whose information is recapitulated in Table 3.

Table 3 suggests that BSS algorithms are most effective for EOG artifact removal; CCA-WT is 
most effective for EMG artifact suppression.

PSNR, RMSE, Correlation coefficient, and complexity are the key factors for any artifact removal 
methods. This artifact removal can be done by using some efficient techniques as CCA, ICA, DWT, 
SWT, EEMD etc. These methodologies are faster, reliable and accurate for separation of different 
artifacts (EOG, EMG, ECG etc.) from the input EEG signal. These artifact removal methods can be 
applied to either single channel or multiple channel input EEG signal. This input EEG signal can 
be of different recording duration and also can be of different sampling rate and data. Some artifact 

Table 3. Artifact removal algorithms applied according to the artifact type

Type of Artifact Artifact Removal Algorithms

Electrooculogram 
(EOG)

     1. BSS (PCA, ICA, CCA) is frequently applied as single stage approach﻿
     2. WT-BSS is applicable for multichannel input two-stage approaches﻿
     3. EEMD-BSS is applicable for single channel input two-stage approaches﻿
     4. Two-stage approaches present most effective EOG artifact suppression

Electromyogram 
(EMG)

     1. EEMD and BSS are applied for Single stage approaches﻿
     2. EEMD-BSS are applied for single channel two-stage approach﻿
     3. CCA-WT is applied for multi-channel two-stage approach﻿
     4. After BSS approaches SWT algorithm application presents most effective EMG artifact 
suppression

Automatic Artifact 
detection and 
Removal

     1. EMD, ICA, SWT algorithms are applied as single stage approaches﻿
     2. EEMD-BSS are applied for single channel two-stage approach﻿
     3. BSS-WT are applied for multi-channel two-stage approach﻿
     4. Neuro-Fuzzy and optimization algorithm also applied
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removal methods are feasible with some applied conditions as SNR values, a number of channels, 
type of diseases, etc.

Commencing the study of the published technical and review articles of EEG artifact removal, it 
can be summarized that the high PSNR value resemblance to the better EEG signal quality and least 
RMSE value indicates improved artifact separation. The improved correlation coefficient (Teng & 
Wang, 2014) indicates that improved identification and separation of artifacts from the input noisy 
EEG signal can be attained those results in better source separation. The complexity and quality 
of artifact removal techniques can be affected by the speed and accuracy factors of the algorithm. 
The complexity of the methodology is varied according to the employed artifact removal methods 
and their computational time. The computational time of ICA is much higher than CCA, EEMD, 
DWT algorithms for artifact removal. Furthermore, minimum computational time is taken by DWT 
(Safieddine & Merlet, 2012). The computational time and complexity will affect the execution 
speed of artifact removal methods. Therefore, the improved computational time will diminish the 
execution speed of the algorithm. Thus, these all key features will suggest the adaptability of artifact 
removal algorithms according to the input and types of artifact. Moreover, Figure 5 shows a graphical 
representation of percentage artifact removal methodologies employed in literature for EEG signal only.

The review and summary of the research papers state that almost 29% research papers used 
BSS algorithm as effective artifact removal technique, among them 47% focused on removal of 
EOG, 18% applied the BSS algorithm to remove EMG, 6% deals with ECG and 12% automated 
the algorithm for artifact removal. Further, 12% used WT algorithm, 8% applied EMD algorithm, 
15% applied cascading of EMD and BSS algorithm, 17% WT and BSS algorithm combination, 2% 
used the combination of EMD and WT approach, and remaining 4% algorithm used an automated 
approach for artifact removal.

The various artifact removal methodologies as discussed above are of mere importance and very 
helpful in healthcare for diagnosis of neurological disease such as epilepsy, tumour, sleep apnea, etc. 
Research is still going on for the improvement of artifact removal of EEG which will definitely lead 
to the better diagnosis and treatment of neurological disorders.

Figure 5. The State-of-the-Art algorithms applied for Artifact Removal in Percentage
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7. CONCLUSION

On the basis of the extensive study of the above-mentioned research papers, it is concluded that the 
artifact removal methods are an imperative pre-processing step for Big EEG Data signals. This cleaned 
EEG signal will support more accurate diagnosis and analysis of neurological diseases in the medical 
field. In literature, research work is basically focused on removal of EOG, EMG and motion artifact. 
The comprehensive review work is categorized according to the removal methodologies employed 
for various artifacts in the EEG signals.

