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ABSTRACT

Nowadays, in the field of data transmission between receiver and transmitter, the Reed Solomon code 
is used very frequently. FEC codes have two foremost and influential operations: (1) calculating parity 
symbols at the encoder side and (2) transmitting message symbols with parity symbols and decoding 
the received codeword at the second side by using the decoding algorithms. Gigabit automotive 
ethernet is used in the automotive car to provide better bandwidth for every kind of applications to 
connect functional components of the vehicles. This error correction technique is used in the gigabit 
automotive ethernet to reduce the channel noise during data transmission. RS (450, 406) is a powerful 
error correction techniques used in automotive ethernet. This paper focused only on the analysis of 
Reed Solomon decoding. Reed Solomon decoding is more efficient decoding techniques for correcting 
both burst and random errors. The critical steps of the Reed Solomon decoding are to solve the error 
evaluator and error calculator polynomial, which is also known as KES solver.
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1. INTRODUCTION

With the development of advanced vehicle technology, electronic systems are increasing in vehicle to 
refine their interpretation and new features. Considering the features of a car, its electronics system 
is divided into many functional elements, and every element has self-dependent control. Various 
complex controls and sensors are used in cars to maximize their efficiency and power. To conserve 
vehicles in normal operation, components in different domain or same domain need to communicate 
properly to each other. Therefore, to complete this communication inside vehicles different vehicle 
networks technology has been developed, like as Flex Ray, MOST (Media Oriented System Transport), 
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LIN (Local Interconnect Network), LVDS (Low-Voltage Differential Signaling) and Controller Area 
Network (CAN) etc. These networks are developed for specific applications or domains. Initially CAN 
BUS is used in vehicle network but due to some limitations (like restriction on cable length, bit rate 
and module synchronization etc.), Automotive Ethernet (AE) is replacing CAN network technology. 
Automotive Ethernet (AE) is used for providing connection in between electronic systems.

AE is designed to meet bandwidth requirements, synchronization requirements, latency 
requirements and network management requirements. It has wide range of applications including: 
Diagnostics, Infotainment, Advance Driver Assistance Systems (ADAS) and in vehicle connectivity. 
In Ethernet data is transferred in the form of packets between nodes, it provides bidirectional 
communication. AE is a wired hierarchical homogeneous network. Gigabit or 1000BASE-T1 
Ethernet is a next generation Automotive Ethernet, can serve as a backbone of the Autonomous car. 
The Automotive Ethernet (Sana Ullah et al., 2013, pp. 1-12) is used in cars to connect the different 
electronic systems for providing better and fast communication between them. AE is the physical 
network used to connect different electronic components used in the vehicles by a wired network. It 
provides better bandwidth, latency and management requirements.

The Physical Coding Sublayer (PCS) service interface allows the 1000BASE-T1 PCS to transfer 
information to and from a PCS client. In PCS transmission code is used for improving the transmission 
characteristic of any type of information to be transferred. In PCS Forward Error Correction (FEC) 
technique is used for error detection and correction. FEC is a powerful transmission code, it correct 
limited number of error without the need of retransmission. Several Error Correction Codes (ECC) 
available for FEC are:

1. 	 Block codes
2. 	 Convolutional codes
3. 	 Hamming Codes
4. 	 Binary Convolution code
5. 	 Low – Density Parity check code
6. 	 Cyclic Code
7. 	 BCH (Bose Chaudhari and Hocquenghen) code
8. 	 Reed Solomon Code

Except Reed Solomon (RS) Code, other error correction codes are not used in Physical layer (or 
PCS) due to their limitations such as: less error correction capability, less data rate and poor bandwidth. 
Moreover, these all EC codes are independent of Galois Field (GF) and primitive polynomial except 
RS code. They can correct error up to several bits. Hamming codes can detect two-bit error, or they 
can fix only one-bit error without detection of uncorrected errors. The most significant difference 
between BCH code and Reed Solomon are:

•	 BCH codes correct bits, while Reed Solomon code corrects symbols.
•	 BCH codes correct t  bit error errors, while RS code corrects  t  symbols.

BCH codes can correct only random error, while RS code can correct both random and burst 
error during data transmission. Hence, due to the error correction capability RS codes are preferred 
over other BCH codes.

In physical layer of AE, RS encoder and decoder are used. They work simultaneously to provide 
full duplex communication. RS code is a powerful FEC code. RS encoding and decoding is used in 
the Gigabit Ethernet for better bandwidth and for reducing channel noise during the data transmission. 
RS code (E. R. Berlekamp, 1984; R. E. Blahut, 1983) is one of the most popular FEC (M. Kaur & 
V. Sharma, 2010) code. It adds the parity symbol in the message symbol and makes the receiver 



International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

21

capable to identify the error and to correct the limited number of errors present in a received codeword. 
RS code is the important subclass of the BCH code. This RS encoding and decoding is required at 
PCS of Gigabit Ethernet. Every RS code is based on finite field also known as Galois Field (GF). A 
GF field is conventionally defined as finite field GF q( )  (D. Gorenstein & N. Zierler, 1961; Jimmy 
K. Omura & James L. Massey, 1986) where q n− =1  is the maximum length �n k t= +( )2  of the 
codeword. And GF addition, subtraction, multiplication, divisions are correctly defined, where k  is 
the length of message symbol, and 2t  is the length of parity symbols, It is able to correct the errors 

up to t
n k

=
−( )
2

.

