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ABSTRACT

This article investigates channel estimation problem in massive MIMO partially centralized cloud-RAN 
(MPC-RAN). The channel estimation was realized through compressed data method to minimize the 
huge pilot overhead, then combined with parallel Givens data projection method (PGDPM) to form a 
semi-blind estimator. Comparison and analysis of improved minimum mean square error (MMSE), 
fast data projection method (FDPM), compressed data, and PGDPM techniques was evaluated for 
achievable normalized mean square error (NMSE) in MPC-RAN. The PGDPM-based estimator had 
the lowest normalized mean square error. The FDPM and PGDPM based methods are comparable 
in performance with PGDPM based estimator having a slight edge over FDPM-based estimator. This 
vindicates PGDPM-based estimator as a method to be utilized in channel estimation since it compresses 
the massive MIMO channel information, hence mitigating the fronthaul finite capacity problem, and 
at the same time, it is geared towards efficient parallelization for optimal BBU resource utilization.
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INTRODUCTION

For a couple of decades, optimal use of the restricted amount of accessible spectrum to consider the 
exponentially increasing interest in throughput has been the focal point of communication systems 
and signal processing. The sporadic rise in technology has, through the use of sensors, galvanized the 
once predominantly offline appliances and devices into data generation points and thus pushed the 
demand for higher throughput (Achlioptas, Karnin, & Liberty, 2013; Balandin, Korzun, Kashevnik, 
Smirnov, & Gurtov, 2017; Mukubwa & Sokoya, 2020a). The existing fifth generation (5G) and future 
communication systems are being upgraded to account for this as well as traditional mobile devices.

The primary enabling technologies for 5G networks have been described as the Cloud-Radio 
Access Network (C-RAN) and the massive Multiple-Input Multiple-Output (MIMO), as they promise 
to minimize operational costs and boost performance. When using massive MIMO in remote radio 
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heads (RRH), front-haul becomes the limiting factor due to its inherent finite capacity (Francis & 
Fettweis, 2018). One of the anticipated fronthaul finite capacity solutions is to break functions such 
that some are performed at the RRH and others at the baseband unit (BBU). Taking this suggested 
architecture into account, the RRH is tasked with performing basic functions such as beamforming 
and the BBU is left to perform digital functions like channel estimation. This then makes fronthaul 
traffic largely dependent on user terminals (UT) data rates and not on antenna numbers (Francis & 
Fettweis, 2019; J. Park, Kim, Carvalho, & Manch, 2017). This results in massive MIMO partially 
centralized cloud-radio access (MPC-RAN) network (S. Park, Lee, Chae, & Bahk, 2017).

When paired with distributed cooperation for the case where RRHs are interconnected, partial 
centralization significantly mitigates capacity constraint and time latency on the fronthaul of MPC-
RANs. The common notion is therefore to configure the topology to be adaptive in such a way as to 
strike a common balance between the constraints of the fronthaul and the complexity of distributed 
cooperative processing (Peng, Wang, Lau, & Poor, 2015). The BBU ‘s cooperative processing is 
intended to suppress inter-RRH interference through the use of the channel state information (CSI) 
from both the RRHs and the wireless fronthaul (S. H. Park, Simeone, Sahin, & Shamai, 2014).

Related Work
An improved minimum mean square error (MMSE) channel estimator combined with a sub-space 
tracking algorithm (Fasts data projection method (FDPM)) is presented in (Mukubwa & Sokoya, 
2020b) to construct a semi-blind channel estimator for a massive MIMO duplex time division (TDD) 
network with pilot contamination. The authors replace the matrix inversion with matrix multiplication 
and addition in the MMSE channel estimator, and later combine it with a sub-space tracking algorithm 
to create a semi-blind channel estimator.

Estimating the channels by using compressive sensing techniques in C-RAN is explored in (Xu, 
Rao, & Lau, 2015). A novel algorithm to minimize overhead in uplink training through compressive 
sensing is formulated. To realize this, the authors transform channel estimation problem into 
compressive sensing problem. Then modify the Bayesian compressive sensing algorithm to facilitate 
C-RAN channel estimation capitalizing on sparsity of active user, inherent varied effects due path 
loss and combined sparsity structures present in uplink C-RAN network with multi-antennas.

Compressive channel estimation with low-complexity methods is demonstrated in (He, Quek, 
Chen, Zhang, & Li, 2018). The work employs compressed sensing leveraging on user activity sparsity 
within the C-RAN to perform channel estimation with minimized pilot overhead. The accuracy of 
channel estimation is further improved through a strategy that is iteratively re-weighted with guidelines 
availed to assist in choice of parameters for tuning. The process is optimized by use of three low-
complexity techniques to offer differentiated services under computing setups that are distinct.