Most frequently applied artifact removal algorithms in literature are EEMD, DWT, SWT, ICA, 
CCA and sometimes combinations of these methodologies. These methods have been compared 
based on some performance evaluation parameters as PSNR, RMSE, and correlation coefficient, etc. 
and proved the effective results using simulations. Finally, according to study and analysis of these 
research papers, it can be concluded that Blind Source Separation techniques are the most widely 
employed algorithms to remove the EOG artifacts from EEG signals. As these BSS algorithms are 
based on source separation and once artifact source is identified then their removal will be easier. 
Moreover, EMG artifacts available in EEG signal are better suppressed by wavelet transform. These 
Wavelet Transform algorithms will smooth out the EMG artifacts broad spectrum randomness 
available in the EEG signal while preserving the neural information. The Review analysis of above-
mentioned research papers concludes that cascading of different artifact removal algorithms can be 
more optimal for eliminating various artifacts from EEG signal. Therefore, processing of the signal 
will improve the quality of the signal, which will be helpful in analysis and diagnosis of neurological 
diseases in health care.
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APPENDIX A

Table 4. Feature comparison table for EOG artifact removal

Authors Name and feature comparison of their paper

Sequence 
Number

1 2 3 4 5 6

Authors﻿
\﻿
Features

(Vigon & 
Fernandes, 
2000)

(Salwani 
& Jasmy, 
2005)

(Ghandeharion& 
Erfanian, 2006)

(Vazquez & 
Maquin, 2007)

(Romero & 
Barbanoj, 
2008)

(Kiamini 
& Ahmadi, 
2009)

Used 
techniques

JADE-ICA lwt wT-ica wd-ica BSS EMD-WT

Artifact 
removed

EOG EOG EOG EOG EOG EOG

Year 2000 2005 2006 2007 2008 2009

PSNR (dB) >50 High Satisfactory 20 40 20

RMSE (µV) Low Low 0.3 0.0453a, 
0.3040b

1.35 2.20E-01

Feasible If SNR above 
50

with Haar 
computation

With 
Thresholding

Yes Good with 
AMUSE and 
SOBI

Yes

Efficiency/ 
Reliable

Yes High 96.4% Efficient 
with SURE 
algorithm

Reliable Highly 
Efficient

Complexity Medium Least Complex Complex Medium Less

Speed Low Very high Low Low Medium High

Data Duration 10 s 10 s 4 s 8 s 3 min 2s

Sampling rate 
(Hz)

125 256 256 256 100 250

Sample data 1250 2560 - - - 500

Channel 32 10-20 
system

10-20 system 4 10-20 system 64

Average 
Correlation 
coefficient

0.99 (JADE), 
0.98 (ICA)

Satisfactory 0.1579a, 0.1776b .7698a, .7076b Good High

LWT- Lifting Wavelet Transform
Number of channels-*, First Subject - a, Second Subject -b
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APPENDIX B

Table 5. Feature comparison table for EOG artifact removal continued

Authors Name and feature comparison of their paper

Sequence 
Number 7 8 9 10 11 12

Authors﻿
\﻿
Features

(Kumar & 
Vimal, 2009)

(Mosquera 
&Vázquez, 
2010)

(Ghandeharion& 
Erfanian, 2010)

(Babu & 
Prasad, 
2011)

(Zhao & Qiu, 
2015)

(Nguyen & Li, 
2015)

Used techniques wt ica ICA-WT PCA-WT CCA-WT WNN

Artifact removed EOG EOG EOG EOG EOG EOG

Year 2009 2010 2010 2011 2015 2015

PSNR (dB) Good 0.8 High 19.1103 14.5699 _

RMSE (µV) Low 0.35 0.025 7.45E-09 Low 19.2154

Feasible Yes Fair Yes Low Needs Little 
signal alteration Yes

Efficiency/ 
Reliable

Improved 
Quality

Effective 
Denoising 97.8% Comparable 

high
Better than ICA 
CCA and wICA

Accurate 
than Wavelet 
Thresholding

Complexity Least Complex Complex Medium Moderate Medium

Speed High Low High Medium Medium Low

Data Duration 10 s 10 s 60 s 400ms 4 s 30 s

Sampling rate 
(Hz) 128 200 256 128 250 128

Sample data - 2000 - 15000 1000 3840

Channel 4 10-20 system 10-20 system 2 32 32

Average 
Correlation 
coefficient

0.68 0.9945 Medium - 0.97 0.9

WNN- Wavelet Neural Network
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APPENDIX C

