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ABSTRACT

In this paper, a hybrid approach using sliding window mechanism followed by fuzzy c means 
clustering is proposed for the automated brain tumour extraction. The proposed method consists 
three phases. The first phase is used for detecting the tumorous brain MR scans by implementing pre-
processing techniques followed by texture features extraction and classification. Further, this phase 
also compares the performance of different classifiers. The second phase consists of the localization 
of the tumorous region using sliding window mechanism, in which a sized window sweeps through 
the whole tumorous MR scan and the window is classified as tumorous or non-tumorous. The third 
phase consists of fuzzy c means clustering to get the exact location of the tumour by removing the 
misclassified windows obtained from Phase 2. 2D single-spectral anatomical FLAIR MRI scans are 
considered for experiment. Outcomes demonstrate significant results in terms of sensitivity, specificity, 
accuracy, dice similarity coefficient in comparison with the other existing methods.
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1. INTRODUCTION

In recent years, current statistics show a growing number of people suffering from a brain tumor at 
an alarming pace. As per a 2018 estimate, about 700,000 people in the United States (US) alone are 
living with a prime brain tumor while over 79,000 more people have been diagnosed with such related 
conditions (“Quick Brain Tumor Facts”,2018). A brain tumor comprises a group of the anomalous 
cells in the brain with the capability of eliminating brain cells, increasing inflammation in the brain. 
Owing to the varying shape, size, texture, and position of the tumor, the automated extraction of 
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such brain tumor(s) from the brain Magnetic Resonance Imaging (MRI) sequences is a non-trivial, 
but pertinent exercise.

Over the last three decades, despite the accumulation of a large number of brain tumor cases, and 
their devastating prognosis, only four FDA-approved medicine and one equipment for the treatment of 
patients who have brain tumors have been advocated (Angulakshmi & Lakshmi Priya, 2017). In fact, 
there are over 140 varieties of brain tumors; among them, two main categories are: (a) Malignant; 
v. (b) Benign tumors. For malignant tumors, two sub-categories exist: (i) a primary tumor starting 
inside the brain; or (ii) a secondary tumor or baptized brain metastasis tumor, which is dispersed 
from other body parts. Benign tumors are largely a mass of tissues with deficient capability to spread.

Today, a novel automatic method for 2D single-spectral anatomical Fluid Attenuated Inversion 
Recovery (FLAIR) MR Scans for tumor detection is being proposed. Here, the detection of tumorous 
MR scans, the process of brain tumor segmentation, and the evaluation of its efficacy have been 
piloted. For both the detection and localization of tumorous brain MR scans, different texture features, 
including first-order statistical features (Nabizadeh & Kubat, 2015), Gray Level Co-occurrence Matrix 
(GLCM), Gray Level Run Length Matrix (GLRLM), Histogram of Gradient (HOG), Local Binary 
Pattern (LBP), Cross Diagonal Texture Matrix (CDTM), and Simplified Texture Spectrum Features 
(STSF) have been deployed. For detecting tumorous brain MR scans, various classifiers have also 
been compared. For example, a sliding window of specific (45 X 45) size sweeping the entire scanned 
“tumor” image is considered for brain tumor segmentation via MR scans. Nabizadeh & Kubat (2015) 
have experimented with three different-sized windows and found a 45 X 45 window to produce the 
best segmentation results. Moreover, this window or slice may be further classified as tumorous v. 
non-tumorous using SVM (Support Vector Machine) via linear and radial basis function (RBF) kernel.

The rest of this paper is organized as follows. Section 2 presents the background of the brain 
MR scans and recent contributions whereas Section 3 summarizes the different types of features 
considered for feature extraction. Following this, Section 4 presents the fuzzy c-means clustering 
methodology while Section 5 defines the implementation of the proposed novel technique for brain 
tumor segmentation. Section 6 deliberates about datasets, results obtained and more elaborated 
discussions of the findings and associated implications. Finally, Section 7 offers concluding remarks, 
including chief contributions of this work, its limitations and potential future work.

