
DOI: 10.4018/IJERTCS.20210101.oa2

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

﻿
﻿

Copyright © 2021, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

19

Design and Implementation of
RS(450, 406) Decoder:
Forward Error Correction by
Reed Solomon Decoding
Akhilesh Yadav, National Institute of Technology, Kurukshetra, India

 https://orcid.org/0000-0001-9135-7328

Poonam Jindal, National Institute of Technology, Kurukshetra, India

Devaraju Basappa, NXP Semiconductors, India

ABSTRACT

Nowadays, in the field of data transmission between receiver and transmitter, the Reed Solomon code
is used very frequently. FEC codes have two foremost and influential operations: (1) calculating parity
symbols at the encoder side and (2) transmitting message symbols with parity symbols and decoding
the received codeword at the second side by using the decoding algorithms. Gigabit automotive
ethernet is used in the automotive car to provide better bandwidth for every kind of applications to
connect functional components of the vehicles. This error correction technique is used in the gigabit
automotive ethernet to reduce the channel noise during data transmission. RS (450, 406) is a powerful
error correction techniques used in automotive ethernet. This paper focused only on the analysis of
Reed Solomon decoding. Reed Solomon decoding is more efficient decoding techniques for correcting
both burst and random errors. The critical steps of the Reed Solomon decoding are to solve the error
evaluator and error calculator polynomial, which is also known as KES solver.

Keywords
Cadence ncSim, Cadence Simvision, Chien-Search, Error Corrector, Forney Algorithm, Forward Error Correction,
Galois Field (GF), Gigabit Ethernet, Inversionless Berlekamp Massey (iBM), Reed Solomon

1. INTRODUCTION

With the development of advanced vehicle technology, electronic systems are increasing in vehicle to
refine their interpretation and new features. Considering the features of a car, its electronics system
is divided into many functional elements, and every element has self-dependent control. Various
complex controls and sensors are used in cars to maximize their efficiency and power. To conserve
vehicles in normal operation, components in different domain or same domain need to communicate
properly to each other. Therefore, to complete this communication inside vehicles different vehicle
networks technology has been developed, like as Flex Ray, MOST (Media Oriented System Transport),

https://orcid.org/0000-0001-9135-7328

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

20

LIN (Local Interconnect Network), LVDS (Low-Voltage Differential Signaling) and Controller Area
Network (CAN) etc. These networks are developed for specific applications or domains. Initially CAN
BUS is used in vehicle network but due to some limitations (like restriction on cable length, bit rate
and module synchronization etc.), Automotive Ethernet (AE) is replacing CAN network technology.
Automotive Ethernet (AE) is used for providing connection in between electronic systems.

AE is designed to meet bandwidth requirements, synchronization requirements, latency
requirements and network management requirements. It has wide range of applications including:
Diagnostics, Infotainment, Advance Driver Assistance Systems (ADAS) and in vehicle connectivity.
In Ethernet data is transferred in the form of packets between nodes, it provides bidirectional
communication. AE is a wired hierarchical homogeneous network. Gigabit or 1000BASE-T1
Ethernet is a next generation Automotive Ethernet, can serve as a backbone of the Autonomous car.
The Automotive Ethernet (Sana Ullah et al., 2013, pp. 1-12) is used in cars to connect the different
electronic systems for providing better and fast communication between them. AE is the physical
network used to connect different electronic components used in the vehicles by a wired network. It
provides better bandwidth, latency and management requirements.

The Physical Coding Sublayer (PCS) service interface allows the 1000BASE-T1 PCS to transfer
information to and from a PCS client. In PCS transmission code is used for improving the transmission
characteristic of any type of information to be transferred. In PCS Forward Error Correction (FEC)
technique is used for error detection and correction. FEC is a powerful transmission code, it correct
limited number of error without the need of retransmission. Several Error Correction Codes (ECC)
available for FEC are:

1. 	 Block codes
2. 	 Convolutional codes
3. 	 Hamming Codes
4. 	 Binary Convolution code
5. 	 Low – Density Parity check code
6. 	 Cyclic Code
7. 	 BCH (Bose Chaudhari and Hocquenghen) code
8. 	 Reed Solomon Code

Except Reed Solomon (RS) Code, other error correction codes are not used in Physical layer (or
PCS) due to their limitations such as: less error correction capability, less data rate and poor bandwidth.
Moreover, these all EC codes are independent of Galois Field (GF) and primitive polynomial except
RS code. They can correct error up to several bits. Hamming codes can detect two-bit error, or they
can fix only one-bit error without detection of uncorrected errors. The most significant difference
between BCH code and Reed Solomon are:

•	 BCH codes correct bits, while Reed Solomon code corrects symbols.
•	 BCH codes correct t bit error errors, while RS code corrects t symbols.

BCH codes can correct only random error, while RS code can correct both random and burst
error during data transmission. Hence, due to the error correction capability RS codes are preferred
over other BCH codes.

In physical layer of AE, RS encoder and decoder are used. They work simultaneously to provide
full duplex communication. RS code is a powerful FEC code. RS encoding and decoding is used in
the Gigabit Ethernet for better bandwidth and for reducing channel noise during the data transmission.
RS code (E. R. Berlekamp, 1984; R. E. Blahut, 1983) is one of the most popular FEC (M. Kaur &
V. Sharma, 2010) code. It adds the parity symbol in the message symbol and makes the receiver

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

21

capable to identify the error and to correct the limited number of errors present in a received codeword.
RS code is the important subclass of the BCH code. This RS encoding and decoding is required at
PCS of Gigabit Ethernet. Every RS code is based on finite field also known as Galois Field (GF). A
GF field is conventionally defined as finite field GF q() (D. Gorenstein & N. Zierler, 1961; Jimmy
K. Omura & James L. Massey, 1986) where q n− =1 is the maximum length �n k t= +()2 of the
codeword. And GF addition, subtraction, multiplication, divisions are correctly defined, where k is
the length of message symbol, and 2t is the length of parity symbols, It is able to correct the errors

up to t
n k

=
−()
2

.