In (He, Quek, Chen, & Li, 2017) a penalty functional is formulated to solve the channel estimation 
problem in C-RAN. An algorithm that is efficient with guaranteed convergence is formulated to 
hasten processing procedure. This algorithm relies on alternating direction technique of multipliers 
and a technique that entails variable splitting.

In (Mukubwa & Sokoya, 2020a) the authors present channel estimation problem in massive 
MIMO partially centralized cloud-RAN. By noting that the user activities in massive MIMO partially 
centralized cloud-RAN are sparse, the channel estimation issue is solved by use of compressed data 
method to minimize the huge pilot overhead. The authors use compressed channel state information 
(CSI) to approximate the covariance matrix for MPC-RAN system following the method in (Chen, 
Lyu, & King, 2017). Then approximation of the covariance matrix uses compressed data based on a 
weighted sampling structure. This strategy is data aware with most significant entries being explored 
allowing for good approximation accuracy with fewer entries.

In this paper, the authors model a sub-space channel estimation technique that is highly 
parallelizable to be implemented at the BBU for channel estimation. Then combine the Compressed 
data method in (Mukubwa & Sokoya, 2020a) with the Sub-space model to create a semi-blind channel 
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estimation technique that has both compressed uplink pilot data and highly parallelizable to exploit 
the multicore resources at the BBU. Then the validation of the method is done on simulated data in 
comparison with the conventional methods.

The main contribution of this work entails:

•	 The improvement on the Givens rotation and formulation of an algorithm that is highly 
parallelizable to exploit multicore scenarios.

•	 The algorithm created is combined with the data compression technique formulated in (Mukubwa 
& Sokoya, 2020a) to realize a semi-blind channel estimator.

•	 The authors avoid the pilot overhead by relying on initial channel state information to realize 
channel estimation process.

Organization
The remainder of this paper is divided into seven sections: First, the authors introduce the system 
model adopted for this work to be carried out. Then discusses the improved MMSE channel estimator 
followed by a semi-blind channel estimator based on FDPM, after which the authors look at the 
estimator for the compressed data channel and then the semi-blind channel estimator based on GDPM. 
The numerical findings and analysis are subsequently provided to demonstrate how well the modelled 
estimators of channels work against one another. Then finish off by presenting the conclusion.

Notation: lower-case and upper-case boldface letters denote vectors and matrices, respectively; 
(·) T, (·) H, (·) −1, and tr(·) denote the transpose, conjugate transpose, matrix inversion, and trace, 

respectively;   denotes the set of complex numbers, IN is the N × N identity matrix. We let X
t t

K{ }
=1

 

to represent X X X
K1 2

, , ,…{ } , which is a set of matrices and x
ji t,

 to stand for the (j, i) th element of 
X
t

. And then X
2

 and X
F

 represents the Spectral and Frobenius norms respectively. 
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q j

M

j

q
q

x=
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
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
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, where q ≥ 1  stands for the l
q

 norm of X   M . The authors also take  x( )  
to represent a square diagonal matrix with the main diagonal having the elements of X .  X( )  is a 
square diagonal matrix with its main diagonal having only the diagonal elements of X .

SYSTEM MODEL

The authors presume an MPC-RAN system with L RRHs, each of which has M transmitting antennas 
and K user terminals (UTs) having single antenna. Then propose that the time division duplex (TDD) 
protocols are coordinated through RRHs to relay pilot signals and data to all RRHs simultaneously. 
Initially transmitted by UTs in � th RRH, the pilots are identical and given by ψ ϕ ϕ ϕ

K j
T

j
T

j K
T= 

, , ,

, ,...,
1 2

 

where ϕ
j k,

 corresponds to the pilot used by every kth user terminal (UT) in each RRH and ϕ
j k,

2 1= . 
Then a channel from the kth UT within the jth RRH is given as h

j k
M

,
 . The channel vectors are 

believed to fade and are modelled as:

h C R
j k j k, ,

~ , 0( ) 	 (1)

where R
j k,

 represents the matrix of covariances corresponding to the kth UT from the jth RRH. The 
authors further assume Rayleigh fading with no UTs correlation, with R I

j k j k M, ,
= β . It is suggested 

from (Viering, Hofstetter, & Utschick, 2002) that R
j k,

 will vary slowly over time, compared to h
j k� ,

. 
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For this work the authors assume that R
j k,

 is constant across the transmission bandwidth and changes 
gradually over time. Therefore, the training sequences received Y

j
M  are calculated as:

Y H Z
j j k k j
= +

,
ψ 	 (2)

where the AWGN noise matrix is represented by Z
j

M  and ψ
k

K  is the pilot matrix representing 
total transmitted sequences by K UTs.

