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ABSTRACT

In the healthcare industry, sources look after different customers with diverse diseases and 
complications. Thus, at the source, a great amount of data in all aspects like status of the patients, 
behaviour of the diseases, etc. are collected, and now it becomes the job of the practitioner at source to 
use the available data for diagnosing the diseases accurately and then prescribe the relevant treatment. 
Machine learning techniques are useful to deal with large datasets, with an aim to produce meaningful 
information from the raw information for the purpose of decision making. The inharmonious behavior 
of the data is the motivation behind the development of new tools and demonstrates the available 
information to some meaningful information for decision making. As per the literature, healthcare of 
patients can be analyzed through machine learning tools, and henceforth, in the article, a Bayesian 
kernel method for medical decision-making problems has been discussed, which suits the purpose of 
researchers in the enhancement of their research in the domain of medical decision making.
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INTRODUCTION

Many people all around the world die due to error in healthcare systems. In healthcare industry, 
several strategies have been proposed by various professionals like IT adoption, collaboration among 
various disciplines etc. to design medical decision support systems, which help clinicians for medical 
decision making. From the last three decades, the applications of Bayesian approaches have grown 
at an exponential pace, but research in this domain has developed very slowly in first one hand half 
decade. The major reason for that is to generate Bayesian networks for practical and analytical purposes 
are quite difficult. Therefore, generating Bayesian networks was a challenge for researchers and this 
made inaccessible to vast community of scientist for their applicability. Now, Bayesian and its native 
forms are generated by the help of computers, which address the vast community of researchers 
to became a tool and have wings spread over many disciplines such as computer science, logic, 
information theory, probability theory, statistics, machine learning etc. and can be utilized in almost 
all the disciplines for the purpose of application. Bayesian based models are mainly used to answer 
the queries for the variables, their relationship to compute the evidence for the variables in complex 
situations and are considered as graphical probabilistic models. Decisions making under the state of 
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uncertainty are the typical most problems in medical decision making and Bayesian kernel methods 
are very promising in tackling such situations problems and becomes more rational as compared to the 
conventional models, the assumptions made are more obvious and thus making the decision making 
easy and defendable. The analytical approach of the theory became a boon for the researchers, which 
flavoured with machine learning algorithms to grow beyond their domain. The traditional statistical 
techniques such as regressions have explanatory purposes and have applications in simulation and 
optimization, epidemiology and social sciences. The foundation of Bayesian approach lies from 
the rule for updating probabilities, given by Rev. Thomas Bayes (1702-1761) as Bayes’ theorem. 
He addresses both discrete and continuous probability distributions by means of conditional and 
marginal probabilities. Bayes’ theorem is used for the calculation of inverse probability and is based 
on the apriori and posterior probability measures and provides uncontroversial result in the field of 
probability but its applications fall under controversy for more than two decades. This chapter is an 
introduction to the modernized Bayesian approach which leads to algorithms within the frame work 
of risk minimization and giving us a new insight into kernel algorithms. There are many ways we 
could take to motivate the readers for using Bayesian kernel methods in medical diagnosis, which is 
based on the assumption that all the quantities of interest are governed by probability distributions. 
Optimized results can be obtained in Bayesian theory by evaluating these probabilities together and 
combines prior knowledge with the observed data and is the sole theory in medical diagnosis which 
accommodates hypothesis.