The several version of Reed Solomon Codes are: RS (7, 3) (Z. Sana & R. Gupta, 2019), RS(32,
28) (C. Peng et al., 2015), RS(64, 56) (J. Sha et al., 2009), RS(128, 112), RS(255, 243) (P. Dayal &
R. Kumar, 2013), RS(255, 239) (Y. Lin et al., 2014; F. Garcia-Herrero et al., 2011), RS(255, 251)
(A. S. Das et al., 2013) etc., And comparison has been done in terms of primitive polynomial, Galois
Field, size of single message and number of error correction capability, as given in Table 1. Some
literature review of RS code and its decoding algorithm is given in related work section.

In this paper, we proposed RS (450, 406) decoder based on Finite Field of GF 29() . This RS
code are used in 1000BASE-T1 AE because it compact channel noise during data transmission.
RS(450, 406) code has more error correction capability as compare to other RS codes, it can correct
up to 22 error symbols.

We have designed RS(450, 406) decoder for 1000BASE-T1 PHY, which is one of the Gigabit
Ethernet family with full duplex network capable to operate at 1000Mb/s. In this RS code, length of
message symbol k() is equal to 406, and each message is of 9− bit symbol and length of the codeword

Table 1. Different version of Reed Solomon Codes

Reed Solomon Codes Primitive Polynomial Galois Field (GF) Size of Single
Message

Error Correction
Capability
(Symbol)

RS(7, 3) 1 1 3+ +x x GF 23() 4− bit symbol 2

RS(32, 28) 1 2 5+ +x x GF 25() 5− bit symbol 2

RS(64, 56) 1 1 6+ +x x GF 26() 6− bit symbol 4

RS(128, 112) 1 3 7+ +x x GF 27() 7− bit symbol 8

RS(255, 243) 1 2 3 4 8+ + + +x x x x GF 28() 8− bit symbol 6

RS(255, 239) 1 2 3 4 8+ + + +x x x x GF 28() 8− bit symbol 8

RS(255, 251) 1 2 3 4 8+ + + +x x x x GF 28() 8− bit symbol 2

RS(450, 406) 1 4 9+ +x x GF 29() 9− bit symbol 22

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

22

n() is 450. RS (450, 406) is also known as shortened Reed Solomon code, and it can correct error
up to n k− =()/ 2 22 . For RS (450, 406) primitive code polynomial is x x9 4 1+ + . The received
codeword at the receiver side is also referred as RS frame. One of the essential elements of both RS
encoding and decoding is Galois Field (GF) multiplication and division. RS decoder first checks the
RS frame is valid or not then it will check the error. If there is error, then it will correct the codeword.
If the codeword has error more than the correcting capability, then RS decoding will almost fail every
time. At RS encoder (A. Yadav et al., 2019; Mustafa et al. 2013) side, the sender sends a continuous
406 RS frame to the encoder and decoder circuit. After 406 clock cycles, it starts sending calculated
44 parity symbols to the end of message symbols, so the input to the RS decoder circuit is continuous
RS frame of size 450 and output of the decoder will be the corrected codeword as shown in Figure
1. Initially enable signal will be low for 406 RS frame, and after that, it becomes high for sending
the calculated parity symbols, Multiplexer will continuously transmit 450 RS frames to the decoder.
There are several steps to solve the corrected codeword, for every step, there are different types of
decoding algorithms used to adjust the codeword. If the codeword is not adequately corrected, then
low latency is achieved, and hence it will fail to decode the received codeword.

2. RELATED WORK

This chapter represents some background overview of Reed Solomon encoder and decoder. It provides
brief idea of different version of RS encoder and decoder and also about different techniques used
for calculating the Key Equation Solver.

2.1. Diplaxmi Chaudhari et al.
Authors Diplaxmi et al. (2019) introduced the FPGA implementation and VHDL design of RS(7, 3)
encoder and decoder. In this paper author implemented the RS(7, 3) encoder and decoder in Verilog
and also implemented hardware in Actel ProASIC3 FPGA kit. They used Berlekamp Massey algorithm
for key equation solver that reduced the hardware complexity as the other algorithm like Euclidean
algorithm. But RS(7, 3) can correct error up to 2 error symbols, So it has less error correction capability.

2.2. Rajeev Kumar and Priyanka Dayal
Authors Dayal & Rajeev (2013) implemented Reed Solomon encoder and decoder on the FPGA for
the wireless network. They improved performance of the RS(255, 239) for IEEE 802.16 standard and
also compared between RS(255, 239) and RS(255, 243) in the terms of the LUT’s used. But RS(255,
239) and RS(255,243) can correct error up to 8 and 6 error symbol respectively. So both RS(255,
239) and RS(255, 243) has less error correction capability in comparison to our RS(450, 406) code.

Figure 1. The architecture of RS Encoder and Decoder

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

23

2.3. Yi-Min Lin, et al.
Authors Y. Lin et al. (2014) introduced a 2.56 Gb/s Soft RS(255, 239) decoder chip to increase the
error correction capability performance with area-efficient architecture. They proposed decision-
confined algorithm to enhance decoding efficiency. Instead of generating number of possible codeword
and calculating correct codeword, they produces only single codeword by confining degree of error
location polynomial, so complexity of hardware reduced by removing decision making unit. But
RS(255, 239) has less error correction capability in comparison to RS(450, 406). RS(255, 239) can
corrects error up to 8 error symbol.

2.4. Anindya Sundar Das et al.
The Authors A. S. Das et al. (2013) designed FPGA implementation for RS(255, 251) encoding and
decoding. They discussed all the step of encoder and decoder, and shown the synthesis results. They
implemented in Verilog language and simulation is done in ModelSim and synthesized design by
Xilinx ISE 7.1 I tool. Authors used Berlekamp Massey (BM) algorithm for key equation solver (KES)
polynomial. RS(255, 251) also has less error correction capability in comparison to our proposed
design. It can corrects error up to 2 error symbol.

2.5. Chia – Chun Peng et al.
Authors introduced IP (Intellectual Property) generator of Reed Solomon code. In this paper authors
show new and different concept of RS codes IP generator to produce ten different kinds of RS codec
including RS (208, 192), RS(72, 64), RS(255, 239), RS(255, 223), RS(207, 187), RS(204, 188),
RS(28, 24), RS(36, 22), RS(182, 172) and RS(72, 64) for targeting different communication standard.
These RS code IP generator perform implementation and hardware design. They also discussed the
fixed architecture of Galois Field multiplier and RS encoder & decoder.