2. BACKGROUND

Medical image processing, via MRI and other means (e.g., CT Scan), plays a key role in the analysis of 
brain tumors; in turn, this process supports how the tumor and its treatment plan may best be handled. 
Primarily used in the diagnosis of brain tumor and for treatment planning, the MRI is a powerful 
non-invasive medical imaging modality for brain scans (“MRI Basics”, 2018). It offers a variety of 
valuable features, including multiplanar capabilities as well as prospective of tissue characterization 
with no teeth and bone artefacts. Various MR sequences are generated by changing the excitation 
times during the acquisition of an image (e.g., Clark, Hall & Goldgof, 1998; Işın, Direkoğlu & Şah, 
2016). These various MRI sequences produce diverse kinds of tissue contrast images, creating very 
significant basic information to allow the proficient extraction of tumors alongside their sub-regions 
(e.g., El-Dahshan, Mohsen, Revett & Salem, 2014; Işın et al., 2016; Saxena, Garg & Pattnaik, 2019).

Figure 1 portrays the three different MRI sequencing standards for brain tumor diagnosis known 
respectively as the T1, T2 and FLAIR MRI Sequences (Ahmed, Iftekharuddin &Vossough, 2011).

Additionally, Table 1 displays the assessment of T1 v. T2 v. FLAIR MR Sequences. Typically, 
T1 and T2 MR sequences may be easily differentiated by CSF (Cerebro-Spinal Fluid). For example, 
T1-weighted CSF often produces darker images whereas T2-weighted CSF images are bright. Saxena, 
Mohapatra & Pattnaik (2019) note that FLAIR MR sequencing is similar to T2 except that Echo Time 
(TE) and Repetition Time (TR) times are lengthier (“MRI Basic”, 2018).
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In MR Scans, sometimes it is difficult to distinguish among precise tissues and cells from the 
respite of the image (Nabizadeh & Kubat, 2015); hence, image segmentation is implemented either 
manually or automatically. Essentially, image segmentation divides an image into a group of the 
corresponding homogeneous area with related properties. Manual image segmentation is time intense 
and complex for a large volume of MR scans (Aslam, Khan & Beg, 2015). Hence, an automatic means 
of segmenting brain MR scans is essential for the efficient localization of a brain tumor within a 
reasonable time in order to achieve a superior treatment plan. Nonetheless, several techniques have 
emerged for automated brain tumor segmentation, for example, thresholding, edge-based method, 
morphological image processing, watershed segmentation, atlas-based method, deformation model, 
graph cut methods, among others (Angulakshmi & Lakshmi Priya, 2017). Even so, accurate 
segmentation remains challenging for many researchers. As noted, the published literature for brain 
tumor segmentation have pervaded in recent years.

2.1. Recent Contributions
Incorporating the review of Kumari & Saxena (2018), this section overviews recent works with 
advantages and limitations on different techniques of brain tumor segmentation and classification.

Sudharani, Sarma & Prasad (2016) have proposed a method to extract the tumorous region in 
low-intensity MR scans. Their approach is to apply a series of steps to segment tumorous regions 
such as image enhancement, colour plane extraction, re-sampling of the image, among others. Image 
morphology is primarily implemented as the filter to exterminate pixels of low-frequency and the 
picture elements present in the border region. Diverse parameters of the tumor such as length and 
area are efficiently demarcated for diagnosis and treatment. The core downside of this method is 
that it uses several monotonous steps for the segmentation. In (Pingale & Todmal, 2018), the authors 
have modelled Fuzzy C-Means (FCM) and k-means on the T1 contrast axial plane MRI scans for the 
extraction of the tumorous region through the histogram steered initialization of the cluster. K-means 
algorithm is more proficient than FCM although FCM recognizes scarcely classes of three tissues. 
Notwithstanding, K-means recognizes every six classes with the major shortcoming being that few 
white matter (WM) may be categorized as edema and vice versa.