IMPROVED MMSE CHANNEL ESTIMATION

The MMSE approximation still requires matrix inversion and so it is substituted with the rapid 
numerical algorithm (RNA) method. RNA-based approximation completely side-steps the inversion 
of the matrix and instead makes use of multiplication and addition (Mukubwa & Sokoya, 2020b).

Then the Schulz iterative method is evoked for inverting a matrix as per (Ben-Israel, 1965; Li, 
Huang, Zhang, Liu, & Gu, 2011). It is then combined with the approximation in (Isaacson & Keller, 
1994) to realize the inversion process in MMSE with addition and multiplication of matrices as per 
(Mukubwa, Sokoya, & Ilcev, 2017) which allows the iterative process to be efficiently parallel. And 
the channel approximates as:

ˆ
, , , ,
h R y
j k
RNA

j k j k
RNA

j k
p= ( )−φ

1
	 (3)

FDPM-BASED SEMI-BLIND MODEL FOR CHANNEL ESTIMATION

It was pointed out in (Mukubwa & Sokoya, 2020b) that linear estimators of channels like the MMSE 
and its generics rely on pilot sequences to estimate channels. Consequently, many UTs repeatedly 
use pilot training sequences which lead to pilot contamination which degrades the efficiency of the 
wireless network. This is compounded for the massive MIMO scenario and thus the need to establish 
approximation methods with precise CSI estimation based on a reduced number of pilots compared 
to traditional channel estimation methods. Therefore, approximation methods for semi-blind channels 
have been found to be effective in minimizing pilot (Quoc Ngo & Larsson, 2012). The semi-blind 
estimators are based on EVD algorithms with fewer pilots needed for estimating the channels. 
Asymptotic orthogonality of UTs can be used as an alternative to solve the uncertainty matrix by 
evoking the large numbers theorem. This is achieved using SVD form. SVD-based approximation 
usually has a better estimate compared to EVD-based approximation (Hu, Lv, & Lu, 2013), while 
both approaches exhibit  M 3( )  complexity in calculation relative to the signal dimensions obtained. 
It makes such schemes untenable in large MIMO networks where there is a significant number of 
BS antennas.

Subspace tracking algorithm has been suggested to reduce the complexity. The fast data projection 
method (FDPM) was proposed (Doukopoulos, Moustakides, & Member, 2008), which simplifies the 
process of iterating the matrix of correlation with a view to determining the matrix of uncertainty. It 
gives  MK( )  less complexity with better tracking outcomes. To realize a semi-blind channel 
estimator in (Mukubwa & Sokoya, 2020b) they combine the improved MMSE channel estimator and 
the FDPM sub-space tracking. The initial channel estimation by improved MMSE is fed into the 
FDPM to reduce the pilots required for channel estimation. From which the short training sequence 
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in (2) is utilized to realize the ambiguity matrix which is computed as per the algorithm listed below 
in Table 1.

The signal subspace W n M K( ) ×  �C , corresponding to the nth sample is tracked as in Table 1 
above, µ β= −1 , where 0 1< <β  is the forgetting factor controlling the effect of the old data. 
N
data

 denotes the duration of signals transmitted without the pilots. The approximate ambiguity 
matrix, U

s
 is obtained from the tracked W N

data( )  and expressed as:

U W N
s data
= ( ) 	 (4)

Then the approximate channel matrix is determined as:

ˆ ˆH W N W N HFDPM
data data

H
RNA= ( ) ( )( ) 	 (5)

This gives rise to FDPM based semi-blind estimator which is basically referred to as FDPM 
estimator in this work.

COMPRESSED DATA CHANNEL ESTIMATION

According to (Mukubwa & Sokoya, 2020a) the estimation of the covariance matrices relies on pilot 
samples arriving at the RRH. They investigate the approximation of the needed covariance information 
by the BBU and the impact of these estimates. The procedure is repeated here for convenience. The 
channel estimated by MMSE is computed as:

ˆ
, , , ,
h R y
j k
MMSE

j k j k j k
p= −φ 1 	 (6)

Table 1. FDPM subspace tracking algorithm

for ﻿
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The computation of the MMSE approximation of h
j k,

 at the jth RRH from (6) requires the 

knowledge of R h h
j k j k j k

H
, , ,
= 



  and φ

j k j k
p

j k
p
H

y y
, , ,
= ( )











 . Bearing in mind that these are M M×  

(quite large) matrices, they assume regularization of the estimates as per (Ledoit & Wolf, 2004; 
Shariati, Bjornson, Bengtsson, & Debbah, 2014).