The several version of Reed Solomon Codes are: RS (7, 3) (Z. Sana & R. Gupta, 2019), RS(32, 
28) (C. Peng et al., 2015), RS(64, 56) (J. Sha et al., 2009), RS(128, 112), RS(255, 243) (P. Dayal & 
R. Kumar, 2013), RS(255, 239) (Y. Lin et al., 2014; F. Garcia-Herrero et al., 2011), RS(255, 251) 
(A. S. Das et al., 2013) etc., And comparison has been done in terms of primitive polynomial, Galois 
Field, size of single message and number of error correction capability, as given in Table 1. Some 
literature review of RS code and its decoding algorithm is given in related work section.

In this paper, we proposed RS (450, 406) decoder based on Finite Field of GF 29( ) . This RS 
code are used in 1000BASE-T1 AE because it compact channel noise during data transmission. 
RS(450, 406) code has more error correction capability as compare to other RS codes, it can correct 
up to 22 error symbols.

We have designed RS(450, 406) decoder for 1000BASE-T1 PHY, which is one of the Gigabit 
Ethernet family with full duplex network capable to operate at 1000Mb/s. In this RS code, length of 
message symbol k( )  is equal to 406, and each message is of 9− bit symbol and length of the codeword 

Table 1. Different version of Reed Solomon Codes

Reed Solomon Codes Primitive Polynomial Galois Field (GF) Size of Single 
Message

Error Correction 
Capability 
(Symbol)

RS(7, 3) 1 1 3+ +x x GF 23( ) 4− bit symbol 2

RS(32, 28) 1 2 5+ +x x GF 25( ) 5− bit symbol 2

RS(64, 56) 1 1 6+ +x x GF 26( ) 6− bit symbol 4

RS(128, 112) 1 3 7+ +x x GF 27( ) 7− bit symbol 8

RS(255, 243) 1 2 3 4 8+ + + +x x x x GF 28( ) 8− bit symbol 6

RS(255, 239) 1 2 3 4 8+ + + +x x x x GF 28( ) 8− bit symbol 8

RS(255, 251) 1 2 3 4 8+ + + +x x x x GF 28( ) 8− bit symbol 2

RS(450, 406) 1 4 9+ +x x GF 29( ) 9− bit symbol 22
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n( )  is 450. RS (450, 406) is also known as shortened Reed Solomon code, and it can correct error 
up to n k− =( )/ 2 22 . For RS (450, 406) primitive code polynomial is x x9 4 1+ + . The received 
codeword at the receiver side is also referred as RS frame. One of the essential elements of both RS 
encoding and decoding is Galois Field (GF) multiplication and division. RS decoder first checks the 
RS frame is valid or not then it will check the error. If there is error, then it will correct the codeword. 
If the codeword has error more than the correcting capability, then RS decoding will almost fail every 
time. At RS encoder (A. Yadav et al., 2019; Mustafa et al. 2013) side, the sender sends a continuous 
406 RS frame to the encoder and decoder circuit. After 406 clock cycles, it starts sending calculated 
44 parity symbols to the end of message symbols, so the input to the RS decoder circuit is continuous 
RS frame of size 450 and output of the decoder will be the corrected codeword as shown in Figure 
1. Initially enable signal will be low for 406 RS frame, and after that, it becomes high for sending 
the calculated parity symbols, Multiplexer will continuously transmit 450 RS frames to the decoder. 
There are several steps to solve the corrected codeword, for every step, there are different types of 
decoding algorithms used to adjust the codeword. If the codeword is not adequately corrected, then 
low latency is achieved, and hence it will fail to decode the received codeword.

2. RELATED WORK

This chapter represents some background overview of Reed Solomon encoder and decoder. It provides 
brief idea of different version of RS encoder and decoder and also about different techniques used 
for calculating the Key Equation Solver.

2.1. Diplaxmi Chaudhari et al.
Authors Diplaxmi et al. (2019) introduced the FPGA implementation and VHDL design of RS(7, 3) 
encoder and decoder. In this paper author implemented the RS(7, 3) encoder and decoder in Verilog 
and also implemented hardware in Actel ProASIC3 FPGA kit. They used Berlekamp Massey algorithm 
for key equation solver that reduced the hardware complexity as the other algorithm like Euclidean 
algorithm. But RS(7, 3) can correct error up to 2 error symbols, So it has less error correction capability.

2.2. Rajeev Kumar and Priyanka Dayal
Authors Dayal & Rajeev (2013) implemented Reed Solomon encoder and decoder on the FPGA for 
the wireless network. They improved performance of the RS(255, 239) for IEEE 802.16 standard and 
also compared between RS(255, 239) and RS(255, 243) in the terms of the LUT’s used. But RS(255, 
239) and RS(255,243) can correct error up to 8 and 6 error symbol respectively. So both RS(255, 
239) and RS(255, 243) has less error correction capability in comparison to our RS(450, 406) code.

Figure 1. The architecture of RS Encoder and Decoder
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2.3. Yi-Min Lin, et al.
Authors Y. Lin et al. (2014) introduced a 2.56 Gb/s Soft RS(255, 239) decoder chip to increase the 
error correction capability performance with area-efficient architecture. They proposed decision-
confined algorithm to enhance decoding efficiency. Instead of generating number of possible codeword 
and calculating correct codeword, they produces only single codeword by confining degree of error 
location polynomial, so complexity of hardware reduced by removing decision making unit. But 
RS(255, 239) has less error correction capability in comparison to RS(450, 406). RS(255, 239) can 
corrects error up to 8 error symbol.