2.6. Dilip V. Sarwate and N. R. Shabhag
The authors D. V. Sarwate and N. R. Shabhag (2001) introduced a Reed Solomon decoder with High
Speed architecture, in this paper authors focused on only the different algorithm of the Berlekamp
Massey Algorithm (BMA) for calculating the key equation solver (KES), which is most important,
also hardest part of Reed Solomon Decoder and its architecture design and complexity. Authors
implemented the reformulation of the Inversion-less Berlekamp Massey algorithm (iBM) and shown
the RiBM synthesized architecture.

2.7. Chan-ho Yoon
The Author introduced Forward Chien Search (FCS) algorithm for Reed Solomon decoder circuit.
He used the Chien Search algorithm for calculating the error location and also discussed about the
Forney algorithm which is used for calculating the error values of the Reed Solomon decoding. Author
Shown the hardware design of the Chien Search and Forney algorithm. He also discussed about the
Seed generator, used for polynomial multiplication.

3. REED SOLOMON DECODING

Reed Solomon Decoding is popular FEC decoding techniques used in communication system and
satellite communication during data transmission. Input to the Reed Solomon (RS) decoder (D. V.
Sarwate & N. R. Shanbhag, 2001; Z. Wang & J. Ma, 2006; T. Zhang & K. K. Parthi, 2002) is the
received codeword, which needs to be decoded. The decoder first checks that RS received codeword
is valid or not. If it is not a valid codeword, that means there are more or fewer errors in the received
codeword during the data transmission. This part of the decoder circuit is called as error detection.
If there are errors in the codeword, then the decoder circuit tries to correct all the inaccuracies by

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

24

using correction part, Figure 2 shows the flow diagram of RS decoding. As given in Figure 2, there
are five steps to calculate the corrected codeword:

1. 	 Syndrome calculation
2. 	 KES (Key Equation Solver)
3. 	 Calculation of error position
4. 	 Calculation of error values
5. 	 Error corrector

We implemented the Reed Solomon Decoder in Verilog by using design architecture of every
step of the decoder. The Architecture of every step is shown in Figures. Every step of the decoder
has a different algorithm, and by using these algorithms, we implemented our design. The RS (450,
406) decoder is being implemented for 1000BASE-T1 AE or Gigabit Automotive Ethernet technology.
For every step, a different algorithm is used to solve the received codeword, Delay registers (FIFO
registers) are used to store RS frame sent by the sender. This decoding is also known as syndrome
dependent decoding. Let the transmitted codeword be C x() . R x() received RS codeword polynomial,
and error polynomial is E x() . So the received codeword is represented as:

R x C x E x() = ()+ () 	 (1)

where C x() can also be represented as:

C x c c x c x c x c x
n

n() = + + + +…+ −
−

0 1 2
2

3
3

1
1 	 (2)

where, if e > 0 errors have generated in the codeword during data transmission. Then the error
polynomial can be represented by:

E x Y x Y x Y x Y xi i i

e

ie() = + + +…+
1 2 3

1 2 3 	 (3)

where Y
1
, Y

2
,…, Y

e
 are the error values occurred at the locations X X Xi i

e

ie
1 2

1 2= = …… =α α α, , , .
Unknown parameter for the decoder is the error polynomial E x() , which needs to be calculated by
using steps of RS decoding. After calculating the value of E x() just XOR with the received codeword
polynomial C x() . So the decoder tries to calculate the error polynomial from the input polynomial
R x() . Figure 2 shows the Architecture of the Reed Solomon Decoding. Design of RS decoder is
shown in Figure 2, input to design is continuous RS frames. More than one memory is used to store
the continuous RS frames and, memory selector is used to select individual memory one at a time
for calculating corrected codeword. We used three memory for storing continuous RS frames to avoid
data overlapping. We used buffer circuit for storing input data coming from output of the previous
module. The time period, number of clock cycles and frequency of operation of each step or module
is given in the Table 2.

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

25

4. SYNDROME CALCULATION

The first step of RS decoding is to calculate the syndrome polynomial by using the received codeword,
and Syndrome values also decide that, there is an error or not. If all the syndrome values are zero, it
means there is no error. The number syndrome values are equal to 2t n k= − and the syndrome
polynomial is given in equation (4):

S x s s x s x s x
t

t() = + + +…+
−()

−()
0 1 2

2

2 1

2 1 	 (4)

S x s x
i

t

i
i() =

=

−()

∑
0

2 1

	 (5)

Figure 2. Flow and Architecture of Reed Solomon Decoding

Table 2. Clock cycle, frequency and the time period of each module

Module Clock Cycle Frequency
(MHz)

Time Period
(ns)

Syndrome 450 125 3600

KES solver 66 125 528

Position 511 250 2044

Error Values 22 125 176

Buffer 66 125 528

Buffer1 511 250 2044

Primitive elements 511 250 2044

Error corrector 450 125 3600

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

26

The syndrome values are the value of received codeword polynomial calculated at the different
primitive elements αi where i t= … −0 1 2 1, , , . Basically we substitute all 44 primitive elements
start from α0 to α43 or α1 to α44 into the received codeword. The Architecture of syndrome
calculation is given in Figure 3.

Let R x C x E x() = ()+ () . So:

s R c E E where i t
i

i i i i= () = ()+ () = () ≤ ≤ −α α α α , 0 2 1 	

If all 2t syndrome values are zero, it means the received codeword R x() will be equal to
transmitted codeword C x() and it also indicate that there is no error in received codeword. Otherwise,
decoder calculates the error polynomial E x() . We analyzed our design by taking sample data (input
message symbol (k)) of length 406, this sample data will act as input to syndrome calculator module.