Since the use of MPC-RAN results in high-dimensional data, the authors hinted at huge 
communication and storage resources to compute these covariance matrices. Then this underlined 
the need for enormous bandwidth and power resources according to (Chen et al., 2017) to transmit 
the CSI data from RRHs to BBU. To mitigate this issue, a partial centralization of C-RAN system 
with interconnected and cooperative massive MIMO RRHs (MPC-RAN) was proposed in accordance 
with (Peng et al., 2015). This rendered the fronthaul traffic largely dependent on UT data levels and 
not on the number of antennas. Compressed data was utilized to calculate the matrix of covariance 
through the via-Q method in (Bjornson et al., 2016).

Weighted sampling matrices S
j k k

K
M Z

,{ } ∈
=

×

1
�  are used in data compression by S y

j k
T

j k

Sample

, ,

( )  and 

the data is projected back into original space by S S y
j k j k

T
j k

Sample

, , ,

( ) . The derived data is then used in 
covariance matrix approximation. At least M-Z elements are excluded from the kth vector by the 
weighted sampling matrix S

j k,
, the remaining ones are maintained as they may be most informative. 

If the sampling probabilities are carefully constructed, the unbiased estimator ˆ
,
φ
j k

 will accurately 
perform in relation to the matrix spectral norm ˆ

, ,
φ φ
j k j k
−

2
 (Achlioptas et al., 2013; Gittens, 2011; 

Pourkamali-Anaraki, 2016).
The weighted sampling evoked is strong enough to explore the most appropriate entries to reduce 

the estimation error ˆ
, ,
φ φ
j k j k
−

2
. They began by setting the necessary variables and then continuing 

with the approximation process.
It is agreed that y

j k

Sample M K
,

( ) ×  and they set α 0 1,

  as their regularizing factor. The information 

received from the uplink is then compressed with l M= …



1 2, , ,  as follows:
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and:
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To compress this matrix, instead of all the M rows, they sample Z rows of y
j k

Sample

,

( )  instead of all 
the M rows. Then assume z Z∈ 
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and let:

x y
j l k j t k

Sample

z k, , , ,,
= ( ) 	 (10)

The compressed data X , the indices used for sampling T V W and, ,   α  are then transmitted 
from the RRH to the BBU and used as follows to construct the unbiased covariance matrix estimator 
from the compressed data:

p
x

v

x
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j z k
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j k
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, ,
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, ,

,
,
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2
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and:

s
Zp

j t k

j t k
z k

z k

, ,

, ,
,

,

=
1 	 (12)

Because of imperfection in the knowledge of matrix correlation, they conducted robust 
approximation by experimental optimization of the parameter α . With advances in computing, it is 
possible to manipulate vectors with length Ο M( )  in the memory. Thus, compression of data by 
weighted sampling will require a single pass from the RRH to the BBU when moving data to memory. 
This makes the algorithm rendered for streaming data and is therefore suitable for use in MPC-RAN 
systems.

The estimator is unbiased and represented by S
j k k

K

,{ }
=1

 and S y
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T
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1
. The authors 

presumed y
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,

( ) ×∈ �  and let the sampling window to be 2 ≤ <Z M  with Z entries for 

every y
j k
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,

( ) . The probabilities of sampling are taken to be p
j l k l

M

, ,{ }
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 and the matrix of 

sampling is expressed as S
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,
 × . In order to recover the unbiased estimator corresponding 

to φ
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 which is the target matrix of covariance, the authors 

used (13):
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, a maximum of Z entries must be calculated, since for 
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H
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p
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p
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j k j k
H

, , , , , ,( )  the maximum none zero elements on the diagonal are Z.

To estimate the R
j k

M M
,
∈ ×�  they followed a common approach used for φ

j,k
. The goal was to 

obtain the h
j k,

 observations with minimal intervention from other UTs. From (Bjornson et al., 2016; 
Yin, Gesbert, FiliPpou, & Liu, 2013) it was pointed out that the UT can employ a set of unique 
orthogonal pilots to carry out a training phase for R

j k,
. The authors assumed that the jth RRH has 

N
R

 observations of the noisy h
j k,

 which lays the basis of constructing the approximate covariance 
matrix ˆ

,
R
j k

.
That will simply mean more data transmission over the fronthaul from RRH to BBU and higher 

computations in that respect. The authors adopted the via-Q method presented in (Bjornson et al., 
2016) to evaluate the covariance matrix ˆ

,
R
j k

. This permits the estimation of ˆ ˆ
, , , ,
φ φ
j k

Sample

j k j k j k
Hh h−
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which combines all interfering UTs and set the ˆ ˆ
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( ) = 1 . Therefore, the covariance matrix 
ˆ
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R
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Sample( )  was computed as:
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R
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−
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Then the approximate covariance matrix ˆ
,
R
j k

 is computed as follows:

ˆ ˆ ˆ�
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R R R
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Sample
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Sample= − −( )( ) ( )β β1 	 (17)

where β ∈ 

0 1,  is the regularizing parameter employed in approximation of ˆ

,
R
j k

.
The approximation of MMSE estimate corresponding to ˆ

,
h
j k

 is computed based on ˆ
,
R
j k
Compressed  

and φ
j k
Compressed
,

 that are assumed to be the correct covariance matrices as:

ˆ
, , ,
h W y
j k
Compressed

j k j k
p= 	 (18)

where W R
j k j k

Compressed
j k
Compressed

, , ,
ˆ= ( )−φ

1
. This gives rise to compressed data channel estimator which 

is basically referred to as compressed data estimator in this work.