2.4. Anindya Sundar Das et al.
The Authors A. S. Das et al. (2013) designed FPGA implementation for RS(255, 251) encoding and 
decoding. They discussed all the step of encoder and decoder, and shown the synthesis results. They 
implemented in Verilog language and simulation is done in ModelSim and synthesized design by 
Xilinx ISE 7.1 I tool. Authors used Berlekamp Massey (BM) algorithm for key equation solver (KES) 
polynomial. RS(255, 251) also has less error correction capability in comparison to our proposed 
design. It can corrects error up to 2 error symbol.

2.5. Chia – Chun Peng et al.
Authors introduced IP (Intellectual Property) generator of Reed Solomon code. In this paper authors 
show new and different concept of RS codes IP generator to produce ten different kinds of RS codec 
including RS (208, 192), RS(72, 64), RS(255, 239), RS(255, 223), RS(207, 187), RS(204, 188), 
RS(28, 24), RS(36, 22), RS(182, 172) and RS(72, 64) for targeting different communication standard. 
These RS code IP generator perform implementation and hardware design. They also discussed the 
fixed architecture of Galois Field multiplier and RS encoder & decoder.

2.6. Dilip V. Sarwate and N. R. Shabhag
The authors D. V. Sarwate and N. R. Shabhag (2001) introduced a Reed Solomon decoder with High 
Speed architecture, in this paper authors focused on only the different algorithm of the Berlekamp 
Massey Algorithm (BMA) for calculating the key equation solver (KES), which is most important, 
also hardest part of Reed Solomon Decoder and its architecture design and complexity. Authors 
implemented the reformulation of the Inversion-less Berlekamp Massey algorithm (iBM) and shown 
the RiBM synthesized architecture.

2.7. Chan-ho Yoon
The Author introduced Forward Chien Search (FCS) algorithm for Reed Solomon decoder circuit. 
He used the Chien Search algorithm for calculating the error location and also discussed about the 
Forney algorithm which is used for calculating the error values of the Reed Solomon decoding. Author 
Shown the hardware design of the Chien Search and Forney algorithm. He also discussed about the 
Seed generator, used for polynomial multiplication.

3. REED SOLOMON DECODING

Reed Solomon Decoding is popular FEC decoding techniques used in communication system and 
satellite communication during data transmission. Input to the Reed Solomon (RS) decoder (D. V. 
Sarwate & N. R. Shanbhag, 2001; Z. Wang & J. Ma, 2006; T. Zhang & K. K. Parthi, 2002) is the 
received codeword, which needs to be decoded. The decoder first checks that RS received codeword 
is valid or not. If it is not a valid codeword, that means there are more or fewer errors in the received 
codeword during the data transmission. This part of the decoder circuit is called as error detection. 
If there are errors in the codeword, then the decoder circuit tries to correct all the inaccuracies by 
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using correction part, Figure 2 shows the flow diagram of RS decoding. As given in Figure 2, there 
are five steps to calculate the corrected codeword:

1. 	 Syndrome calculation
2. 	 KES (Key Equation Solver)
3. 	 Calculation of error position
4. 	 Calculation of error values
5. 	 Error corrector

We implemented the Reed Solomon Decoder in Verilog by using design architecture of every 
step of the decoder. The Architecture of every step is shown in Figures. Every step of the decoder 
has a different algorithm, and by using these algorithms, we implemented our design. The RS (450, 
406) decoder is being implemented for 1000BASE-T1 AE or Gigabit Automotive Ethernet technology. 
For every step, a different algorithm is used to solve the received codeword, Delay registers (FIFO 
registers) are used to store RS frame sent by the sender. This decoding is also known as syndrome 
dependent decoding. Let the transmitted codeword be C x( ) . R x( )  received RS codeword polynomial, 
and error polynomial is E x( ) . So the received codeword is represented as:

R x C x E x( ) = ( )+ ( ) 	 (1)

where C x( )  can also be represented as:

C x c c x c x c x c x
n

n( ) = + + + +…+ −
−

0 1 2
2

3
3

1
1 	 (2)

where, if e > 0  errors have generated in the codeword during data transmission. Then the error 
polynomial can be represented by:

E x Y x Y x Y x Y xi i i

e

ie( ) = + + +…+
1 2 3

1 2 3 	 (3)

where Y
1
, Y

2
,…, Y

e
 are the error values occurred at the locations X X Xi i

e

ie
1 2

1 2= = …… =α α α, , , . 
Unknown parameter for the decoder is the error polynomial  E x( ) , which needs to be calculated by 
using steps of RS decoding. After calculating the value of E x( )  just XOR with the received codeword 
polynomial C x( ) . So the decoder tries to calculate the error polynomial from the input polynomial 
R x( ) . Figure 2 shows the Architecture of the Reed Solomon Decoding. Design of RS decoder is 
shown in Figure 2, input to design is continuous RS frames. More than one memory is used to store 
the continuous RS frames and, memory selector is used to select individual memory one at a time 
for calculating corrected codeword. We used three memory for storing continuous RS frames to avoid 
data overlapping. We used buffer circuit for storing input data coming from output of the previous 
module. The time period, number of clock cycles and frequency of operation of each step or module 
is given in the Table 2.
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4. SYNDROME CALCULATION

The first step of RS decoding is to calculate the syndrome polynomial by using the received codeword, 
and Syndrome values also decide that, there is an error or not. If all the syndrome values are zero, it 
means there is no error. The number syndrome values are equal to 2t n k= −  and the syndrome 
polynomial is given in equation (4):