LITERATURE REVIEW

During the clinical examination of a patient, some patient-centric information is recorded such as age, 
gender, medical history and some parameters related to the disease. Clinicians prefer an interpretable 
decision support system, based on clinical and pathological indicators. Many researchers used SVM 
for this purpose, but due to the heterogeneous nature of clinical data, SVM is not easy to implement 
and the results obtained are not reliable. Therefore, to get better results, kernel methods should be 
implemented. Schurmann (1996) explained the concepts behind the designing of kernels and its 
properties. Ghosh (2000) elaborated that the Bayesian approach has been recognized as an promising 
technique for tackling clinical decision making problems and has the ability to represent uncertain 
knowledge. He represented Bayesian based mathematical model of heart disease. Spiegelhalter 
(2000) presented decision theoretic statistical based bayesian methods and its implementation in the 
assessment of health technology. He claimed that bayesian methods are the best in transforming the 
problem from initial opinion to final judgement. Scholkopf (2003) described the basic principles of 
Gaussian processes and their implementation in his chapter on Bayesian Kernel Methods. Sheppard 
(2005) presented a mathematical approach flavoured with Bayesian theory to measure the level of 
uncertainty and further utilize the assessment to propose the improved diagnosis. Due to which, 
one could treat the probability of false detection or missed detection and provide the treatment for 
false diagnosis. Kadane (2005) discussed the use of Bayesian approach in medical decision making 
and emphasized on how decision makers consider the subjective concepts of probability and utility 
functions in his research. Kim (2006) used Bayesian based Gaussian Process classifier kernel method to 
classify gender among various face images of men and women. The proposed method is efficient over 
the traditional support vector machines based kernel classifiers and found that they determine hyper 
parameters on model selection criterion. Van Calster (2007) used Bayesian least square support vector 
machines method to separate malignant from benign and develop a classifier to predict malignancy 
in adnexal masses. He used a large dataset collected from the nine databases of different centres and 
comes out with the better results as compared with the traditional support vector machine method. 
Broemeling (2007) explained various benefits of employing Bayesian methods in clinical studies and 
emphasizes that variety of areas where diagnostic medicine is used such as in the estimation of accuracy 
by sensitivity, positive and negative predictive values of diagnostic measurements. Lukic (2007) also 
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used Bayesian kernel method for analyzing functional neuroimages. Li (2008) developed an integrated 
approach by the help of real time data to identify the risk factors associated with occupational history 
of patients. He used Bayesian approach to process the data set by integrating medical knowledge 
representation and genetic algorithms. Penny (2011) used Bayesian methods in brain imaging. Kenzi 
(2012) explained the gram matrix representation of nonparametric Bayesian kernel methods. YUE 
(2012) performed a Meta analysis of neuroimaging data consisting of peak activation locations in 
162 separate studies on emotions by nonparametric binary regression Bayesian method on the data 
of neuroimaging. Aram (2013) developed quantitative model based on kernel Bayesian approach to 
calculate the risk involved in osteolysis after hip replacement. Barbini (2013) in one of his chapter 
on Bayesian approach in medicine and health management explained the importance of Bayesian 
methods in medicine and healthy management as it makes the problems easier to explain and defend. 
Sidong (2013) proposed a Multifold Bayesian kernel based method to model the diagnosis process 
and the planning of the treatment for Alzheimer’s disease, which overcome the constraint of the 
performance of machine learner with the multi-modal data. Molly (2014) analyzed the performance 
of Bayesian kernel methods over the traditional statistical method to estimate and forecast data. He 
used Poisson Bayesian kernel model against Poisson generalized linear model and found that Bayesian 
kernel approach tends to outperform classical data count models for smaller datasets, results have 
been validated through measures of goodness of fit and logarithm based likelihood function. Deck 
(2014) proposed Bayesian based kernel methods to improve results in classification and regression 
tasks in natural language processing problems. He used Gaussian processes over commonly used 
support vector machines and concluded that Bayesian based Gaussian approach fit the model easily 
even in case of complex kernel problems, SVM based techniques lacks in model selection, which 
hinders the use of advanced kernels. Page (2015) proposed a model for predicting health events 
from electronic health records using machine learning. Jessica (2015) proposed a two-stage method 
with naïve Bayes’ kernel machine method to estimate gene set in first stage and regularizations with 
kernel principal component analysis stage two for the estimation of risk classification based on gene 
structure to overcome the limitation to address non-linearity in the existing methods. Jiang (2018) 
proposed constraint based learning algorithm for the construction of Bayesian networks, which 
has the advantage over the traditional methods of calculating correlation between the variables but 
accuracy of these existing methods are not high. He proposes entropy estimation based Gaussian 
kernel density estimator to improve the learning of concrete as well as continuous data with sparsity. 
Bayesian theory got recognition in 2011, when Prof. Judea Pearl received the prestigious Turing 
award for the creation of Bayesian networks, since then the theory of Bayesian networks got more 
public attention and became a probabilistic model of complex situations and a primary algorithm 
for inference in these models. This is an important tool to address multi disciplines and particularly 
revolutionized the area of artificial intelligence. Bayesian network has been recognized as a powerful 
tool to reasoning of uncertainty knowledge and widely used in the domains of medical diagnosis and 
prediction, fault diagnosis, financial analysis and prediction, decision support etc. Concerning about 
the data on the model source, Bayesian networks can be build from human knowledge, i.e through 
theory, or data. Bayesian networks are a versatile modelling framework, making them suitable for 
many problem domains. Predictive modelling techniques are very much popular and are algorithmic 
in nature and prediction of any disease can be viewed as a classification problem, as the outcome is 
a binary variable. Classification techniques can be applied on structured as well as unstructured data 
sets. The data collection may be homogeneous as well as heterogeneous. Homogeneity brings the 
benefits of certainty in the individual patient’s need and accordingly resources are utilized. In this 
way, classification techniques provide the opportunity for improved clinical diagnosis and efficient 
planning of healthcare resources.