GDPM BASED SEMI-BLIND MODEL FOR CHANNEL ESTIMATION

This was stated earlier that covariance matrix computation, since the use of MPC-RAN results in 
high-dimensional data, requires huge communication and storage resources. Yet it is also worth noting 
that it takes considerable computation time to compute the covariance matrices. But we assume the 



International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

72

estimation of the channel is done at the BBU. At the BBU, the computing resources are enormous with 
the availability of multicore processing, and with well thought-out parallelization, the computation 
time can be minimized, and the channel estimation process therefore hastened. This can be further 
enhanced with the right choice of parallelization architecture (Liu, Sohl, & Wang, 2010) and software 
architectures and load balancing of protocol stacks (Showk & Bilgic, 2013).

To this end, we use the compressed data estimation technique to provide the initial estimation 
of the channel and then focus on methods of subspace estimation to approximate the CSI. Many of 
the widely used subspace methods include the DPM and the FDPM (Doukopoulos & Moustakides, 
2005). The DPM uses the Gram-Schmidt method to perform orthonormalization while the FDPM 
uses orthonormalization via the Householder process. So, DPM has an  MK 2( )  computational 

complexity, while the FDPM has an  MK( )  computational complexity. Neither of these two, 
however, provides effective parallelization, and are thus more suited for operating in single core 
systems. Therefore, in order to achieve an effective parallelization sought after in C-RAN multicore 
BBUs, we invoke the use of the Givens orthonormalization mechanism but with  MK 2( )  
computational complexity to form Givens data projection method (GDPM).

It is important to remember that a lower complexity, that is a flop-count product, may not 
inherently mean that the process is superior to the process with higher complexity. This is very 
significant for the case when computing is done on multicore machine such as the MPC-RAN 
BBU. Because a parallelization efficient system becomes superior in such scenarios (Ford, 2015). 
This forms the basis for our option of Givens orthonormalization method within the MPC-RAN for 
channel estimation.

Givens Rotations reproduces calculations where it is important to selectively zero particular 
elements (Golub & Van Loan, 2013). Each rotation can only impact two rows of the given matrix, 
so we can interchange the order of rotations affecting different rows, thus enabling the use of parallel 
rotational sets (Golub & Van Loan, 2013). This is the reason we said that the Givens transformation 
lends itself to successful parallelisation. The Givens transformation also comes in handy after a row 
is added or a column is removed and updating of a matrix is required. This is equivalent to addition 
of RRH antenna as a result of the evolution of the interacting RRH antennas for a UT in motion and 
column deletion, this is when a UT drops out of the network for some reason.

Again from (Hu et al., 2013), the covariance matrix for the signal obtained is determined as 
follows:

φ
y

H H
M

E yy HH I= { } = +
 

	 (19)

Through SVD φ
y

 is then decomposed to yield:

φ
y s n s n
U U U Y= 


 ∧




  	 (20)

where U
s

M K  �C ×  is the signal subspace and U
n

M M K
  �C × −( )  is the subspace of the noise. Using (Hu 

et al., 2013) to compute the channel matrix H  using U
s

, we use the scalar multiplicative ambiguity 
matrix BK K× :

Ĥ U B
s

= 	 (21)
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We exploit the short training sequence in (2) to obtain the ambiguity matrix and calculate it as:

B U H
s

H Compressed= ( ) ˆ 	 (22)

where the ĤCompressed  is the first approximation of the channel obtained from the calculation of the 
compressed channel in (27). From which we calculate the estimate for channel as:

ˆ ˆ�H U U H
s s

H Compressed= ( ) 	 (23)

The subspace tracking algorithm called the DPM in (Yang & Kaveh, 1988) was adopted but Gram-
Schmidt orthonormalization was replaced with the Givens orthonormalization method. Although this 
does not minimize the algorithm’s complexity, it allows the algorithm an efficient parallelization that 
is an essential feature in the MPC-RAN network.

By using the basic structure of the Givens rotation matrix, we compute the multiplication of a 
matrix. We compute the values of parameters c  and s  and a matrix AM K× . Assuming that 
GM M× , the updated matrix �A G AT=  will affect only two rows, i j,


  thus:

�A
c s

s c
A

i j

H

i j, ,









=
−

















	 (24)

The authors leverage on this equation to develop an algorithm and with permitted abuse of 
language call it the serial GDPM (SGDPM) illustrated in Table 2.