S x s s x s x s x
t

t( ) = + + +…+
−( )

−( )
0 1 2

2

2 1

2 1 	 (4)

S x s x
i

t

i
i( ) =

=

−( )

∑
0

2 1

	 (5)

Figure 2. Flow and Architecture of Reed Solomon Decoding

Table 2. Clock cycle, frequency and the time period of each module

Module Clock Cycle Frequency 
(MHz)

Time Period 
(ns)

Syndrome 450 125 3600

KES solver 66 125 528

Position 511 250 2044

Error Values 22 125 176

Buffer 66 125 528

Buffer1 511 250 2044

Primitive elements 511 250 2044

Error corrector 450 125 3600
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The syndrome values are the value of received codeword polynomial calculated at the different 
primitive elements αi  where i t= … −0 1 2 1, , , . Basically we substitute all 44 primitive elements 
start from α0  to α43  or α1  to α44  into the received codeword. The Architecture of syndrome 
calculation is given in Figure 3.

Let  R x C x E x( ) = ( )+ ( ) . So:

s R c E E where i t
i

i i i i= ( ) = ( )+ ( ) = ( ) ≤ ≤ −α α α α ,  0 2 1 	

If all 2t  syndrome values are zero, it means the received codeword R x( )  will be equal to 
transmitted codeword C x( )  and it also indicate that there is no error in received codeword. Otherwise, 
decoder calculates the error polynomial E x( ) . We analyzed our design by taking sample data (input 
message symbol (k)) of length 406, this sample data will act as input to syndrome calculator module.

Let the:	
frame h a h h a h h aa h h ba h= 9 0 1 9 051 9 1 9 9 114 9 0 9 165 9 0 9' , ' , ' , ' , ' , ' , ' , ' 1161 9 092, 'h{ } 	

So sample data of length 406 given is:

sample data = { }45 9 000   times of frame h, ' 	

Every data symbol is 9−bit  Hexadecimal number.
So, total 44 n k− =( )44  parity symbols calculated through Reed Solomon encoder[8] circuit 

by using the sample data is:

parity symbols = …{ }9 188 9 0 9 016 9 1 8 9 020 9 1 1' , ' , ' , ' , ' , 'h h cd h h d h h a 	

Now the codeword after appending the parity symbols to the end of sample data is:

Figure 3. The architecture of Syndrome calculation
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Codeword C x( ) = {sample data, parity symbols}	

Let us assume that 10 number of errors are introduced during the transmission of the codeword 
from Physical Coding Sublayer (PCS) transmitter side to Physical Coding Sublayer (PCS) receiver 
side. The decoder then needs to correct all the errors introduced, So the decoder starts decoding 
step by step. The output of the first step or module is given in Table 3. The modular schematic of 
syndrome calculation is shown in Figure 4, where syndrome_out are the output of Syndrome module 
(or syndrome values) and samp_data (sample data), rst_n (reset signal), clk (clock signal) are input 
to the Syndrome module, and nk and ff are internal parameters.

5. KEY EQUATION SOLVER (KES)

After computing the syndrome polynomial coefficient, it needs to calculate the error position and 
respective error values. KES (Key Equation Solver) is used to calculate the error evaluator and error 
locator polynomial. By using these polynomials, we can calculate error position and respective error 
values and it is the hardest part of RS decoder. The syndrome polynomial is used to calculate error 
evaluator and locator polynomial. For this, all the syndrome values act as an input to the fundamental 
equation solver module. And, several algorithms are available to calculate error locator and evaluator 
polynomial. Let Λ x( )  is the locator polynomial of degree e  and Ω x( )  is the evaluator polynomial 
of at most degree e−1  as given below:

Λ x X x x x x
j

e

j e
e( ) = −( ) = + + +…+

=
∏

1
1 2

21 1 λ λ λ 	 (6)

Ω x Y X X x
i

e

i i

m

j j i

e

j( ) = −( )
= = ≠
∑ ∏

1 1

0 1
,

= + + +…+ −
−ω ω ω ω

0 1 1
2

1
1x x x

e
e 	 (7)

The Λ x( )  and Ω x( )  equations are correlated with each other through an equation, known as 
Key equation as shown in equation (8):

Λ Ωx S x x modx t( ) ( ) = ( ) 2 	 (8)

Figure 4. Modular Schematic of Syndrome calculator
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Table 3. Coefficient of Syndrome polynomial

Syndrome 
Coefficient

Values 
(9-bit number)

Syndrome 
Coefficient

Values 
(9-bit number)

S
0

9 000011100'b S
22 9’b110010011

S
1

9 111001100'b S
23 9’b111101011

S
2

9 000000001'b S
24 9’b111010101

S
3

9 010110110'b S
25 9’b010110010

S
4

9 011010010'b S
26 9’b101010011

S
5

9 101001010'b S
27 9’b101010001

S
6

9 010000100'b S
28 9’b110111110

S
7

9 000010001'b S
29 9’b011000101

S
8

9 011111110'b S
30 9’b000010100

S
9

9 010001001'b S
31 9’b110010011

S
10

9 011110000'b S
32 9’b111111010

S
11

9 111010101'b S
33 9’b001100001

S
12

9 000100010'b S
34 9’b100101100

S
13

9 001110110'b S
35 9’b111111110

S
14

9 001111110'b S
36 9’b100011110

S
15

9 000100111'b S
37 9’b110011000

S
16

9 100000100'b S
38 9’b111111100

S
17

9 000110011'b S
39 9’b000111001

S
18

9 101110000'b S
40 9’b101010111

continued on following page
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By using the equation 8( )  it is required to calculate error locator Λ x( )  and evaluator Ω x( )  
polynomial, which is most important and the hardest part of the Reed Solomon decoding of any order. 
The three algorithms that are generally used to calculate the locator Λ x( )  and evaluator Ω x( )  
polynomial.