Figure 1. Types of MR Sequences

Table 1. The Analysis of Basic MRI Sequences (Brain)

Tissue T1-Weighted T2-Weighted FLAIR

White Matter Light Dark Gray Dark Gray

CSF Dark Bright Dark

Cortex Gray Light Gray Light Gray

Fat (Within bone marrow) Bright Light Light

Inflammation Dark Bright Bright
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Al-Shaikhli, Yang & Rosenhahn (2014) have implemented the topological graph prior information 
of atlas in a bespoke multilevel set invention for multiregional localization of brain tumorous MRI 
scans. The drawback here is that accuracy has to be a priori contingent on the accurateness of the 
topological graph. As well, Pereira, Pinto, Alves & Silva (2016) have suggested Convolutional Neural 
Network (CNN) based classifier with the normalization of intensity and patch, a novel deep learning 
method used for brain tumor extraction and classification. Here, data expansion is used to accomplish 
the capriciousness of structural configuration and spatial localization of the brain tumor. In (Aslam, 
Khan & Beg, 2015), the authors promote a method based on closed contour algorithm, namely, the 
Sobel edge detection and thresholding techniques. Here, the segmented images of brain tumors are 
well equated to normal Sobel edge detection in terms of dice similarity coefficients. Additionally, there 
is the scope of improvement for the closed contour method to upsurge the province while reducing 
the thickness of the borderlines of the different regions.

Havaei, Dutil & Pal (2016) have used CNN techniques to achieve high performance via a novel 
two-way architecture by positioning two CNNs instead of relying on local label dependencies. In 
(Priya & Shobarani, 2016), contextual clustering technique, which delivers improved segmentation 
correctness by plummeting false segmentation, have been used. A future possibility is to amend the 
value of variables used in the proposed method for further enhancement in the segmentation of brain 
tumor. Subbanna, Precup & Arbel (2014) have developed an iterative Marcov Random Field (MRF) 
framework to comprise voxel-based MRF, adopted MRF, and regional MRF. The implemented context 
has also been used to classify all the subclasses of the brain MR sequences. The chief constraint 
of MRF is its computational complexity and effective selection of parameters even though it is 
regularly used to model belongings of texture and intensity inhomogeneity. In (Menze et al., 2015), 
generative-discriminative model is implemented to convey the set-up and results of the multimodal 
Brain Tumor Segmentation (BraTS) challenge held in grouping with the MICCAI 2012 and 2013 
conferences. Numerous tumor segmentation algorithms have been applied to a set of 65 multi-contrast 
MR scans of Low-Grade Glioma (LGG) v. High-Grade Glioma (HGG) patients via hand-annotated 
and to 65 similar scans produced via tumor image simulation software. Finally, Madhukumar & 
Santhiyakumari (2015) have implemented contrast limited adaptive histogram equalization, K-means 
and FCM, demonstrating that k-means distinguish CSF fluid, grey matter and white matter regions 
reasonably better than FCM.

Other notable related works include that of Işın et al. (2016), who have developed a Deep CNN 
model for tumor segmentation. Key features here include the efficient handling of an enormous volume 
of MR slices. Dahab, Ghoniemy,Gamal & Selim (2012) employ customized probabilistic neural 
network (PNN) with linear vector quantization (LVQ) modelling procedure for the classification of 
meticulous region-of-interest (ROI). The extraction of the feature’s sets is done from every ROI to 
estimate brain tumor, assigning a mass. These allocated weights are cast-off for modelling network 
based on LVQ. With Nabizadeh & Kubat (2015), segmentation, tumor detection and assessment of 
Statistical and Gabor feature consuming numerous classifiers (K-NN, SVM, K-Means and many 
more) are evaluated, showing the effectiveness of statistical features in terms of higher accuracy with 
smaller dimensionality and no need for the initial assumption. In Jaffar, Naveed & Ahmed (2009), 
anisotropic diffusion filtering, FCM methods are implemented for detecting and extracting the average 
DSC (Dice Similarity Coefficients) obtained being 0.729, which stretches the efficient segmentation 
and detection of a brain tumor in MR sequences. In future, it is noted that circularity criteria may be 
used with other feature extraction technique to enhance its efficiency. Sonavane & Sonar (2016) also 
implement Ada Boost classifier (Islam, Reza & Iftekharuddin, 2013), Edge Detection, Anisotropic 
Diffusion Filtering, Stationary Wavelet Transform, with implementation yielding a perfect score 
(100%) correctness on 155 MR sequences. It is noted that their implementation actually delivers an 
automatic system with improved correctness in minimum time to detect a brain tumor.