The parameters c  and s  are computed as in the algorithm in Table 3.
The process adapted above is the classical Givens rotation. This approach can be further improved 

by the column-wise Givens rotation where several elements of a column can be annihilated within the 
input matrix. This alteration has the advantage of fewer multiplications than the implementation of 

Table 2. SGDPM sub-space tracking algorithm

for ﻿
k K= …1 2, , ,

A W y
k k

H
k

= −1

T A
k i k
1 =

,

T A
k j k
2 =

,

�A cT sT
i k k k,
= −1 2

�A sT cT
j k k k,
= +1 2

end
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classical Givens rotation (Merchant et al., 2014, 2018). This also has the ability to combine coarse- 
and fine-grained parallelism.

We start by conditioning the input matrix YM K×  multiplying it with the initial matrix 

�A
I
K

M K K
0 0
=














−( )×
 to give us a matrix AM M× . Assuming that GM M× . the updated matrix �A GA=  

and thus:

�A G A
i k i k i k, , ,













= 	 (25)

and:

G diag I G I
i k i i k M i, ,

, ,


 − 



 −= ( )2

� 	 (26)

with �G
c s

s ci k,


=
−
















. Thus, to remove an element in the row m and column 1 corresponding to (m, 

1), we apply one Givens transformation and we can rewrite (25) as:

Table 3. SGDPM sub-space tracking algorithm parameters

 if T
k
2 0=

else if T T
k k
2 1>

t T T
k k

= 1 2/

s
t

=
+

1

1 2

else

t T T
k k

= 2 1/

c
t

=
+

1

1 2

end
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�A G A
R

M
= =




















,1

1

0
	 (27)

where Rk  represents the upper triangular matrix after the k-updates are made. To eliminate multiple 
elements in the column of an input matrix, multiple Givens transformations can be applied in unison 
(Merchant et al., 2018). Thus, by expanding the equation (27) we can remove 2-elements in the 1st 
column of the input matrix:

G G A
R

M M−






=
















1 1 1

2

0, ,
	 (28)

Then equation (28) can be modified to remove M −1  elements from the 1st column of the input 
matrix, so:

G G G G A
R

M M

M

2 1 3 1 1 1 1

1

0, , , ,






 −








−

… =















	 (29)

Then equation (29) can be expanded to delete elements m-1 in first column and a total of M −2  
elements in 2nd column. The total removed elements are therefore M M−( )+ −( )1 2� �  and the resulting 

matrix is R M M−( )+ −( )1 2 :

G G G G G G
M M3 2 4 2 1 2 2 2 1 3, , , , , ,







 −













…( ) 11 1 1 1

1 2

0


 −








−( )+ −( )
…( ) =

















G G A
R

M M

M M

, ,
	 (30)

and we can eliminate all the elements in the respective columns in general, and thus rewrite equation 
(30) as:

G G G G G
M M M M M M, , , , ,−



 − −



 −









( )( )1 1 2 2 3 2 4 2

�


 −








…( )G G
M M1 2 2, ,

	 (31)

and equation (31) is the generalized Givens rotation.
The column-wise Givens rotation operates on one column per iteration and the generalized 

Givens rotation operates column-wise and row-wise simultaneously in a single iteration to triangulate 
a matrix of in dimension. This can be shown as seen in Figure 1.

Looking at the theoretical number of iterations required to carry out each of these Givens rotation-
based computations, it can be seen that the classical Givens rotation needs M M −( )( )1 2/  iterations 
to carry out an upper triangulation of an M M×  matrix, while the column-wise Givens rotation 
needs M −1  iterations for the upper triangulation of the M M×  matrix and the generalized Givens 
rotation requires 1 iteration to upper triangulate an M M×  matrix. Based on this generalized Givens 
rotation the authors develop the generalized Givens algorithm as in Table 4. This algorithm forms 
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the basis of the parallel GDPM (PGDPM) sub-space tracking and consequently the PGDPM based 
semi-blind estimator.

It is important to note that j represents the particular RRH we are currently operating in, m 
represents the columns of the matrix A

j
 and i represents the rows of the matrix A

j
 where � �A A

j j M, ,
, ,

1
…  

represents row one update in the mth column up to row M update in mth column. updating from the 
first row to the last row can be done simultaneously, thereby allowing for concurrent updating of 
rows in a column. But then iteration out of loop can be performed concurrently meaning that row 
changes in separate columns can be parallelised. In addition, the computation of the PGDPM in 
multi-RRH system for different RRHs can be parallelised according to the above algorithm. It then 
renders the PGDPM an effective algorithm for the channel estimation method to be employed at the 
BBU. Therefore, the approximate channel matrix is determined as:

ˆ ˆH A A HPGDPM
j j

H
Compressed= ( ) 	 (32)

This gives rise to PGDPM based compressed data semi-blind estimator which is basically referred 
to as GDPM estimator in this work.