•	 PGZ (Peterson Gorenstein Zieter)
•	 Berlekamp Massey (BM) decoding Algorithm
•	 Sugiyama’s Euclidean (SE) and Extended Euclidean (EE)

Berlekamp Massey (BM) algorithm (J. L. Massey, 1969; E. R. Berlekamp, 1984; E. R. Berlekamp 
et al., 1994) is a famous algorithm to solve the Key equation. There are several version of Berlekamp 
Massey algorithm as:

•	 Inversionless BM (iBM)
•	 Simplified iBM
•	 Reformulated RiBM

If e t≤ , it is easy to calculate Λ x( )  and Ω x( )  but if e t>  then the algorithms almost always 
fail to calculate error locator Λ x( )  and error evaluator Ω x( )  polynomial. Once the Λ x( )  and Ω x( )  
are computed, then the decoder can easily find the error location and its respective error values. 
Syndrome calculator and key Equation Solver steps are correlated to Key equation as given in equation 
(8), because Key equation depends upon the syndrome polynomial. After calculating the Key equation, 
error locator and error evaluators are much straight forward to compute error position and error values. 
The iBM algorithm is an iterative process to solve the key equation. Basically iBM (J. H. Hung et 
al., 2016) algorithm calculate the scalar multiples of β ⋅ ( )Λ x  and β ⋅ ( )Ω x  in the place of Λ x( )  
and Ω x( ) . It is clear that Chien – search and Forney algorithm finds the correct error location and 
error values respectively. But in iBM algorithm, it stores λ β

0
= .

Input to the iBM algorithm is syndrome values, s for i t
i
� � , ,= … −0 1 2 2 1 . The pseudo code of 

the iBM algorithm is given below.

5.1. The iBM Algorithm
  Initialization  
 λ λ γ

0 0
0 0 1 0 1 2 3 0 0 0 1( ) = ( ) = = = = … ( ) = ( ) =b b for i t and k

i i
, , , , ,

Syndrome 
Coefficient

Values 
(9-bit number)

Syndrome 
Coefficient

Values 
(9-bit number)

S
19

9 001100000'b S
41 9’b100100000

S
20

9 000011101'b S
42 9’b001000101

S
21

9 011000000'b S
43 9’b011111110

Table 3. Continued



International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

30

  Input: s for i t
i
� � , ,= … −0 1 2 2 1

        � � � � � �for r t= −0 1 2 1step until do
        begin
           step iBM.1   δ λ λ λr s r s r s r

r r r t t( ) = ( )+ ( )+…+ ( )− −. . .
0 1 1

           step iBM.2   λ γ λ δ
i i i
r r r r b r i t+( ) = ( ) ( )− ( ) ( ) = ……( )−1 0 1 2

1
. , , , , ,

           step iBM.3   if and   δ r k r( ) ≠ ( ) ≥0 0

                                then
                                   begin
                                       
b r r i t
i i
+( ) = ( ) = ……( )1 0 1 2λ , , , , ,

                                       γ δr r+( ) = ( )1

                                       k r k r+( ) = − ( )−1 1

                                end
                                else
                                  begin  
                                       
b r b r i t
i i
+( ) = ( ) = ……( )−1 0 1 2

1
, , , , ,

                                       γ γr r+( ) = ( )1

                                      �k r k r+( ) = ( )+1 1

                                  end
        end
        for step until do      i t= −0 1 1 .

                     ω λ λ λ
i i i i
t s t s t s t2 2 2 2

0 1 1 0( ) = ( )+ ( )+…+ ( )−. . .

So the output λ ω
i t i
i t t i t

2
0 1 2 2 0 1 2 1( ) = … ( ) = … −

�
, , , , .. ,� , , , , .

For r t< , step iBM.1 contains the terms s r s r s
r r r t− + − + −( ) ( ) ……1 1 2 2

. , . , ,λ λ . λ
t
r( )  having 

unknown values s s s
r t− − −……

1 2
, , , . Fortunately for the degree of Λ r x r,( ) ≤ , it is known that 

λ λ λ
r r t
r r r+ +( ) = ( ) =…= ( ) =1 2

0  so unknown value s
i
 does not affect the value of δ r( ) . There 

is a similarity between the steps iBM.1 and iBM.4, so it can easily simplify DC and ELU architecture. 
RS(450, 406) decoding can correct errors up to t �22( ) . Basically, t is the number of errors that can 
be corrected. The data in Table 2 can be for any value of t  from 1 to 22.

5.2. The Architecture of iBM Algorithm
Due to the similarity in between step1 and step2, iBM architecture is divided into the two ciphering 
structures, one is Discrepancy Computation architecture and other one is ELU architecture, as given 
Figure 5 and Figure 6 respectively, These Architecture are as:

•	 DC(Discrepancy computation) for calculating step iBM.1
•	 ELU (error locator update) block for computing step iBM.2 and step iBM.3

Inside the DC block latches are used to store all the 44 syndrome value s
i
 where i  is from o  

to 43  arithmetic unit for arithmetic operation based on GF 2m( )  where m  is equal to 9  and also 
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the control unit for the entire architecture. The important signal of control unit are δ r( ) ,  MC r( )  
and γ r( ) .