Let the:	
frame h a h h a h h aa h h ba h= 9 0 1 9 051 9 1 9 9 114 9 0 9 165 9 0 9' , ' , ' , ' , ' , ' , ' , ' 1161 9 092, 'h{ } 	

So sample data of length 406 given is:

sample data = { }45 9 000 times of frame h, ' 	

Every data symbol is 9−bit Hexadecimal number.
So, total 44 n k− =()44 parity symbols calculated through Reed Solomon encoder[8] circuit

by using the sample data is:

parity symbols = …{ }9 188 9 0 9 016 9 1 8 9 020 9 1 1' , ' , ' , ' , ' , 'h h cd h h d h h a 	

Now the codeword after appending the parity symbols to the end of sample data is:

Figure 3. The architecture of Syndrome calculation

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

27

Codeword C x() = {sample data, parity symbols}	

Let us assume that 10 number of errors are introduced during the transmission of the codeword
from Physical Coding Sublayer (PCS) transmitter side to Physical Coding Sublayer (PCS) receiver
side. The decoder then needs to correct all the errors introduced, So the decoder starts decoding
step by step. The output of the first step or module is given in Table 3. The modular schematic of
syndrome calculation is shown in Figure 4, where syndrome_out are the output of Syndrome module
(or syndrome values) and samp_data (sample data), rst_n (reset signal), clk (clock signal) are input
to the Syndrome module, and nk and ff are internal parameters.

5. KEY EQUATION SOLVER (KES)

After computing the syndrome polynomial coefficient, it needs to calculate the error position and
respective error values. KES (Key Equation Solver) is used to calculate the error evaluator and error
locator polynomial. By using these polynomials, we can calculate error position and respective error
values and it is the hardest part of RS decoder. The syndrome polynomial is used to calculate error
evaluator and locator polynomial. For this, all the syndrome values act as an input to the fundamental
equation solver module. And, several algorithms are available to calculate error locator and evaluator
polynomial. Let Λ x() is the locator polynomial of degree e and Ω x() is the evaluator polynomial
of at most degree e−1 as given below:

Λ x X x x x x
j

e

j e
e() = −() = + + +…+

=
∏

1
1 2

21 1 λ λ λ 	 (6)

Ω x Y X X x
i

e

i i

m

j j i

e

j() = −()
= = ≠
∑ ∏

1 1

0 1
,

= + + +…+ −
−ω ω ω ω

0 1 1
2

1
1x x x

e
e 	 (7)

The Λ x() and Ω x() equations are correlated with each other through an equation, known as
Key equation as shown in equation (8):

Λ Ωx S x x modx t() () = () 2 	 (8)

Figure 4. Modular Schematic of Syndrome calculator

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

28

Table 3. Coefficient of Syndrome polynomial

Syndrome
Coefficient

Values
(9-bit number)

Syndrome
Coefficient

Values
(9-bit number)

S
0

9 000011100'b S
22 9’b110010011

S
1

9 111001100'b S
23 9’b111101011

S
2

9 000000001'b S
24 9’b111010101

S
3

9 010110110'b S
25 9’b010110010

S
4

9 011010010'b S
26 9’b101010011

S
5

9 101001010'b S
27 9’b101010001

S
6

9 010000100'b S
28 9’b110111110

S
7

9 000010001'b S
29 9’b011000101

S
8

9 011111110'b S
30 9’b000010100

S
9

9 010001001'b S
31 9’b110010011

S
10

9 011110000'b S
32 9’b111111010

S
11

9 111010101'b S
33 9’b001100001

S
12

9 000100010'b S
34 9’b100101100

S
13

9 001110110'b S
35 9’b111111110

S
14

9 001111110'b S
36 9’b100011110

S
15

9 000100111'b S
37 9’b110011000

S
16

9 100000100'b S
38 9’b111111100

S
17

9 000110011'b S
39 9’b000111001

S
18

9 101110000'b S
40 9’b101010111

continued on following page

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

29

By using the equation 8() it is required to calculate error locator Λ x() and evaluator Ω x()
polynomial, which is most important and the hardest part of the Reed Solomon decoding of any order.
The three algorithms that are generally used to calculate the locator Λ x() and evaluator Ω x()
polynomial.

•	 PGZ (Peterson Gorenstein Zieter)
•	 Berlekamp Massey (BM) decoding Algorithm
•	 Sugiyama’s Euclidean (SE) and Extended Euclidean (EE)

Berlekamp Massey (BM) algorithm (J. L. Massey, 1969; E. R. Berlekamp, 1984; E. R. Berlekamp
et al., 1994) is a famous algorithm to solve the Key equation. There are several version of Berlekamp
Massey algorithm as:

•	 Inversionless BM (iBM)
•	 Simplified iBM
•	 Reformulated RiBM

If e t≤ , it is easy to calculate Λ x() and Ω x() but if e t> then the algorithms almost always
fail to calculate error locator Λ x() and error evaluator Ω x() polynomial. Once the Λ x() and Ω x()
are computed, then the decoder can easily find the error location and its respective error values.
Syndrome calculator and key Equation Solver steps are correlated to Key equation as given in equation
(8), because Key equation depends upon the syndrome polynomial. After calculating the Key equation,
error locator and error evaluators are much straight forward to compute error position and error values.
The iBM algorithm is an iterative process to solve the key equation. Basically iBM (J. H. Hung et
al., 2016) algorithm calculate the scalar multiples of β ⋅ ()Λ x and β ⋅ ()Ω x in the place of Λ x()
and Ω x() . It is clear that Chien – search and Forney algorithm finds the correct error location and
error values respectively. But in iBM algorithm, it stores λ β

0
= .

Input to the iBM algorithm is syndrome values, s for i t
i
� � , ,= … −0 1 2 2 1 . The pseudo code of

the iBM algorithm is given below.

5.1. The iBM Algorithm
 Initialization
 λ λ γ

0 0
0 0 1 0 1 2 3 0 0 0 1() = () = = = = … () = () =b b for i t and k

i i
, , , , ,

Syndrome
Coefficient

Values
(9-bit number)

Syndrome
Coefficient

Values
(9-bit number)

S
19

9 001100000'b S
41 9’b100100000

S
20

9 000011101'b S
42 9’b001000101

S
21

9 011000000'b S
43 9’b011111110

Table 3. Continued

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

30

 Input: s for i t
i
� � , ,= … −0 1 2 2 1

 � � � � � �for r t= −0 1 2 1step until do
 begin
 step iBM.1 δ λ λ λr s r s r s r

r r r t t() = ()+ ()+…+ ()− −. . .
0 1 1

 step iBM.2 λ γ λ δ
i i i
r r r r b r i t+() = () ()− () () = ……()−1 0 1 2

1
. , , , , ,

 step iBM.3 if and δ r k r() ≠ () ≥0 0

 then
 begin

b r r i t
i i
+() = () = ……()1 0 1 2λ , , , , ,

 γ δr r+() = ()1

 k r k r+() = − ()−1 1

 end
 else
 begin

b r b r i t
i i
+() = () = ……()−1 0 1 2

1
, , , , ,

 γ γr r+() = ()1

 �k r k r+() = ()+1 1

 end
 end
 for step until do i t= −0 1 1 .