NUMERICAL RESULTS AND ANALYSIS

In this section, we look at the performance indicators NMSE, SNR, reuse fact f  and M for all the 
channel estimation techniques viz improved MMSE, compressed data and PGDPM. Tradeoffs among 
these parameters are evaluated for the channel estimation schemes discussed for the uplink MPC-
RAN. The NMSE can be computed as:

NMSE
E trace h h

trace R

j k j k
H

j k

=
( ){ }
( )

� �
, ,

,

	 (33)

Figure 1. The column-wise and generalized Givens rotation (Merchant et al., 2018)
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The performance of the different channel estimation techniques is analyzed in view of the NMSE, 
SNR and the respective corresponding M. At first, the performance of the corresponding channel 
estimation techniques is compared with different values of NMSE and transmit antennas, M.

The comparison and analysis of NMSE, reuse fact f  and M for the RNA, FDPM and GDPM 
channel estimation techniques in MPC-RAN is discussed. This comparison is performed for M  
ranging from 16 160  to , with a step of 16 and K = 10  MPC-RAN network and the f  varies 
as 1 2 4, ,


 .

Figure 2 compares the attainable NMSE vs. number of RRH antennas in multicell MPC-RAN 
for GDPM-based semi-blind estimator. Several observations can be made based on this figure. 
GDPM-based semi-blind estimator efficiency improves as the number of RRH antennas increases, 
as well as the increase in reuse factor. This is expressed by a decrease in the NMSE when the number 
of RRH antennas increases. It’s also clear that with an increase in the reuse factor Table 5, the NMSE 
decreases. Thus, Table 5 points to the fact that the increase in M reduces the NMSE at all values of 
f  as a result of channel hardening inherent in MPC-RAN. The rise in number of RRH antennas still 
impacts on NMSE at a f  of 4 reducing it further.

Table 4. PGDPM sub-space tracking algorithm

for ﻿
j L= …1 2, , ,  (number of RRHs)

A A y
j

H
j

= �
0

T m A m
j( ) = ( ):,

2

c A i m T m
j

= −( ) ( )1, /

s A i m T m
j

= ( ) ( ), /

�A G A
j j,1 1
=

�A G A
j j,2 2
=

�

�A G A
j M M j, − −=

1 1

�A G A
j M M j,
=

    end

end

end
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Figure 3 and Figure 4 provide a summary on the results of channel estimation techniques for 
RNA, FDPM and GDPM. Figure 3 shows that the semi-blind estimation technique based on GDPM 
has the lowest NMSE at f = 1  followed by FDPM, then RNA. The FDPM closely follows the GDPM. 
From Figure 4, it is clear that at f = 4 . GDPM-based semi-blind estimation technique still outperforms 
the conventional FDPM and RNA estimators. But the NMSE is lower in overall at f = 4  than it is 
at f = 1 .

Next, we provide NMSE, SNR and M comparison and analysis of the channel estimation 
techniques for RNA, compressed data, FDPM and GDPM in MPC-RAN. This comparison is performed 
for M  ranging from 16 160  to , with an increment of 16 and K = 10  MPC-RAN network and the 
SNR ranges from 0dB to 20dB in 2dB steps.

From Figure 5 and Figure 6 depicts the performance of NMSE with variation in SNR for the 
respective channel estimators. IT can be observed that at lower SNR the NMSE is high but as the 
SNR increases, which is an indicator of improving channel conditions, the NMSE reduces for all 
the channel estimators. Again, it is observed that the semi-blind channel estimators have a better 

Figure 2. Achievable NMSE vs. number of RRH antennas for PGDPM-based semi-blind estimator with ( f = 

1 2 4, , )

Table 5. The performance of PGDPM estimator with M varying at (f = 1,2,4)

M
F

1 2 4

16 0.0115202 0.00475571 0.00197112

96 0.0112913 0.00475117 0.00138005

160 0.0111515 0.00474958 0.000909203
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Figure 3. Comparison of achievable NMSE vs. Number of RRH antennas for RNA, FDPM and GDPM estimators for a reuse factor of 1

Figure 4. Comparison of achievable NMSE vs. Number of RRH antennas for RNA, FDPM and GDPM for a reuse factor of 4
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Figure 5. The NMSE vs. Effective SNR with 16 RRH antennas

Figure 6. The NMSE vs. Effective SNR with 160 RRH antennas



International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

81

NMSE than the linear estimators, yet they need reduced pilots for estimation. This points to better 
performance in pilot contamination yet with good performance.