International Journal of Big Data and Analytics in Healthcare
Volume 6 • Issue 1 • January-June 2021

29

BASICS OF BAYES’

In many situations, the practitioners consider some set of candidate hypotheses H  and are interested 
in finding the most probable hypothesis h H∈  for given observed set of data D  and such hypothesis 
is called maximum a posterior (MAP) hypothesis. This is usually denoted as h

MAP
 and can easily be 

determined by Bayes Theorem to find posterior probability of each candidate hypothesis i.e.:

h P D h P h
MAP

h H
= ( ) ⋅ ( )

∈
argmax | 	 (1)

In machine learning problems, Bayes’ Theorem is introduced by considering the data  D  as 
training examples of target function and H  is domain of Candidate target function. And it has been 
noticed that this method is very successful in the sense that no other hypothesis is more likely.

To illustrate Bayes’ Rule, case study of medical decision making problem has been considered 
by taking two alternative hypothesis viz as that the patient has a particular form of breast cancer and 
that the patient does not, according to an available laboratory test with two possible outcomes as: + 
(positive) and – (negative).

In case of Breast cancer, the classification of data can be considered by assigning probabilities 
to a particular type of Breast cancer B i n

i
= −−{ }1 2, , ,  among n  classes given two observations 

 b , denoted by P B B b
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where:

•	 P B B
i

=( )  is the prior probability of Breast cancer of class i;
•	 P B B b

i
=( )|  is the posterior probability of Breast cancer given observation b ;

•	 p b B B
i

| =( )  is the conditional probability of observation b  given class B
i
; and

•	 p b( )  is the probability of observation b .
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To find the inverse probabilities, hypothetical numerical data has been taken for the better 
understanding of the concept of Bayesian Inference. We have prior knowledge that among the entire 
population of people 0.015 have breast cancer of type B

1
. Furthermore, the laboratory test is only 

an imperfect disease indicator. The test returns a correct positive result in only 95% of the cases in 
which the disease is actually present and the correct negative result in only 94% of the cases in which 
the disease is not present. In rest of the cases the lab test results in an opposite result.
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The above data can be represented as follows:

P B
1

0 015( ) = . 	

P B+( ) =| .
1

0 95 	

P B− ∼( ) =| .
1

0 94 	

From these following are the direct implications by probability sum rule as follows:

P B P B∼( ) = − ( ) = − =
1 1
1 1 0 015 0 985. . 	

P B P B−( ) = − +( ) = − =| | . .
1 1
1 1 0 95 0 05 	

P B P B+ ∼( ) = − − ∼( ) = − =| | . .
1 1
1 1 0 94 0 06 	

Now let us suppose that we have to observe a new patient and the labtest is positive for that 
particular patient. Now the question arises that, should we diagnose the patient as having Breast 
cancer of type B

1
.