It is directly connected to the error locator block which has latches for containing Λ r x,( )  and 
B r x,( )  and also the arithmetic unit of Galois field. In every first 2t  clock cycles discrepancy block 
calculates the δ r( )  and handovers this δ r( )  to the ELU block along with γ r( )  and MC r( )  control 
signal that modifies coefficient of polynomial in the same clock cycle.

5.3. Discrepancy Computation Block Architecture

The discrepancy block architecture is shown in Figure 5, in which shift registers DS DS DS DS
t1 2 2 1 0

, , , ,… −  
are initialized with the syndrome values s s s s

t1 2 2 1 0
, , , ,… −  respectively. In every first 2t  clock cycles, 

t +1  multiplier circuits compute product in iBM step1, and calculated value act as input to iBM 
step2 . A control unit for the combined architecture is shown in Figure 5, Outputs of the control unit 
are δ r( ) , MC r( )  and γ r( ) . The control has two counters for variable r  and k r( )  and storage 
element for storing γ r( )  value. The counter units compute OR operation of the discrepancy δ r( )  
to check if δ r( )  is zero or non-zero as given in iBM step3. The counter can be implemented by using 
Ring counter or by 2’s complement. If the counter for variable k r( )  is implemented in 2’s complement, 
then the condition k r( ) ≥ 0  becomes true if the MSB bit of the k r( )  counter is zero, as given in 
iBM step3. When the MC r( )  signal is generated, the counter for variable k r( )  will change. 2t  

Figure 5. (a) Discrepancy Block Architecture (b) Control Unit
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number of clock cycles are required to calculate the error locator polynomial Λ x( )  and next t  clock 
cycles are required for calculating error evaluator polynomial Ω x( ) .
5.4. ELU Architecture

In ELU block, coefficients of the polynomial in iBM step1 and step2 updates as the MC r( )  
signal becomes available. ELU block calculates the next value of the variable by using the 
previous values of the coefficients of the polynomial, as shown in Figure 6. The processor 
elements PE

i
0( )  are used to update the coefficients λ r( )  and B r( ) . The coefficients of 

� , ,δ r B r and MC r( ) ( ) ( )  are sent to the processor which updates old value by a new value, 
processor PE0  is initialized with zero. The calculated values of the coefficients of error locator 
and evaluator polynomial are given in the Table 4.

6. ERROR POSITION CALCULATION

The next step after calculating error locator and evaluator polynomial is to calculate the position of 
errors in received codeword, the logic behind position calculation is to substitute primitive elements 

Table 4. Coefficient of Error Locator and Evaluator polynomial

S. No. Coefficient of 

λ r( )
Values 

(9-bit Number)
Coefficient of 

Ω r( )
Values 

(9-bit Number)

1. λ
0

9 001000000'b ω
0

′9 100110011b

2. λ
1

9 100101101'b ω
1

′9 101001011b

3. λ
2

9 011010101'b ω
2

′9 011011101b

4. λ
3

9 100100100'b ω
3

′9 111111101b

5. λ
4

9 011101010'b ω
4

′9 000010011b

6. λ
5

9 000100110'b ω
5

′9 111110000b

7. λ
6

9 111010010'b ω
6

′9 001100110b

8. λ
7

9 011110010'b ω
7

′9 110011011b

9 λ
8

9 001100110'b ω
8

′9 000010100b

10. λ
9

9 001000000'b ω
9

′9 100010101b

11. λ
10

9 111010010'b ω
10

′9 000000000b
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from α0  to α510  in error locator polynomial Λ x( ) . Chien – search (H. C. Chang et al., 2011; C. H. 
Yoon, 2013) algorithm is used to calculate the error position. It is the most popular method of 
calculating roots of the error locator polynomial. Chien – search algorithm uses the error locator 
polynomial for calculating error position. In this algorithm, it calculates the roots of the error locator 
polynomial (ELP) Λ x( )  by putting the value of primitive elements of Galois Field (GF), and the 
inverse of the roots will be the error position. It is not easy to calculate the roots of the ELP. The 
Architecture of the Chien – Search algorithm is shown in Figure 7.

Inputs to the Chien – Search Algorithm is the coefficients of the error locator polynomial, So 
this algorithm calculates the Λ αi( )  at every value of i n= …1 2 3, , . After substituting the elements 
of the finite field to the error locator polynomial, it checks the condition:

Λ αi( ) = 0 	 (9)

Figure 6. (a) the architecture of ELU (b) Processor Elements ELU

Figure 7. The architecture of Chien – Search Algorithm
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If this condition holds, then an error is to be in the position of n i−( ) . And if it’s not, then there 
is no error. In Figure 7, odd values of ELP λ λ λ

1 3 5
, , ……( )  are calculated in one side and even values 

on the other side ( , , , )λ λ λ
2 4 6

… . If in any clock cycle ( )< n , the summation of all these values is 
zero, then the error position will be equal to the position of the clock. An important element of Chien 
– Search algorithm are Galois Field multiplication, division, primitive element and primitive 
polynomial. For example, if the ELP is:

Λ x x x x( ) = + + +1
1 2

2
3

3λ λ λ 	

To evaluate Λ x( )  at every non-zero elements in finite field of GF 2m( )  in sequence:

x x x x x
m

= = = = … = −α α α α α1 2 3 4 2 1, , , , , 	

So, after putting these values:

Λ α λ α λ α λ α1
1

1
2

1
2

3
1

3
1( ) = + + ( ) + ( )( ) 	

Λ α λ α λ α λ α2
1

2
2

2
2

3
2

3
1( ) = + + ( ) + ( )( ) 	

…	

Λ α λ α λ α λ α2 1
1

2 1
2

2 1
2

3
2 1

3

1
m m m m− − − −( ) = + + ( ) + ( )( ) 	

For any value of α2 1m−  if Λ x( )  value is zero then α2 1m−  will be the root of Λ x( ) , and inverse 
of root will be error position.