In order to get the average NMSE we take the NMSE over the RRH antenna range at particular 
value of f  for each SNR between 0dB to 20dB in 2dB steps. Next, we average this NMSE for all 
SNR considered at a given f  over the range of RRH antennas. This then yields the NMSE over a 
given RRH range for a specified f  and plotted as shown in Figures 7 and 8.

Figure 7 summarizes the NMSE against the number of RRH antennas for RNA, compressed 
data, FDPM and GDPM for a reuse factor of 1. As the number of RRH antennas increase the NMSE 
decreases since the channel estimation improves due channel hardening phenomenon. Again, the 
estimation of the GDPM channel and the estimation of the FDPM channel have less NMSE compared 
to the RNA-MMSE and compressed data channel, because the techniques of semi-blind estimation of 
the channel are superior to linear estimation techniques. But as RRH antennas increases the estimation 
of the RNA and the compressed data channel NMSE nears that of the estimation of the FDPM and 
GDPM channel since the approximation improves with the increase in the number of antennas due 
to the hardening phenomenon of channels.

The reuse factor is set to 2 and 4 respectively in Figure 8 and Figure 9, and the NMSE is reduced 
as compared to the case when the reuse factor is set to 1 and also a reuse factor of 2 has a higher 
NMSE than the reuse factor of 4. This can be due to the fact that as the reuse factor increases the 
pilot contamination reduces and this improves the channel estimation process leading to a reduction 
in NMSE for all RNA, compressed data, FDPM and GDPM channel estimation techniques.

Once again, it can be noted that the FDPM has a slightly higher NMSE than the GDPM 
pointing to the fact that although GDPM has a high complexity its performance is superior to 
that of FDPM. Thus, we can lower the complexity in GDPM with parallelization, and hence 

Figure 7. The NMSE vs. Number of RRH antennas with a reuse factor of 1considered over SNR of 0dB to 20dB



International Journal of Embedded and Real-Time Communication Systems
Volume 12 • Issue 1 • January-March 2021

82

exploit its superior channel estimation performance. Another important observation is that when 
the NMSE is averaged over 0dB to 20dB SNR the resultant values of NMSE is less than for the 
case when SNR is not factored in for all the channel estimation techniques. This is expected 
since when the network condition is improved the estimation of the channel improves since the 
pilot contamination consequently reduces.

CONCLUSION

The paper gives the performance analysis and comparison of the RNA, Compressed data, FDPM and 
GDPM channel estimators for MPC-RAN system. The performance of the channel estimation schemes 
in terms of the RRH antennas and the NMSE is studied. The NMSE was derived theoretically for 
each of the channel estimation schemes under similar assumptions and for the MPC-RAN system. 
The NMSE for the GDPM estimator is lower than that of the FDPM, RNA and Compressed data 
estimators. And this points to better study around the GDPM estimator parallelization architectures 
to enhance its applicability in MPC-RAN network. For NMSE averaged over over 0dB to 20dB SNR, 
the increase in the number of antennas increases the NMSE performance of the FDPM, RNA and 
Compressed data estimators to near that of GDPM, this is attributed to better approximation as the 
number of antennas increase due to channel hardening phenomenon and improved channel conditions 
due to presence of high SNR. The future work to this study will be to look at parallelization structures 
in multicores to best implement GDPM estimator and make it more efficient in MPC-RAN application. 
This will offer better estimation with reduced data size and number of pilots yet with optimal channel 
estimation at BBU due to highly efficient parallelization.

Figure 8. The NMSE vs. Number of RRH antennas with a reuse factor of 2 considered over SNR of 0dB to 20dB
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Figure 9. The normalized MSE vs. Number of RRH antennas with a reuse factor of 4 considered over SNR of 0dB to 20dB

Table 6. Comparison of the conventional and the PGDPM channel estimation techniques in MPC-RAN

Conventional Channel Estimation Method PGDPM Channel Estimation Method

1 Linear methods rely on pilots for channel estimation 
increasing pilot contamination through pilot 
overheads.

Uses fewer pilots mostly the initial estimation from 
linear model for channel estimation reducing pilot 
contamination.

2 Does not work with compressed data this results 
in overstretching the backhaul link in MPC-RAN 
system causing congestion.

Relies on compressed data techniques to reduce data send 
over the backhaul link hence minimizing congestion.

3 The parallelization efficiency in terms of hardware 
implementation as per the algorithms used is limited.

It offers great parallelization in terms of hardware 
implementation by virtue of the highly parallelizable 
algorithm in Table 5, further reducing its complexity.

4 They conventional channel estimation methods have a 
high NMSE thus giving reduced efficiency in MPC-
RAN system.

The PGDPM depicts a lower NMSE than the conventional 
methods hence improving efficiency of the MPC-RAN 
system.
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