The maximum a posterior hypothesis can be found using Equation (1) as follows:

P B P B+( ) ⋅ ( ) = ( )( ) =| . . .
1 1

0 95 0 015 0 01425 	

P B P B+ ∼( ) ⋅ ∼( ) = ( )( ) =| . . .
1 1

0 06 0 985 0 05910 	

Thus combining the above expressions with Equation (1), we get:

h B
MAP
=∼

1
	

and the exact posterior probability can also be determined by normalizing the above quantities i.e. 
using Equation (3):
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In the similar way:

P B B= +( )2
| , P B B= +( )3

| , � |P B B
i
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can be calculated and the most probable hypothesis for the type of Breast cancer can be determined 
by the following expression:
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h P B
MAP

h H
i

= +( )
∈

argmax | 	

Thus to apply Bayes’ theorem we need P +( )  directly although it’s not given directly, we can 
calculate it as we know P B

1
|+( )  and P B∼ +( )1

|  must sum to 1. This means either the patient 
has Breast cancer of type B

1
 or does not. Here point is to be noted that the posterior probability of 

Breast cancer of type B
1
 (0.1943), is higher than its prior probability (0.015), the most probable 

hypothesis is still that the patient does not have Breast cancer of type B
1
. By means of this, Bayesian 

inference is strongly connected with the prior probability and applicable directly. Another point to 
be noted is that none of the hypothesis in Bayesian approach is completely rejected or accepted rather 
gives more or less probable values as cited in the above example. Thus to apply Equation (3), apriori 
and the probability density function of the given data is required. From the large data samples, the 
estimation of the apriori probability is obtained from the known class.

Kernel methods play a pivot role in decision making processes. With the inference of machine 
learning models flavoured with kernel models, gives efficient results and makes decision making a 
cake walk. From the past one decade, medical decision making developed as a domain on the account 
of large data, parallaly learning with kernels is a powerful tool to support decision making and have 
the capability to address large data in medical diagnosis. In machine learning problems, kernel is 
introduced as a similarity measure that can be found as a dot product in feature space.

MATERIALS AND METHODS

Parametric and Non-Parametric
Kernel based algorithms are very flexible in the sense of accommodation of domain specific prior 
information and predefined set of algorithms for implementation and Bayesian methods act as boon 
to the perceptive presentation of function spaces used by kernel methods. With the concern towards 
predictive modelling, Bayesian kernel method is very much promising, simple and easily integrable into 
decision making algorithms and used to calculate factors, which are more responsible for the diseases. 
Bayesian kernel methods enable the importance of factors in measuring probability distribution for 
their importance measure using data and prior available information to represent prior and conditional 
probability. The transformation from Bayesian to Bayesian Kernel approach requires some rules and 
estimates, kernel mean is one among those inferences. By this, “nonparametric” Bayesian inference 
is possible. It is a complete nonparametric approach where all calculations are done by linear algebra 
with Gram matrices.

Parametric Tests
These tests take into account the assumptions about the population distribution parameters. So these 
tests rely on a fixed set of parameters.

Non-Parametric Tests
These tests do not take any assumptions about the population distribution parameters. Thus, these 
tests are also called distribution free tests.

Learning Bayesian Network Structure
Learning the structure of Bayesian networks, two algorithms are generally used such as constraint based 
algorithms and score based algorithms. The former is based on probabilistic semantic of Bayesian 
network and are responsible to identify marginal and conditional indecencies of the structure while 
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the laterer is based on the metric, which measures the quality of the candidate network by means of 
observed data. Bayesian networks are nonparametric in nature, so no hypothesis is formed to establish 
the relationships between variables, but through machine learning, an array of highly optimized 
learning algorithms are used to uncover structures in datasets. In Bayesian networks framework, 
diagnosis, prediction and simulation are computable and the inference from effect to cause and cause 
to effect. It gives access to expert system to work interactively in an automated process and became 
a bridge between AI and human intelligence.