 ω λ λ λ
i i i i
t s t s t s t2 2 2 2

0 1 1 0() = ()+ ()+…+ ()−. . .

So the output λ ω
i t i
i t t i t

2
0 1 2 2 0 1 2 1() = … () = … −

�
, , , , .. ,� , , , , .

For r t< , step iBM.1 contains the terms s r s r s
r r r t− + − + −() () ……1 1 2 2

. , . , ,λ λ . λ
t
r() having

unknown values s s s
r t− − −……

1 2
, , , . Fortunately for the degree of Λ r x r,() ≤ , it is known that

λ λ λ
r r t
r r r+ +() = () =…= () =1 2

0 so unknown value s
i
 does not affect the value of δ r() . There

is a similarity between the steps iBM.1 and iBM.4, so it can easily simplify DC and ELU architecture.
RS(450, 406) decoding can correct errors up to t �22() . Basically, t is the number of errors that can
be corrected. The data in Table 2 can be for any value of t from 1 to 22.

5.2. The Architecture of iBM Algorithm
Due to the similarity in between step1 and step2, iBM architecture is divided into the two ciphering
structures, one is Discrepancy Computation architecture and other one is ELU architecture, as given
Figure 5 and Figure 6 respectively, These Architecture are as:

•	 DC(Discrepancy computation) for calculating step iBM.1
•	 ELU (error locator update) block for computing step iBM.2 and step iBM.3

Inside the DC block latches are used to store all the 44 syndrome value s
i
 where i is from o

to 43 arithmetic unit for arithmetic operation based on GF 2m() where m is equal to 9 and also

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

31

the control unit for the entire architecture. The important signal of control unit are δ r() , MC r()
and γ r() .

It is directly connected to the error locator block which has latches for containing Λ r x,() and
B r x,() and also the arithmetic unit of Galois field. In every first 2t clock cycles discrepancy block
calculates the δ r() and handovers this δ r() to the ELU block along with γ r() and MC r() control
signal that modifies coefficient of polynomial in the same clock cycle.

5.3. Discrepancy Computation Block Architecture

The discrepancy block architecture is shown in Figure 5, in which shift registers DS DS DS DS
t1 2 2 1 0

, , , ,… −
are initialized with the syndrome values s s s s

t1 2 2 1 0
, , , ,… − respectively. In every first 2t clock cycles,

t +1 multiplier circuits compute product in iBM step1, and calculated value act as input to iBM
step2 . A control unit for the combined architecture is shown in Figure 5, Outputs of the control unit
are δ r() , MC r() and γ r() . The control has two counters for variable r and k r() and storage
element for storing γ r() value. The counter units compute OR operation of the discrepancy δ r()
to check if δ r() is zero or non-zero as given in iBM step3. The counter can be implemented by using
Ring counter or by 2’s complement. If the counter for variable k r() is implemented in 2’s complement,
then the condition k r() ≥ 0 becomes true if the MSB bit of the k r() counter is zero, as given in
iBM step3. When the MC r() signal is generated, the counter for variable k r() will change. 2t

Figure 5. (a) Discrepancy Block Architecture (b) Control Unit

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

32

number of clock cycles are required to calculate the error locator polynomial Λ x() and next t clock
cycles are required for calculating error evaluator polynomial Ω x() .
5.4. ELU Architecture

In ELU block, coefficients of the polynomial in iBM step1 and step2 updates as the MC r()
signal becomes available. ELU block calculates the next value of the variable by using the
previous values of the coefficients of the polynomial, as shown in Figure 6. The processor
elements PE

i
0() are used to update the coefficients λ r() and B r() . The coefficients of

� , ,δ r B r and MC r() () () are sent to the processor which updates old value by a new value,
processor PE0 is initialized with zero. The calculated values of the coefficients of error locator
and evaluator polynomial are given in the Table 4.

6. ERROR POSITION CALCULATION

The next step after calculating error locator and evaluator polynomial is to calculate the position of
errors in received codeword, the logic behind position calculation is to substitute primitive elements

Table 4. Coefficient of Error Locator and Evaluator polynomial

S. No. Coefficient of

λ r()
Values

(9-bit Number)
Coefficient of

Ω r()
Values

(9-bit Number)

1. λ
0

9 001000000'b ω
0

′9 100110011b

2. λ
1

9 100101101'b ω
1

′9 101001011b

3. λ
2

9 011010101'b ω
2

′9 011011101b

4. λ
3

9 100100100'b ω
3

′9 111111101b

5. λ
4

9 011101010'b ω
4

′9 000010011b

6. λ
5

9 000100110'b ω
5

′9 111110000b

7. λ
6

9 111010010'b ω
6

′9 001100110b

8. λ
7

9 011110010'b ω
7

′9 110011011b

9 λ
8

9 001100110'b ω
8

′9 000010100b

10. λ
9

9 001000000'b ω
9

′9 100010101b

11. λ
10

9 111010010'b ω
10

′9 000000000b

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

33

from α0 to α510 in error locator polynomial Λ x() . Chien – search (H. C. Chang et al., 2011; C. H.
Yoon, 2013) algorithm is used to calculate the error position. It is the most popular method of
calculating roots of the error locator polynomial. Chien – search algorithm uses the error locator
polynomial for calculating error position. In this algorithm, it calculates the roots of the error locator
polynomial (ELP) Λ x() by putting the value of primitive elements of Galois Field (GF), and the
inverse of the roots will be the error position. It is not easy to calculate the roots of the ELP. The
Architecture of the Chien – Search algorithm is shown in Figure 7.