Last, but not the least, SVM ensemble base classifier techniques are implemented by Ain, 
Jaffar & Choi (2014) for handling texture features. Here, tremendous precision of the classification 
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(greater than 99%) has been accomplished with the possibility of measuring the depth and area of 
the tumor extracted region in future. As well, Abdel-Maksoud, Elmogy & Al-Awadi (2015) report 
using K-means clustering, mean shift, expectation-maximization and FCM. The benefit of their 
approach is the expansion of a novel method that syndicate the k means with the FCM for detecting 
brain tumor with advanced accuracy within least timeframe. In (Soltaninejad, Yang & Lambrou, 
2016), aside from Super-pixel, the extremely randomized trees (ERT) classifier, SVM and Gabor 
Texton feature techniques are used for brain tumor segmentation. The advantage of this integrative 
approach is indicative of an entirely automatic technique to perceive and extract the brain tumor 
from FLAIR MR sequences by calculating the Gabor text function, curvature, fractal analysis and 
statistical intensity characteristics from super-pixels. According to the authors, Super-pixel grounded 
enormously randomized trees in FLAIR can also slog for T1 and T2 type MR sequences. In contrast, 
Telrandhe, Pimpalkar & Kendhe (2016) employ K-means clustering algorithm, object labelling 
algorithm, with SVM classification methods for brain tumor segmentation. The major benefit of their 
approach is that it delivers adaptive brain tumor recognition. Intended for making the segmentation 
process adaptive, this proposed system deploys SVM in an unsupervised style, thereby stretching 
better result relatively to other prevailing methods. In future, the approach may be extended for 
handling 3-dimensional image data.

More recently, Lahmiri (2017) reports on different classification techniques such as particle 
swarm optimization, and SVM. Experimental consequence displays that feature abstraction from 
Fractional Order Darwinian PSO (FODPSO) segmented images provides advanced performance 
rather than the classical DPSO and PSO. Sachdeva, Kumar, Gupta, Khandelwal & Ahuja (2016) have 
proposed content-based active contour to segment brain tumors with extracted features being high-
dimensional. To diminish those extracted features, Genetic Algorithm (GA) is implemented. Here, 
GA with ANN and GA with SVM are implemented for brain tumor segmentation and classification 
with results compared. GA with SVM yields superior processing speed, whereas GA with ANN 
produces better accuracy. Again, the issue here is that computational complexity increases due to 
hybridization. Hence, it appears that despite the multiple emerging and promising techniques and 
methods developed for brain tumor detection, research for developing an automated system to achieve 
accurate tumor segmentation in a reasonable time is still seriously lacking.

3. METHODS FOR TEXTURE FEATURES EXTRACTION

Several texture features extraction techniques such as first-order statistical features, GLRLM, GLCM, 
HOG, LBP features are summarized herein. Further, Cross Diagonal Texture Features (CDTM) and 
Simplified Texture Spectrum (STS) are also implemented to achieve even higher accuracies.

3.1 First Order Statistical Features
Certain useful features of first-order statistical features include mean, energy, entropy, average 
contrast, skewness and kurtosis.

Mean is the average value of the intensity of the image. Variance specifies the variations of 
intensities about the mean value. Skewness enumerates the unevenness of the histogram around the 
mean value. Kurtosis denotes the flatness of the histogram. Entropy reveals the haphazardness of 
different intensity values. Formulas are listed below for these features as given in Table 2 (Nabizadeh 
& Kubat, 2015).

3.2 Grey Level Co-Occurrence Matrix (GLCM) Features
Basically, GLCM describes a statistical method of analysing texture information that deliberates 
the spatial relationship of the pixels. It evaluates the properties of the image that belong to 2nd-order 
statistics, representing the association of pair of pixels.
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Generally, d=1,2 and θ  0°, 45°,90°, 135°are used for calculation (Joshi, Rana & Misra, 2010; 
Nabizadeh & Kubat, 2015). The following are the eight different texture features that are represented 
by the co-occurrences matrix as given in Table 3.