The modular Schematic of the error position algorithm is shown in Figure 8, Position_out 
indicates the output of the position module. The calculated results of the Error Position Calculation 
module is given in the Table 5.

Figure 8. Modular Schematic of Position Calculation
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7. ERROR VALUES CALCULATION

After computing the Syndrome value, Key Equation Solver and error position, Now the next step 
of Reed Solomon decoding algorithm is to calculate the error values with respect to the every error 
position value. The two popular methods of calculating the error values are:

•	 Transform Decoding Algorithm
•	 Forney Algorithm

In the frequency domain, the Transform decoding algorithm is used, and in the time domain 
Forney algorithm (G. D. Forney, 1965; Yingquan Wu & Yu Kou, 2009) is used. Transform decoding 
process does not use FFI or Chien – search algorithms and also have large complex circuit than Chien 
– search, so it occupies a large area. Therefore, Forney algorithm is generally used due to its lesser 
circuit complexity, more accuracy and more efficiency.

7.1. Forney Algorithm

The root value and the coefficients of Λ x( )  and Ω x( )  are the inputs to the Forney algorithm and it 
is related to Chien - Search algorithm. In the Forney algorithm, only odd coefficients of error locator 
polynomial Ω x( )  are used. It also uses the finite field multiplier and division just like Chien – Search 
algorithm. The formula to calculate the error values ( )Y

i
 is:

Table 5. Calculated Root value, error position and error values

S. No. Root Values Position Values Coefficient 
of the Error 
Polynomial

The Error Values (9-bit Number)

1. α62 α449 449= X Y
1

9 000000001'b

2. α63 α448 448= X Y
2

9 000000001'b

3. α64 α447 447= X Y
3

9 110100000'b

4. α65 α446 446= X Y
4

9 000000100'b

5. α66 α445 445= X Y
5

9 100000000'b

6. α83 α428 428= X Y
6

9 000010100'b

7. α84 α427 427= X Y
7

9 010111010'b

8. α85 α426 426= X Y
8

9 001100000'b

9. α86 α425 425= X Y
9

9 101110001'b

10. α87 α424 424= X Y
10

9 100000111'b
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Y
x x

x xi

m

=
− ( )

( )′
0Ω

Λ
	 (10)

where x j= −α  is point to root as calculated by the Chien – Search algorithm. The architecture of 
this algorithm is shown in the Figure 9. The equation (10) gives valid and correct results if there are 
errors in the codeword. The ′ ( )Λ x  in equation (10) is the first derivative of the error polynomial 
Λ x( )  so the ′ ( )Λ x :

′ ( ) = + + +…Λ x λ λ λ
1 2 3

22 3x x 	 (11)

The ′ ( )Λ x  is the derivative of 1
1 2

2+ + +…+λ λ λx x x
e
e . After multiplying by x  to the 

equation (11):

x x x′ ( ) = + +…Λ x λ λ
1 3

3 	 (12)

The equation (12) is just like the odd terms of the locator polynomial Λ x( )  and these odd terms 
can be calculated during the evaluation of the error position, so no need to calculate separately. The 
equation (10) can be easily modified by taking m

0
0= . The inverse of the Lambda odd is calculated 

by the Brute-force search algorithm as shown in Figure 9, steps of this algorithm is given below:

•	 Let f p( )  and g p( )  are the polynomials in GF pm( ) .
•	 Suppose M p( )  be the primitive polynomial or irreducible polynomial in GF pm( ) .
•	 So, the multiplicative inverse of f p( )  is given by a p( ) .

•	 If f p a p modm p( ) ( )( ) ( )( ) =�.� � 1 , then a p( )  is the inverse of the f p( ) .

Figure 9. The architecture of Forney Algorithm
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In Forney algorithm, we use both error locator Λ x( )  and error evaluator polynomial Ω x( ) . But 
only odd term of error locator polynomial Λ x( )  is used. The calculated error values by using the 
Forney algorithm is given in Table 5. So error polynomial E x( )  for ten number of error can be 
represented in terms of polynomial as given in equation (13):

E x Y x Y x Y x Y x Y x( ) = + + +…+ +
1

449
2

448
3

447
9

425
10

424 	 (13)

8. ERROR CORRECTOR

The last step of RS decoding algorithm, after getting the error location and respective error values 
is error corrector. As now we know the error polynomial E x( )  is given in equation (13). So the 
corrected codeword can be calculated by just XORing the received codeword by the error polynomial 
E x( ) :

C x R x E x( ) = ( )+ ( ) 	 (14)

Also the modular Schematic of error corrector module is shown in Figure 10. The crr_data is 
the output after XORing with E x( )  and R x( ) .