Inputs to the Chien – Search Algorithm is the coefficients of the error locator polynomial, So
this algorithm calculates the Λ αi() at every value of i n= …1 2 3, , . After substituting the elements
of the finite field to the error locator polynomial, it checks the condition:

Λ αi() = 0 	 (9)

Figure 6. (a) the architecture of ELU (b) Processor Elements ELU

Figure 7. The architecture of Chien – Search Algorithm

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

34

If this condition holds, then an error is to be in the position of n i−() . And if it’s not, then there
is no error. In Figure 7, odd values of ELP λ λ λ

1 3 5
, , ……() are calculated in one side and even values

on the other side (, , ,)λ λ λ
2 4 6

… . If in any clock cycle ()< n , the summation of all these values is
zero, then the error position will be equal to the position of the clock. An important element of Chien
– Search algorithm are Galois Field multiplication, division, primitive element and primitive
polynomial. For example, if the ELP is:

Λ x x x x() = + + +1
1 2

2
3

3λ λ λ 	

To evaluate Λ x() at every non-zero elements in finite field of GF 2m() in sequence:

x x x x x
m

= = = = … = −α α α α α1 2 3 4 2 1, , , , , 	

So, after putting these values:

Λ α λ α λ α λ α1
1

1
2

1
2

3
1

3
1() = + + () + ()() 	

Λ α λ α λ α λ α2
1

2
2

2
2

3
2

3
1() = + + () + ()() 	

…	

Λ α λ α λ α λ α2 1
1

2 1
2

2 1
2

3
2 1

3

1
m m m m− − − −() = + + () + ()() 	

For any value of α2 1m− if Λ x() value is zero then α2 1m− will be the root of Λ x() , and inverse
of root will be error position.

The modular Schematic of the error position algorithm is shown in Figure 8, Position_out
indicates the output of the position module. The calculated results of the Error Position Calculation
module is given in the Table 5.

Figure 8. Modular Schematic of Position Calculation

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

35

7. ERROR VALUES CALCULATION

After computing the Syndrome value, Key Equation Solver and error position, Now the next step
of Reed Solomon decoding algorithm is to calculate the error values with respect to the every error
position value. The two popular methods of calculating the error values are:

•	 Transform Decoding Algorithm
•	 Forney Algorithm

In the frequency domain, the Transform decoding algorithm is used, and in the time domain
Forney algorithm (G. D. Forney, 1965; Yingquan Wu & Yu Kou, 2009) is used. Transform decoding
process does not use FFI or Chien – search algorithms and also have large complex circuit than Chien
– search, so it occupies a large area. Therefore, Forney algorithm is generally used due to its lesser
circuit complexity, more accuracy and more efficiency.

7.1. Forney Algorithm

The root value and the coefficients of Λ x() and Ω x() are the inputs to the Forney algorithm and it
is related to Chien - Search algorithm. In the Forney algorithm, only odd coefficients of error locator
polynomial Ω x() are used. It also uses the finite field multiplier and division just like Chien – Search
algorithm. The formula to calculate the error values ()Y

i
 is:

Table 5. Calculated Root value, error position and error values

S. No. Root Values Position Values Coefficient
of the Error
Polynomial

The Error Values (9-bit Number)

1. α62 α449 449= X Y
1

9 000000001'b

2. α63 α448 448= X Y
2

9 000000001'b

3. α64 α447 447= X Y
3

9 110100000'b

4. α65 α446 446= X Y
4

9 000000100'b

5. α66 α445 445= X Y
5

9 100000000'b

6. α83 α428 428= X Y
6

9 000010100'b

7. α84 α427 427= X Y
7

9 010111010'b

8. α85 α426 426= X Y
8

9 001100000'b

9. α86 α425 425= X Y
9

9 101110001'b

10. α87 α424 424= X Y
10

9 100000111'b

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

36

Y
x x

x xi

m

=
− ()

()′
0Ω

Λ
	 (10)

where x j= −α is point to root as calculated by the Chien – Search algorithm. The architecture of
this algorithm is shown in the Figure 9. The equation (10) gives valid and correct results if there are
errors in the codeword. The ′ ()Λ x in equation (10) is the first derivative of the error polynomial
Λ x() so the ′ ()Λ x :

′ () = + + +…Λ x λ λ λ
1 2 3

22 3x x 	 (11)

The ′ ()Λ x is the derivative of 1
1 2

2+ + +…+λ λ λx x x
e
e . After multiplying by x to the

equation (11):

x x x′ () = + +…Λ x λ λ
1 3

3 	 (12)

The equation (12) is just like the odd terms of the locator polynomial Λ x() and these odd terms
can be calculated during the evaluation of the error position, so no need to calculate separately. The
equation (10) can be easily modified by taking m

0
0= . The inverse of the Lambda odd is calculated

by the Brute-force search algorithm as shown in Figure 9, steps of this algorithm is given below:

•	 Let f p() and g p() are the polynomials in GF pm() .
•	 Suppose M p() be the primitive polynomial or irreducible polynomial in GF pm() .
•	 So, the multiplicative inverse of f p() is given by a p() .

•	 If f p a p modm p() ()() ()() =�.� � 1 , then a p() is the inverse of the f p() .

Figure 9. The architecture of Forney Algorithm

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

37

In Forney algorithm, we use both error locator Λ x() and error evaluator polynomial Ω x() . But
only odd term of error locator polynomial Λ x() is used. The calculated error values by using the
Forney algorithm is given in Table 5. So error polynomial E x() for ten number of error can be
represented in terms of polynomial as given in equation (13):

E x Y x Y x Y x Y x Y x() = + + +…+ +
1

449
2

448
3

447
9

425
10

424 	 (13)

8. ERROR CORRECTOR

The last step of RS decoding algorithm, after getting the error location and respective error values
is error corrector. As now we know the error polynomial E x() is given in equation (13). So the
corrected codeword can be calculated by just XORing the received codeword by the error polynomial
E x() :

C x R x E x() = ()+ () 	 (14)

Also the modular Schematic of error corrector module is shown in Figure 10. The crr_data is
the output after XORing with E x() and R x() .

9. ANALYSIS OF SIMULATION RESULTS

In this paper Reed Solomon (RS) decoding is implemented in Verilog. Analysis of simulation results
has been done in the Cadence SimVision and Verilog coding of RS decoding is also done in the
Cadence tool NCsim. The static verification has been done in Cadence lint tool HAL and functional
verification in Synopsys tool Spyglass. HAL is a super linting tool and it generates Schematic tracer
for better analysis of design. The synthesis has been done in Vivado 2017.4, The Synthesis is the
process of transforming an RTL design into a gate level representation, Verilog is more famous for
synthesis designs because it is less tedious than traditional VHDL.