3.3 Gray Level Run Length Method (GLRLM) Features
GLRLM is also a 2nd-order statistical method that gives a significant parameter to a spatial field grey 
level value. R θ( )  is calculated for θ  0°, 45°, 90°, 135°. The following five features, as shown in 
Table 4, are computed for GLRM features (Ahmed, Iftekharuddin &Vossough, 2011).

3.4 Histogram of Oriented Gradient Features (HOG)
HOG descriptors are used to detect objects in computer vision and image processing. The technique 
is to count the gradient orientation in confined parts of an image or area of concentration. For HOG, 
first divide an image into small cells; then, individually cell histogram of gradient positioning is 
calculated for every pixel within the cells. Combining these histograms yields a descriptor (“Histogram 
of Oriented Gradients”, 2018).

Table 2. First Order Statistical Features
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where g is representing the image maximum gray level and pr  (i) is the probability density of the intensity levels 
which is calculated by: 

pr  (i) = 
hl i

T
( )

Where hl(i) is the whole numeral of pixels of intensity level i and T is the whole numeral of pixels present in the image.
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3.5 Local Binary Pattern (LBP) Features
The LBP operator moves a window across the image and provides tags to the central pixels of the 
window by thresholding its adjacent, describing the binary number for its neighbours with central 
value as shown in Table 5.

Here, the notation (P, R) is used for adjacent pixels where P is a sampling point on the circle of 
R radius. Table 5 shows the LBP code of a pixel (xc, yc) (Nabizadeh & Kubat, 2015).

3.6 CDTM Features
For CDTM, the eight (8) elements present in the unit of texture attained from a neighbourhood of 3 
X 3 pixels are alienated into two clusters, each with four (4) elements.

The elements present at diagonal are organized in a single group, while the further group comprises 
the other elements present in the unit of texture. Each element in the two different clusters has one of 
the three probable values with the pattern of 0, 1, and 2. A “0” value is assigned if the value of the 
intensity of that element is fewer than the central pixel’s value, “1” if they are identical, and “2” if the 
intensity value is larger than the central pixel’s value.The properties of the merger of all four input 
elements in every cluster produces 81 (34) texture units in overall (Al-Janobi, 2001). These twofold 
new texture units are called cross-texture unit (CTU) and diagonal-texture unit (DTU), respectively.

Table 3. GLCM Features
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where Cij is the (i, j) the component of the co-occurrence matrix and G is the number of grey levels.
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3.7 Simplified Texture Spectrum (STS)
Benefit of the texture spectrum method is that the texture characteristics of an image are considered 
by the equivalent texture spectrum rather than texture features because texture spectrum can be 
reliably used for image analysis and image classification. STS characterizes local texture information 
in four (4) directions instead of all eight (8) directions as in texture spectrum features. With the STS, 
the differences of grey-level among the central pixel and its corresponding four (4) neighbours are 
shortened to three (3) different situations (=, <, and >). All the probable texture units are well-
organized in a system of 3-tuple i.e. 34 = 81 different texture unit such that comparable textural states 
could have outcome in a very dissimilar unit of texture numbers, which equals:

Table 4. GLRLM Features
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Table 5. Local Binary Pattern Features
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Where g represents the value of pixel intensity and here P=8 and R=1.
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NTU = Σ Ei 3i-1	 (1)

with i = 1, 2, 3, and 4, individually, for the four directions and with Ei = 0, 1, or 2, that resembles 
individually, the condition of <, = and > among the central pixel and its neighbouring picture element.

In this approach, we do not discriminate the order of the four (4) different neighbourhood pixels 
in cataloguing the texture unit numeral. This will cluster all the different 81 texture units into only 
15 probable states.

3.8 Feature Aggregation
First-order statistical features emphasize a total of six (6) features, namely, mean, average contrast, 
entropy, energy, skewness and kurtosis.

In our experiment, GLCM features are extracted by smearing the angle 0, 45, 90 & 135 and 
for distance 1 & 2. In respective orientation, GLCM matrix and eight (8) derived features (entropy, 
correlation, homogeneity, absolute value, inertia, inverse difference, maximum probability and energy) 
are computed, resulting in sixty-four (64) features. GLRLM features are also computed for different 
angles such as 0, 45, 90 & 135. Extracted features include Short Run Emphasis (SRE), Long Run 
Emphasis (LRE), Gray Level Distribution (GLD), Run length Distribution (RLD), Run Percentage 
(RP) in four (4) directions, yielding a total of 20 features.