9. ANALYSIS OF SIMULATION RESULTS

In this paper Reed Solomon (RS) decoding is implemented in Verilog. Analysis of simulation results 
has been done in the Cadence SimVision and Verilog coding of RS decoding is also done in the 
Cadence tool NCsim. The static verification has been done in Cadence lint tool HAL and functional 
verification in Synopsys tool Spyglass. HAL is a super linting tool and it generates Schematic tracer 
for better analysis of design. The synthesis has been done in Vivado 2017.4, The Synthesis is the 
process of transforming an RTL design into a gate level representation, Verilog is more famous for 
synthesis designs because it is less tedious than traditional VHDL.

The RTL schematic of syndrome calculating is shown in Figure 11. As key enable is high syndrome 
modules starts sending the syndrome values to the key equation solver module for calculating the 
locator and evaluator polynomial, mod1_out is the syndrome values as shown in Figure12.

Figure 10. Modular Schematic of error corrector module
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Simulation results of the key equation solver block are shown in Figure 13. The lemda_values and 
omega_values showing the coefficients of error locator and error evaluator polynomial respectively, 
these are calculated by the iBM algorithm. The simulation results of the error position calculation 
steps are shown in the Figure 14. The variable root_s and position are showing the root value and 
position value of the error position calculation steps, respectively.

The simulation results of the error values calculation module are shown in Figure 15. The variables 
err_values are showing the error values at the respective error position. Simulation results of the last 
steps of the Reed Solomon decoding is shown in Figure 16. The variables err_data and crr_data are 
indicating the error codeword and corrected codeword, respectively.

Figure 12. Simulation Results of Syndrome calculator and latency for 3rd case

Figure 13. Simulation results of key equation solver

Figure 11. RTL Schematic of Syndrome Calculator



International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

39

Operating frequency of design depends upon the hardware requirements, circuit complexity and 
more important thing is the latency. We have used two clock signal in our model. Some modules 
of the model are operating on 1st clock and some other on 2nd clock. We considered three cases as 
given below:

1. 	 All the design modules are operating at 125 MHz frequency.
2. 	 Some modules are operating at 125 MHz and some at 250 MHz frequency.
3. 	 Some modules are operating at 125 MHz and some at 750 MHz frequency.

Analysis of latency is vital in the Reed Solomon decoding. Latency also depends upon the 
clock frequency in each module of the decoder and the circuit complexity. Best latency of our 

Figure 14. Simulation Results of the position calculator

Figure 15. Simulation Results of Error value calculator

Figure 16. Simulation results of error corrector
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design is obtained at the 3rd case, and it is most suitable for our Gigabit Automotive Ethernet 
design, it means all design module is working correctly and efficiently. The simulation results for 
the 3rd case is shown in Figure 17. Time period for all three cases is given in Table 6. If the 125 
MHz and 250 MHZ (2nd case) frequency is used in the decoder module then the simulation results 
of latency is shown in the Figure 12.

The latency is the time required to move from one point to other point within computer system 
and it is generally measured in nanoseconds, So the latency is:

Latency = − =� . . .8 56 3 64 4 92µ µ µs s s 	

If latency is calculated according to the Table 2, where some modules are operating in 125 MHz 
& 250 MHz then latency obtained is:

Latency =� .3 026µs approx.	

Table 6. Time period of design for all three Cases

Module Name Time Period (1st Case)
(ns)

Time Period (2nd Case)
(ns)

Time Period (3rd Case)
(ns)

Syndrome 8 8 8

KES Solver 8 8 1.332

Position 8 4 1.332

Error Values 8 8 1.332

Buffer 8 8 1.332

Buffer1 8 4 1.332

Primitive Elements 8 4 1.332

Error Corrector 8 8 8

Figure 17. Simulation result of latency for 3rd case
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If the first and last module is operating on the 125 MHz & other modules are operating on 750 
MHz frequency then simulation results of the latency is shown in Figure 17.

So:

Latency � . . .= − =4239 09 3623 7 615 39ns ns ns 	

10. CONCLUSION AND CHALLENGES

RS encoding and decoding are powerful error correction techniques, that’s why they are used in the 
Gigabit Ethernet. This decoding technique provides better bandwidth in comparison to the other 
decoding techniques. The RS(450, 406) decoding is also known as the shortened RS code. We have 
shown that the latency depends on the frequency of each module. And we implemented this decoding 
techniques in Verilog. In every step of the decoding algorithm technique, different algorithms are 
used to decrease the complexity and power consumption. The RS (450, 406) codes are used in 
1000BASE-T1, to minimize channel noise. This RS code architecture can be pipelined for gaining 
high speed. The hardest part of the decoding is to solve key equation, this done by using iBM algorithm. 
2t  clock cycles are required to calculate the error locator polynomial and t  clock cycles for calculating 
the error evaluator polynomial. iBM algorithm is a power-efficient algorithm. The decoder can check 
whether the number of roots are equal to the degree of locator polynomial or not. If not, then the 
received codewords cannot be corrected. Latency depends upon the frequency of operation of each 
module. If input RS frame is more than one RS frame, it needs to use more memory to store the 
continuous frames. Every Reed Solomon encoding and decoding algorithm is based on the finite 
field which is also known as Galois field, For RS (450, 406) decoding GF 2m( )  is used.

In the automotive industry, more advanced electronics is being used in vehicles. It is a challenging 
task to use Gigabit Automotive Ethernet for connecting different functional components in the car. 
RS encoding and decoding are powerful error correction techniques used in 1000BASE-T1 to reduce 
channel noise during data transmission. The most Challenging part of Reed Solomon decoding is 
the calculation of Key Equation Solver (KES) efficiently because solving key equation is the crucial 
and hardest part of the RS decoding. Achieving low latency is also a challenge in RS encoding and 
decoding.
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