The RTL schematic of syndrome calculating is shown in Figure 11. As key enable is high syndrome
modules starts sending the syndrome values to the key equation solver module for calculating the
locator and evaluator polynomial, mod1_out is the syndrome values as shown in Figure12.

Figure 10. Modular Schematic of error corrector module

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

38

Simulation results of the key equation solver block are shown in Figure 13. The lemda_values and
omega_values showing the coefficients of error locator and error evaluator polynomial respectively,
these are calculated by the iBM algorithm. The simulation results of the error position calculation
steps are shown in the Figure 14. The variable root_s and position are showing the root value and
position value of the error position calculation steps, respectively.

The simulation results of the error values calculation module are shown in Figure 15. The variables
err_values are showing the error values at the respective error position. Simulation results of the last
steps of the Reed Solomon decoding is shown in Figure 16. The variables err_data and crr_data are
indicating the error codeword and corrected codeword, respectively.

Figure 12. Simulation Results of Syndrome calculator and latency for 3rd case

Figure 13. Simulation results of key equation solver

Figure 11. RTL Schematic of Syndrome Calculator

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

39

Operating frequency of design depends upon the hardware requirements, circuit complexity and
more important thing is the latency. We have used two clock signal in our model. Some modules
of the model are operating on 1st clock and some other on 2nd clock. We considered three cases as
given below:

1. 	 All the design modules are operating at 125 MHz frequency.
2. 	 Some modules are operating at 125 MHz and some at 250 MHz frequency.
3. 	 Some modules are operating at 125 MHz and some at 750 MHz frequency.

Analysis of latency is vital in the Reed Solomon decoding. Latency also depends upon the
clock frequency in each module of the decoder and the circuit complexity. Best latency of our

Figure 14. Simulation Results of the position calculator

Figure 15. Simulation Results of Error value calculator

Figure 16. Simulation results of error corrector

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

40

design is obtained at the 3rd case, and it is most suitable for our Gigabit Automotive Ethernet
design, it means all design module is working correctly and efficiently. The simulation results for
the 3rd case is shown in Figure 17. Time period for all three cases is given in Table 6. If the 125
MHz and 250 MHZ (2nd case) frequency is used in the decoder module then the simulation results
of latency is shown in the Figure 12.

The latency is the time required to move from one point to other point within computer system
and it is generally measured in nanoseconds, So the latency is:

Latency = − =� . . .8 56 3 64 4 92µ µ µs s s 	

If latency is calculated according to the Table 2, where some modules are operating in 125 MHz
& 250 MHz then latency obtained is:

Latency =� .3 026µs approx.	

Table 6. Time period of design for all three Cases

Module Name Time Period (1st Case)
(ns)

Time Period (2nd Case)
(ns)

Time Period (3rd Case)
(ns)

Syndrome 8 8 8

KES Solver 8 8 1.332

Position 8 4 1.332

Error Values 8 8 1.332

Buffer 8 8 1.332

Buffer1 8 4 1.332

Primitive Elements 8 4 1.332

Error Corrector 8 8 8

Figure 17. Simulation result of latency for 3rd case

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

41

If the first and last module is operating on the 125 MHz & other modules are operating on 750
MHz frequency then simulation results of the latency is shown in Figure 17.

So:

Latency � . . .= − =4239 09 3623 7 615 39ns ns ns 	

10. CONCLUSION AND CHALLENGES

RS encoding and decoding are powerful error correction techniques, that’s why they are used in the
Gigabit Ethernet. This decoding technique provides better bandwidth in comparison to the other
decoding techniques. The RS(450, 406) decoding is also known as the shortened RS code. We have
shown that the latency depends on the frequency of each module. And we implemented this decoding
techniques in Verilog. In every step of the decoding algorithm technique, different algorithms are
used to decrease the complexity and power consumption. The RS (450, 406) codes are used in
1000BASE-T1, to minimize channel noise. This RS code architecture can be pipelined for gaining
high speed. The hardest part of the decoding is to solve key equation, this done by using iBM algorithm.
2t clock cycles are required to calculate the error locator polynomial and t clock cycles for calculating
the error evaluator polynomial. iBM algorithm is a power-efficient algorithm. The decoder can check
whether the number of roots are equal to the degree of locator polynomial or not. If not, then the
received codewords cannot be corrected. Latency depends upon the frequency of operation of each
module. If input RS frame is more than one RS frame, it needs to use more memory to store the
continuous frames. Every Reed Solomon encoding and decoding algorithm is based on the finite
field which is also known as Galois field, For RS (450, 406) decoding GF 2m() is used.

In the automotive industry, more advanced electronics is being used in vehicles. It is a challenging
task to use Gigabit Automotive Ethernet for connecting different functional components in the car.
RS encoding and decoding are powerful error correction techniques used in 1000BASE-T1 to reduce
channel noise during data transmission. The most Challenging part of Reed Solomon decoding is
the calculation of Key Equation Solver (KES) efficiently because solving key equation is the crucial
and hardest part of the RS decoding. Achieving low latency is also a challenge in RS encoding and
decoding.

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

42

REFERENCES

Berlekamp, E. R. (1984). Algebraic Coding Theory. New York: McGraw-Hill.

Berlekamp, E. R. (1984). Algebraic Coding Theory. New York: McGraw-Hill.

Blahut, R. E. (1983). Theory and Practice of Error-Control Codes. Addison-Wesley.

Chang, H. C., Wu, J. Y., & Liao, Y. C. (2011). Method and apparatus for decoding shortened BCH code for
Reed Solomon code. US Patent, Number 7,941,734 B2.

Das, A. S., Das, S., & Bhaumik, J. (2013). Design of RS (255, 251) Encoder and Decoder in FPGA. International
Journal of Soft Computing and Engineering, 2(6).

Dayal, P., & Patial, R. K. (2013). FPGA Implementation of Reed-Solomon Encoder and decoder for Wireless
Network 802.1. International Journal of Computers and Applications, 68(16).