Table 6. Feature comparison table for EOG artifact removal continued

Authors Name and feature comparison of their paper

Sequence Number 13 14 15 16 17 18

Authors﻿
\﻿
Features

(Hsu & 
Chen, 2012)

(Soomro & Malik, 
2013)

(Soomro & 
Jatoi, 2013)

(Huang & 
Fang, 2013)

(Bizopoulos& 
Fotiadis, 2013)

(Matiko & 
Tudor, 2013)

Used techniques ica-dwt Emd-cca emd-ica ORICA NCC-EEMD MCA

Artifact removed eog EOG EOG EOG Eog EOG

Year 2012 2013 2013 2013 2013 2013

PSNR (dB) Good 6.0a/2.2b 1.04761 Good 7.649 Sufficient 
High

RMSE (µV) Low Min Low Low 0.215 Low

Feasible Yes Suitable for Online 
Removal

Not Feasible Yes Satisfactory Yes

Efficiency/ Reliable 84.4% Efficient if electrode 
placed distant

Effective 
Denoising

Satisfactory Satisfactory Reliable

Complexity Complex Medium Highly 
Complex

Complex Less Less

Speed Low Medium Least Least High High

Data Duration 20 s 500 ms 800ms 25 s 4 s 4s

Sampling rate (Hz) 256 250 250 128 1000 256

Sample data - 1000 200 - 250 1024

Channel 5 2 2 7 10-20 system 1

Average Correlation 
coefficient

High 0.908808a/0.864514b 0.871094 0.9135 0.767 0.94

ORICA- Online Recursive ICA, NCC- Normalized Cross Correlation, MCA- Minor Component Analysis
Number of channels-*, First Subject - a, Second Subject -b
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APPENDIX D

Table 7. Feature comparison table for EOG artifact removal continued

Authors Name and feature comparison of their paper

Sequence 
Number

19 20 21 22 23 24

Authors﻿
\﻿
Features

(Mourad & 
Niazy, 2013)

(Mahajan 
& Morshed, 
2013)

(Betta & 
Menicucci, 
2013)

(Mahajan 
& Morshed, 
2015)

(Zhao & 
Peng, 2014)

(Turnip, 
2014)

Used techniques EMD WT-ICA WT ICA-DWT DWT-APF JADE-ica

Artifact removed EOG EOG EOG EOG EOG Eog

Year 2013 2013 2013 2014 2014 2014

PSNR (dB) High Satisfactory High High Low 3.590a, 5.393b

RMSE (µV) Medium Low 0.0002 0.89 0.6443 Low

Feasible Yes Fair Yes Low no. of 
channels

Yes Yes

Efficiency/ 
Reliable

Effective 
for Single 
Channel

94% Effective and 
Reliable

Effective 
Denoising

Fast 
prediction 
speed, low 
nMSE

Effective

Complexity Less Complex Least Complex Medium Complex

Speed High Low Very high Low Medium Low

Data Duration 20 s 30 s 25 s 78 s 80s 80 s

Sampling rate 
(Hz)

250 128 500 128 256 128

Sample data 4100 - - 5120 5120 -

Channel 10-20 
electrode 
System

14 10-20 system 10-20 system 10-20 system 6

Average 
Correlation 
coefficient

0.79 0.6704 Good 0.7771 High Good

APF- Adaptive Predictor Filter
First Subject - a, Second Subject -b
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APPENDIX E

Table 8. Feature Comparison Table for EOG Artifact Removal Continued

Authors Name and feature comparison of their paper

Sequence 
Number

25 26 27 28 29 30

Authors﻿
\﻿
Features

(Soomro& 
Yusoff, 2014)

(Ge & Hong, 
2014)

(Wang & Yan, 
2015)

(Majmudar & 
Morshed, 2015)

(Lyzhko & 
Siniatchkin, 2015)

(Kanoga & 
Mitsukura, 2015)