In real life situations, unstructured or fragmented data or no data is available for computation, 
therefore it is required to build a robust model for decision support system. Bayesian networks are used 
to handle uncertainty with inputs, relationships and computed outputs as probabilistic and represent the 
entire probability distribution system under study. Naïve Bayes structure is commonly used network in 
which only one target (parent) node is connected to a set of nodes rather than computing the relationship 
between each node individually. Bayesian approach generates structures and parameters automatically 
from data. For example, in tumour classification problem, the medical diagnosis is performed by 
medical knowledge representation and artificial intelligence techniques to support doctors but by the 
intervene of Bayesian based methods the accuracy is over 95%. Unsupervised Structural Learning 
is the heuristic technique to form knowledge discovery as it puts no constrain on hypotheses for the 
exploration of relationship between the variables. In Bayesian beliefs offers variety of options to design 
and use algorithms in machine learning environment. The aim of implementing Bayesian techniques 
to learning algorithms is of risk minimization, which allows us to understand kernel algorithms in 
relatively different prospective and referred as Bayesian estimation. The kernel mean presentation of 
prior probability and conditional probability of Bayes’ theorem has been discussed in next section.

KERNEL METHODS - KERNEL MEAN

Kernel Mean: Representing Probability
Classical Non-Parametric Approach

Kernel estimate for probability:

ˆ /p x
n

k x X h
j

n

j( ) = −( )( )
=
∑
1

1

	

Characteristic Function:

f s E e
n
e

X
isX

j

n
isXj( ) = 



 =

=
∑

1

1

	

New Alternative Non-Parametric Kernel Estimate

Let X  be a random variable with probability P  by taking the values on D ,  k  be a positive definite 
kernel on D , and H

k
 represents hypothesis associated with k , then the Kernel mean of X  on the 

hypothesis H
k

 is defined as:

M E X k x dP x H
P k
⇒ ( )



 = ∫ ⋅( ) ( )ψ ,  	
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Here ψ X k x( ) = ⋅( ),  is a feature vector:

M̂
n

X
P

j

n

j
= ( )

=
∑
1

1

ψ 	

A bounded measurable kernel k   is said to be a characteristic kernel if:

M M P Q
P Q
= =⇒ 	

i.e. a Kernel mean M
P

 with characteristic kernel k  determines the probability uniquely.
Note:

1. 	 f s
X ( )  determines the probability of the random variable X  uniquely.

2. 	 k  gives better insight of the alternative.
3. 	 Kernels compute the measures effectively.
4. 	 It can be applied to non-vectorial data also.

With k , any inference on P  implies an inference on M
P

. So, our aim is estimating the kernel 
mean of the posterior probability given kernel knowledge representation of prior and conditional 
probability.

Conventional Non-Parametric Approach
Kernel estimate according to conventional non-parametric approach:

ˆ /p x
nh

k x X h
d
j

n

j( ) = −( )( )
=
∑

1

1

	

Here k .( )  is chosen in such a way that it represents a symmetric probability distribution.
For example:

k x exp x x
d

T( ) = ( ) −










−
2

1

2
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where h  explains the bias and variance in the estimates, hence taking the responsibility of the 
effectiveness of the model and is very important factor. Small values of h  causes random variations 
in density estimates and large values of h  can change or eliminate the underlying characteristics of 
distribution like bimodality. Also,  h  is referred as smoothing parameter or window width or band 
width and provides the smoothness of density estimation which affects the posterior probability. n  
is the number of observations X

j
 with the dimension d . The range of x  depends on the sample 

data.
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For example, for a normally distributed one dimensional data: h
n

=








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4

3

1

5

σ  where σ  is standard 

deviation of data and the corresponding function is E eisX

 .

Kernel Mean: Representing Conditional Probability
Conditional probability is an important factor describing the conditional dependence and independence. 
The kernel estimate for conditional probability is defined as:

E Y X x Y p y x dyψ ψ( ) =



 = ∫ ( ) ( )| | 	

To estimate kernel, exact estimation of p y x|( )  is not easy. To overcome such situation, we 
follow regression approach as the following.

Let X Y,( )  be the random pair taking values from D D
X Y
× .

H k
X X
,( ) , H k

Y Y
,( )  be the corresponding hypothesis on D

X
 and D

Y
 respectively.