Forney, G. (1965). On decoding BCH codes. IEEE Transactions on Information Theory, 11(4), 549–557.
doi:10.1109/TIT.1965.1053825

Garcia-Herrero, F., Valls, J., & Mehe, P. K. (2011). High-Speed RS (255, 239) Decoder Based on LCC Decoding.
Circuits, Systems, and Signal Processing, 30(6), 1643–1669. doi:10.1007/s00034-011-9327-4

Gorenstein, D., & Zierler, N. (1961). A Class of Error-Correcting Codes inPm . Journal of the Society for
Industrial and Applied Mathematics, 9(2), 207–214. doi:10.1137/0109020

Hung, J. H., & Yen, C. N. (2016). Simplified inversionless Berlekamp Massey algorithm for binary search BCH
code and circuit implementing therefor. US Patent, Number 9,459,836 B2, 4.

Kaur, M., & Sharma, V. (2010). Study of Forward Error Correction using Reed-Solomon Code. International
Journal of Electronics Engineering, 2, 331–333.

Lin, Y. M., Hsu, C. H., Chang, H. C., & Lee, C. Y. (2014). A 2.56 Gb/s Soft RS (255, 239) Decoder Chip
for Optical Communication Systems. IEEE Transactions on Circuits and Systems. I, Regular Papers, 61(7),
2110–2118. doi:10.1109/TCSI.2014.2298282

Massey, J. L. (1969). Shift-register synthesis and BCH decoding. IEEE Transactions on Information Theory,
IT-15(1), 122–127. doi:10.1109/TIT.1969.1054260

Mustapha, E. H., & Belkasmi, M. (2012). VHDL Design and FPGA Implementation of Fully Architecture of
Iterative Decoder of Majority Logic codes for High Data Rate Applications. Journal of Wireless Networking
and Communication, 2(4), 35–42. doi:10.5923/j.jwnc.20120204.02

Omura, J. K., & Massey, J. L. (1986). Computational method and apparatus for finite field arithmetic. United
States Patent 458762.

Peng, C. C., Liao, C. H., & Chen, R. J. (2015). IP generator of Reed Solomon codecs. 2015 IEEE International
Conference on Consumer Electronics, 392-393. doi:10.1109/ICCE-TW.2015.7216961

Sana, Z., & Gupta, R. (2019). A Comparison of RS (7, 3) and RS (15, 9), Employing Reed-Solomon Encoder
and Decoder. International Journal of Electrical, Electronics and Data Communication, 7(12).

Sarwate, D. V., & Shanbhag, N. R. (2001). High-speed architectures for Reed-Solomon decoders. IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, 9(5), 641–655. doi:10.1109/92.953498

Sha, J., Lin, J., Wang, Z., Li, L., & Gao, M. (2009). Decoder Design for RS-Based LDPC Codes. IEEE Transactions
on Circuits and Wystems. II, Express Briefs, 56(9), 724–728. doi:10.1109/TCSII.2009.2027945

Ullah, S., Mohaisen, M., & Alnuem, M. A. (2013). A Review of IEEE 802.15.6 MAC, PHY, and Security
Specifications. International Journal of Distributed Sensor Networks, 1-12.

Wang, Z., & Ma, J. (2006). High-Speed Interpolation Architecture for Soft-Decision Decoding of Reed–Solomon
Codes. IEEE Transactions on Very Large Scale Integration (VLSI) Systems, 14(9), 937–950. doi:10.1109/
TVLSI.2006.884046

http://dx.doi.org/10.1109/TIT.1965.1053825
http://dx.doi.org/10.1007/s00034-011-9327-4
http://dx.doi.org/10.1137/0109020
http://dx.doi.org/10.1109/TCSI.2014.2298282
http://dx.doi.org/10.1109/TIT.1969.1054260
http://dx.doi.org/10.5923/j.jwnc.20120204.02
http://dx.doi.org/10.1109/ICCE-TW.2015.7216961
http://dx.doi.org/10.1109/92.953498
http://dx.doi.org/10.1109/TCSII.2009.2027945
http://dx.doi.org/10.1109/TVLSI.2006.884046
http://dx.doi.org/10.1109/TVLSI.2006.884046

International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

43

Akhilesh Yadav received the Bachelor of technology engineering in electronics engineering department from the
Dr. A.P.J Abdul Kalam technical University Lucknow in 2018, Currently pursuing Master of technology in electronics
and communication engineering department from the NIT Kurukshetra, and working as Student Intern in NXP
Semiconductor Bangalore India. He has published 2 paper in International Journals. His research interest include
Image processing, Computer Vision, Error correcting codes and Digital VLSI Design and RTL Design.

Poonam Jindal working since 2008 with ECE Department in National Institute of Technology Kurukshetra. She
received her Ph.D. in Electronics and Communication Engineering from NIT Kurukshetra in 2016. She acquired
degrees of M.Tech and B.Tech in 2005 and 2003 respectively. She has published 56 papers in various International
Journals, Conferences and Book Chapters. Her research interests include wireless network security, wireless
communication, physical layer security, Internet of Things, Security optimization in wireless networks. She is a
reviewer of various reputed International Journals and conferences. She has guided 19 M.Tech dissertations and
30 B.Tech projects in the area of wireless networks.

Devaraju Basappa having an experience of 16 years in ASIC front end design and implementation and is currently
working with NXP Semiconductor Bangalore as a Design Engineer. He received Bachelor of Engineering in
Electronics and Communication.

Wicker, S. B., & Bhargava, V. K. (1994). Reed-Solomon Codes and Their Applications. IEEE.
doi:10.1109/9780470546345.index

Wu, Y., & Kou, Y. (2009). Degree limited polynomial in Reed Solomon decoding, US Patent, Number 7,613,988,
B1, 3.

Yadav, A., Jindal, P., Basappa, D., & Prakashaiah, M. (2019). Forward Error Correction for Gigabit Automotive
Ethernet using RS (450, 406) Encoder. International Journal of Innovative Technology and Exploring Engineering, 9.

Yoon, C. H. (2008). Forward Chien search type Reed Solomon decoder circuit. US Patent, Number 7,406,651
B2, 29.

Zhang, T., & Parhi, K. K. (2002). On the high-speed VLSI implementation of errors-and-erasures correcting
Reed-Solomon Decoders. GLSVLSI ’02: Proceedings of the 12th ACM Great Lakes symposium on VLSI, 89–93.
doi:10.1145/505306.505326

http://dx.doi.org/10.1109/9780470546345.index
http://dx.doi.org/10.1145/505306.505326