Used techniques cca & Ica UBSS MEMD-ICA DWT ica ceemd-ica

Artifact removed EOG EOG EOG EOG eog eog

Year 2014 2014 2015 2015 2015 2015

PSNR (dB) 7.6891a,6.5274b, 
-3.5709c

Good High Good High 11.86±3.60

RMSE (µV) Low Low 22 Low 0.1569 Low

Feasible High Yes Yes Yes Fair Yes

Efficiency/ 
Reliability

Reliable 
algorithm

Effective Efficient Effective Good 11.86±3.60%

Complexity High complex Less Complex Least Complex High

Speed Least High Low Very High Low Least

Data Duration 10 s 10s 3-8 s 35 s 100 ms 60 s

Sampling rate (Hz) 256 256 500 256 5000 256

Sample data 2560 2560 - 128 - -

Channel number 18 16 10-20 system 1 64 15

Average 
correlation 
coefficient

.5739a,.8229b, 

.8427c
0.9963±0.0060 (.789/.165)a, 

(.747/.186)b, 
(.795/.15)c

(.304*/.303^)
a, (.297*/.299^)b, 
(.506*/.603^)c

0.91 High

UBSS- Undetermined Blind Source Separation, MEMD- Multivariate EMD, CEEMD- Complete EEMD
First Subject- a, Second Subject- b, Third Subject-c
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APPENDIX F

Table 9. Feature Comparison Table for EOG artifact removal continued

Authors Name and feature comparison of their paper

Sequence Number 31 32 33 34

Authors﻿
\﻿
Features

(Patel & Mariyappa, 
2015)

(Chang & Im, 
2016)

(Burger & Heever, 
2015)

(Khatun & Morshed, 
2015)

Used techniques EEMD-PCA MSDW Wnn-ica   WT

Artifact removed EOG EOG eog eog

Year 2015 2015 2015   2015

PSNR (dB) -18 Good Good -

RMSE (µV) 0.31± 0.12 0.1536 ± .1321 5.3731 Min with Swt-st

Feasible With EOG only Yes Yes Good for single 
channel

Efficiency/ Reliability 92% Good Efficient with 
minimum loss

Efficient with dwt-st

Complexity Moderate Low Highly complex Least

Speed Medium High Least Least

Data Duration 25 s 15 s 10s 105 s

Sampling rate (Hz) 1000 2048 1000 128

Sample data 5000 - - 5000

Channel number 64 1 128 14

Average correlation 
coefficient

Satisfactory 0.1893 ± 0.735, 0.99, 0.92 0.41± 0.21

MSDW- Maximum Sliding Window
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APPENDIX G

Table 10. Feature Comparison Table for EOG, EMG and ECG Artifact Removal

Authors Name and feature comparison of their paper

Sequence 
Number

1 2 3 4 5 6

Authors﻿
\﻿
Features

(Jadhav & 
Naik, 2014)

(Hu & She, 
2015)

(Mowla & 
Paramesran, 
2015)

(Jiang & 
Lin, 2007)

(Grouiller& 
David, 2007)

(Mahadevan & 
Mugler, 2008)

Used techniques dwt ANFIS, FLNN cca-swt, sobi-
swt

WT ica Hermite basis 
function

Artifact removed emg & eog EOG & EMG EOG & EMG ECG bcf bcg

Year 2014 2015 2015 2007 2007 2008

PSNR (dB) Medium 23.18 (EOG), 
21.34 (EMG)

-19 (EOG), -7.5 
(EMG)

5.64 2 0.9

RMSE (µV) Low 0.6335 (EOG), 
0.7853 (EMG)

Low Low Medium 0.1531

Feasible Yes Only with EOG, 
EMG

For EOG and 
EMG

Yes No Fair

Efficiency/ 
Reliability

Acceptable High Extraction 
Efficiency

Efficient than 
BSS-SCD

97.5% Not Optimal Efficient

Complexity Least Less Less Least Complex Less

Speed High High High Very High Low High

Data Duration 10 s 6 s 4 s 4-5 min 180 s 3500 ms

Sampling rate 
(Hz)

256 50 256 200 1024 1000

Sample data - 6000 - - 8000 -

Channel number 10-20 
system

10-20 system 55 10-20 
system

20 32

Average 
correlation 
coefficient

0.7574 0.701 (EOG), 
0.0633 (EMG)

.999 (EOG), 
1.00 (Emg)

0.6138 0.8 Satisfactory

ANFIS: Adaptive Neuro-Fuzzy Inference System, FLNN – Functional Link Neural Network
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APPENDIX H

Table 11. Feature comparison table for EMG artifact removal

Authors Name and feature comparison of their paper

Sequence 
Number

1 2 3 4 5 6

Authors﻿
\﻿
Features

(Mijovic & 
Huffel, 2010)

(Sweeney & 
Onaral, 2012)