The covariance operators:

C H H
YX X Y

: → 	

C H H
XX X X

: → 	

where:

C E X Y
YX Y X

T
= ( ) ( )








ψ ψ 	

and:
C
YX

 can be determined by kernel mean E k Y k X
Y X
., .,( )⊗ ( )



  on the product space H H

Y X
⊗ .

Kernel Bayes’ Rule

Sum rule: P x p x y y dy( ) = ∫ ( )∏( )|

Chain Rule: P x y p x y y, |( ) = ( )∏( )

Bayes’ Rule: P y x
P x y y

p x y y dy
|

|

|
( ) = ( )∏( )

∫ ( )∏( )
Algorithm for Kernelization:

Step 1: To express probabilities by means of kernel means.
Step 2: To express statistical inference rules with covariance operators.
Step 3: The gram matrix is computed by means of inference rules.

Now we will discuss kernel rules with Gram Matrix Computations in next section.
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GRAM MATRIX COMPUTATIONS

In this section, the Kernel methods approach with nonparametric tests using Gram matrix approach 
of linear algebra has been described.

Kernel Sum Rule

Sum Rule: P x p x y y dy( ) = ∫ ( )∏( )|

Kernelization: m C C m
X XY YY
= −1

π

Gram Matrix representation: m Y X Y X Y P
j

l

j j l l XYπ α ϕ� �= ( ) ( ) −−−( )
=
∑
1

1 1
, , , , ~

m X G n I G G k Y Y G
X

j

l

j j Y n n YY Y i j ij YY

� �
� �= ( ) = + ∈( ) = ( )( )

=

−

∑
1

1
β ϕ β α, , , , == ( )( )k Y Y
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,� 	

Kernel Chain Rule

Chain Rule: P x y p x y y, |( ) = ( )∏( )
Kernelization: m C C m

X XY Y YY
= ( )

−1
π

Gram Matrix representation:
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Note:

C H H H E X Y Y
XY Y Y X Y( ) → ⊗ ( )⊗ ( )( )⊗ ( )





: , ϕ ϕ ϕ 	

Kernel Bayes’ Rule
Bayes’ Rule is regression y x→  with the probability:

P x y P x y y, |( ) = ( )∏( ) 	

According to kernel Bayes’ Rule:

m C C Y
P YX XXy x|
= ( )−π π ϕ1 	
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where:

C C C m
YX YX X XX
π

π= ( )
−1 	

and:

C C C m
YY YY X XX
π

π= ( )
−1 	

Note: Mean on the product space is same as calculating the Covariance.

BAYESIAN INFERENCE IN AI FOUNDATION

Bayesian inference methods can be used in analyzing network variables in AI-powered network 
systems and is considered as a powerful tool for modelling random variables of both discrete as 
well as continuous. These models use data as evidence and map the problems to evaluate data in the 
domain of probability. The methodology of these Bayesian network are analogous to that of Bayes’ 
rule as discussed in the beginning of the manuscript, follows the following steps as:

1. 	 Assign an initial prior probability distribution, which quantify the information into one 
distribution;

2. 	 Choose a probabilistic model along with parameters, which relates the random variables;
3. 	 Apply Bayes’ theorem to use the prior knowledge base and the observed information obtained 

to get the posterior probability distribution.

This posterior distribution is re-configured according to the prior knowledge base and the observed 
data. In other words, we can say that “Today’s posterior is tomorrow’s prior!”

This methodology inspires to explore the Bayesian inference for AI systems.

RESULTS AND DISCUSSION

Kernel mean is a non-parametric way of computing Bayes’ rule and no parametric models are required 
to determine the probability inference rules. Many researchers have studied various properties of 
Bayesian estimators for three different types of prior probabilities defined as:

1. 	 The adjacent coefficients are correlated by considering associated probabilities and termed as 
Gaussian processes;

2. 	 The estimates of sparse matrix are expanded by means of linear combination of kernel functions 
and are referred as Laplacian processes;

3. 	 Each kernel is governed by means of normal distribution with its mean and variance and is 
termed as vector machines.

Among these, only Gaussian and Laplacian kernels determines the probability uniquely and 
unable to determine Polynomial kernels.
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