(Safieddine& 
Merlet, 2012)

(Korhonen & 
Sarvas, 2011)

(Chen & Peng, 
2014)

(Teng & 
Wang, 2014)

Used 
techniques

eemd-ica Eemd-ica ICA, CCA, 
EMD, WT

ica eemD-Multi-
set cca

memd

Artifact 
removed

Muscle 
Artifacts

Motion 
Artifacts

EMG Muscle 
Artifacts

emg emg

Year 2010 2012 2012 2013 2014 2014

PSNR (dB) Good 14.82 - Satisfactory 4.4 Good

RMSE (µV) 0.6479 Low min with 2T 
EMD

Min 0.19 0.9572

Feasible Yes Yes ICA for high 
SNR and 2T- 
EMD for low 
SNR

Yes Yes Yes

Efficiency/ 
Reliability

Highly 
Efficient

For Motion 
Artifact only

Good at 
-30dB, 
average at 
-25 dB, less 
efficient at 
20dB to -5 dB

Good Effective Efficient

Complexity Highly 
Complex

Highly 
Complex

ICA High 
complex

Complex Medium Less

Speed Least Medium DWT High 
speed

High Medium High

Data Duration 10 s 9 min 8 s - 10s 8 s

Sampling rate 
(Hz)

250 200 256 1450 1000 200

Sample data - 500 2048 - 10000 1600

Channel 
number

21 2 32 60 1 6

Average 
correlation 
coefficient

Satisfactory 0.765 - Satisfactory 0.99 Good
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APPENDIX I

Table 12. Feature comparison table for EMG artifact removal continued

Authors Name and feature comparison of their paper

Sequence Number 7 8 9 10

Authors﻿
\﻿
Features

(Anastasiadou & 
Mitsis, 2014)

(Chen & Ward, 2014) (Anastasiadou & 
Mitsis, 2015)

(Sardouie & Merlet, 
2015)

Used techniques cca eemd-Joint-bss Cca-wt jdica

Artifact removed Muscle Artifacts emg EMG emg

Year 2014 2014 2015 2015

PSNR (dB) Good 3 -5 for (1*), -10for 
(14*), -15 for(15*),-
20 in (18*)

High

RMSE (µV) (.8349^/.1374*)
a, (.2423^/.1807*)b, 
(.1023^/.0546*)c

0.2 0.8665(1*), 
0.8981(14*), 
0.9790(15*), 
0.8755(18*)

Minimum with 
JDICA

Feasible Fair 0.98 Yes Good with less no of 
electrodes

Efficiency/ 
Reliability

Satisfactory Efficient Efficient Best to Paediatric 
Patient

Complexity Less Medium Medium Complex

Speed High Medium Low High

Data Duration 30 m 10s 5 min 20s

Sampling rate (Hz) 200 250 200 256

Sample data - - 3000 5120

Channel number 10-20 system 21 10-20 system 12

Average correlation 
coefficient

.869a/.562b/.486c Good 0.9508 Satisfactory

JDICA- Jacobi-like Deflationary ICA, First Subject- a, Second Subject- b, Third subject-c, Channel fp1-*, channel fp2- ^.
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APPENDIX J

Table 13. Feature comparison table for automatic artifact detection and removal

Authors Name and feature comparison of their paper

Sequence 
Number

1 2 3 4 5 6

Authors﻿
\﻿
Features

(Mammone& 
Morabito, 
2012)

(Akhtar & 
James, 2012)

(Sweeney & 
Ward, 2013)

(Mert & 
Akan, 2013)

(Islam & 
Yang, 2014)

(Chuang & 
Lin, 2014)

Used 
techniques

AWICA scica-wT   eemd-cca emd SWT ICA-EMD

Artifact 
removed

Automatic 
Artifact 
Detection and 
Removal

Automatic 
Artifact 
Detection and 
Removal

Automatic 
Artifact 
Detection and 
Removal

Automatic 
Artifact 
Detection and 
Removal

Automatic 
Artifact 
Detection and 
Removal

Automatic 
Artifact 
Detection and 
Removal

Year 2012 2012 2013 2013 2014 2014

PSNR (dB) Satisfactory Satisfactory 8.21 27.34 Max 17.6 (at 
25 dB)

Satisfactory

RMSE (µV) (.13c/.12d)1, 
(.12c/.15d)2, 
(.05c/.05d)3, 
(.09a/.1b)4

-35.264a, 
-31.331b

Low Medium Min .02 (at 
5 dB)

0.19

Feasible Fair No Yes No Yes Yes

Efficiency/ 
Reliability

Effective 
Artifact 
Suppression

Inconsistent Fairly efficient 
than ICA and 
WT

High Efficient 80% 84%

Complexity Moderate Complex Moderate Less Least High Complex

Speed Low Low Medium High Least Low

Data Duration 5 s 20 s 20s 5 s 100 s 1s

Sampling rate 
(Hz)

128 200 200 200 200 500

Sample data 512 4000 - 100 - -

Channel 
number

8 6 2 1 16 10-20 system

Average 
correlation 
coefficient

(0.62c/0.68d)1, 
(0.71c/0.6d)2, 
(0.95c/0.95d)3, 
(0 .81a/0.8b)4

- High Satisfactory - 0.95075

a-CH1, b-CH2, c-CH3, d-CH4, 1-electrical trend, 2- linear shift, 3- muscle, 4- eye blink, Number of channels-*,
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APPENDIX K

Table 14. Feature comparison table for automatic artifact detection and removal continued

Authors Name and feature comparison of their paper

Sequence Number 7 8 9 10

Authors﻿
\﻿
Features

(Priyadharsini & 
Rajan, 2014)

(Daly & Putz, 2015) (Radüntz & Meffert, 
2015)

(Islam & Yang, 2015)

Used techniques ANFIS-PSO* ICA-WT ICA-LDA Wt

Artifact removed Automatic Artifact 
Detection and 
Removal

Automatic Artifact 
Detection and 
Removal

Automatic Artifact 
Detection and 
Removal

Automatic Artifact 
Detection and 
Removal

Year 2014 2015 2015 2015

PSNR (dB) (0.0781/15.0245)a, 
(1.0294/21.8553)b

Satisfactory Satisfactory High

RMSE (µV) (5.1424e-004)a, 
(5.8904e-004)b

0.0107±0.0171, 
0.1035±0.06292, 
0.0081±0.0073, 
0.0001±.000034, 
0.0036±0.00735

Low 0.64

Feasible Yes Yes Fair Yes

Efficiency/ 
Reliability

Efficient than ANFIS Efficient 87.7% Efficiency Improved

Complexity Less Complex Complex Least

Speed High Low Low Very High

Data Duration 4 s 4 s 94.34 s 5 min

Sampling rate (Hz) 256 512 500 256

Sample data 1000 - - -

Channel number 10-20 system 25 32

Average correlation 
coefficient

Good Satisfactory 0.9891

a-CH1, b-CH2, 1-Blink artifact, 2- Movement artifact, 3- Moving artifact, 4- Failing electrode, 5-Slow EOG electrode
* ANFSI PSO-Adaptive Neuro-Fuzzy Inference System-Particle Swarm Optimization, LDA- Linear Discriminant Analysis



Journal of Organizational and End User Computing
Volume 33 • Issue 1 • January-February 2021

46

Vandana Roy is working as an associate professor in Electronics Communication Department in Hitkarini College 
of Engineering and Technology, Jabalpur. She has 05 years of Industrial experience and 14 years of teaching and 
research experience. She has awarded her doctorate degree in biomedical signal processing in 2018 from RGPV, 
Bhopal. She has received B.E. degree in Electronics and communication engineering from RGPV, Jabalpur in 2001 and 
the M. Tech. degree in Digital Communication from Rajiv Gandhi Technical University, Bhopal in 2010. Her research 
interests are Communication, Image processing, Bio-medical Signal Processing, Machine learning and Wireless 
Network. She has published more than 45 Research papers in International/National Journals and conferences. 04 
research papers are published in SCIE journals. She is actively serving as a Reviewer in Various IEEE, Springer, IGI 
Global International Publishers Journals and also Editorial Board Member of many reputed Journals.

Prashant Kumar Shukla is working as an Assistant Professor (SG) and Research Coordinator in the Department 
of Computer Science & Engineering, School of Engineering & Technology, Jagran Lakecity University, Bhopal 
from July, 2019. He is PhD in Computer Science and Engineering from Dr K. N. Modi University, Rajasthan. He is 
Master of Engineering from Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal. He is in research, teaching and 
industry for the past 19 years and working in the research areas like Machine Learning, Deep Learning, Computer 
Vision, Internet of Things (IOT) etc. He has applied for 24 patents, in which 23 patents has been published. He 
has received funding for 2 research projects. He has published and presented more than 23 research papers 
in various national and international SCI/ web of science / Scopus/Indexed journals and conferences. He has 
published 02 Chapters in Scopus indexed edited book available in Google Books. He has received various awards 
as “Innovative Teacher Award” by GISR Foundation and The American College of DUBAI at Dubai, UAE, and “Best 
Researcher” by ESN Publications, Tamilnadu, India and “Teacher Innovation Award” by ZIIEI, Sri Aurobindo Society, 
India, and Green ThinkerZ Preeminent Researcher award 2019 by Green ThinkerZ Society, Chandigarh. He has 
been contributing to several professional institutions like IAENG, IACSIT and SDIWC. He is a member of Tuning 
India project which is Co-funded by the Erasmus+ Programme of the European Union. He is a member of around 
25 editorial and reviewer board in national and international research journals. He has attended and organized 
more than 33 workshop, seminar, conference, FDP and training programs. He is associated with 2 startups also.

Amit Kumar Gupta received MCA degree from kurukshetra university Haryana. He received his PhD (CS) from 
Bundelkhand University Jhansi, 2014. He is currently as Associate Professor in the Department of Computer 
Applications at KIET Group of Institutions, Ghaziabad, Affiliated from AKTU, Lucknow. His research interest include 
Artificial Intelligence, Fuzzy logic, Neural Networks, Mobile computing, Wireless computing, computer network. 
He has published 40 plus research paper in international journal and conferences. He has one patent and one 
book on mobile computing.

Vikas Goel received B.Tech. degree (I’st Div.) in Information Technology from MIET college under VBS Purvanchal 
university in 2001 and M.Tech. degrees (I’st Div.) in computer science from Shobhit University in 2009. He received 
his Ph.D. (CSE) from Uttarakhand Technical University, Uttarakhand, 2017. He is currently an Associate Professor 
in the IT Department at KIET Group of Institutions affiliated from AKTU, Lucknow from January 2020 onwards. He 
has a vast experience of 18+ years of teaching in various good institutes. He has served COER Roorkee, AKGEC 
Ghaziabad and IMS Ghaziabad. He has published more than 30 papers in International journals and conferences. 
He has three SCI index papers, 12 Scopus index papers and more than 20 papers in International conferences 
of IEEE, Springer, ACM and Elsevier. His research interests include mobile computing, wireless computing, 
broadcasting data in mobile devices, distributed computing, sentiment analysis. He has guided two Ph.D. students 
as Co-guide. He has guided nine M.Tech. students for dissertation.

Piyush Kumar Shukla [(SMIEEE, LMISTE, PDF (Computer Engineering), PhD (CSE), M.Tech (CSE)), BE (EC)] is 
Associate Professor in CSE, UIT-RGPV (Technological University of Madhya Pradesh), Bhopal, M.P., India, since 
2007. He has published more than 100 research papers/ book chapters/ at National/International level. Four edited 
books on Blockchain for Information Security & Privacy (CRC Press/Taylor & Francis), Innovative Engineering 
With AI Applications (Wiley-SP), Internet of Everything (IoE) for Biomedical Applications, Intelligent Sensor Node-
based Systems and Applications in Engineering and Sciences (CRC Press/Taylor & Francis-AAP) are almost under 
completion; active reviewer/editorial member in various journals including IEEE Transactions/ Elsevier/ Springer 
etc., delivered various Talks/Chaired Technical Sessions. He is PI on “Precision Agriculture: Smart Farming with 
IoT and Drone for increasing productivity of Crops in India” project funded by TEQIP-III. He has Supervised 07 
PhD & 50 PG dissertations till date; research interest includes ML, Security, Blockchain, IoT, and FANET.

Shailja Shukla received B.E. degree in Electrical Engineering from Jabalpur Engineering College, Jabalpur in 
1984 and the Ph.D. degree in Control System from Rajiv Gandhi Technical University, Bhopal in 2002. She is 
currently Professor in Electrical Engineering and the Chairperson of the Department of Computer Science and 
Engineering at Jabalpur Engineering College, Jabalpur. Her research interest on Large Scale Control Systems, 
Soft Computing and include Machine Learning, Face Recognition, image processing and Digital Signal Processing. 
She has been the Organizing Secretary of International Conference on Soft Computing and Intelligent Systems. 
She has published more than 70 Research papers in International/National Journals and conferences. She is 
Editorial member of many International Journals.