HOG features measure the incidences of gradient orientations in the provincial zones of the 
image. By using two (2) scales and eight (8) different orientations, eighty HOG feature values are 
computed. The dimension of LBP features is 256. The six (6) CDTM features to be extracted include 
Homogeneity, Entropy, Absolute value, Contrast, Energy and Inertia Difference Moment. Finally, 
fifteen (15) STS features are extracted (e.g., Işın et al., 2016; Havaei et al., 2016; Priya & Shobarani, 
2016).

The total of six (6) first-order statistical features, twenty (20) GLRLM features, sixty-four (64) 
GLCM features, eighty (80) HOG features, two fifty-six (256) LBP features, six (6) CDTM features 
and fifteen (15) STS features, makes an accumulation of 447-dimensional statistical feature vector. 
Main reason of considering of such dimensional vector to improve the accuracy of the obtained results 
of segmentation and classification.

4. THE FUZZY C-MEANS (FCM) TECHNIQUE

An unsupervised clustering method used for feature analysis, clustering, and classifier design in 
medical imaging, segmentation, and more such as astronomy (Chuang, Tzeng, Chen, Wu & Chen, 
2006), FCM categorizes the images which are arranged into similar element within the feature 
space and grouped into different clusters. FCM method, in our experiment, is used to eliminate 
the misclassified window obtained via the sliding window technique during the tumor localization 
step; importantly, it is the distance of the pixel from the cluster centre in the feature space that will 
determine how the clustering cost may be diminished (e.g., Elnakib, Gimel’Farb, Suri & El-Baz, 
2011; Liew A-C & Yan, 2003).

4.1 Centroid
Consider point x having a group of the coefficients to accommodate the degree of existence in the kth 
cluster wk(x). By FCM, the centroid cluster represents the mean of all-encompassing data elements 
wholistically, biased by their degree-of-fitting to the cluster:

C
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x k x x

x k x
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where m is the hyper-parameter that controls how fuzzy the cluster will be, that is, a higher m value 
essentially infers a fuzzier cluster.

4.2 Method
The FCM attempts to divide a finite group of:

n item X x x
n

= { }1
,... 	

into a group of c fuzzy clusters with esteem to some specified standard.
Given a limited group of data, the algorithm yields a list of {\displaystyle c}c cluster centres 
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arg
c

min 
i

n

j

c

ij
m

x j
w m c

= =
∑∑ −

1 1

2 	 (3)

where:

w

x c

x c

i j

k

c i j

i k

m

,
=

−

−











=

−

∑

1

1

2

1

	 (4)

5. GENERAL STRUCTURE OF THE PROPOSED FRAMEWORK

As shown in Figure 2, the proposed framework comprises two stages: (a) Tumor slice detection; and 
(b) Tumor localization.

There are three phases applicable in deploying the proposed framework: Phase 1 is for detecting 
tumorous brain MR slices while Phase 2 is to segment the tumor from the tumorous brain MR slice, 
followed by Phase 3. We can say that Phases 2 and 3 are sequential. Supposedly, we already have 
tumorous slice; then, there is no need to go through Phase 1. Instead, we can start from Phase 2 
followed by Phase 3. The description of each block is now given below.

5.1 Tumor Slice Detection
In tumor slice detection, a key pre-processing step is to implement a median filter to remove poison 
noise followed by extracting the aforementioned features. Principal Component Analysis (PCA) for 
dimensionality reduction and classification via supervised vigorous classification methods may then 
be applied and results compared. The classification techniques can include SVM, KNN (distance = 
Euclidean, City-block and Minkowski & k = 1, 3, 5, 7), Binary Decision Trees, Random Forest and 
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Ensemble methods, for example, Adaboost, Gentleboost, Logitboost, LPboost, Robustboost, Rusboost 
and Totalboost. Aside from these approaches, deep learning CNN model may also be deployed as in 
the current case being reported (Saxena, Paul, Garg, Saikia & Datta, 2020).

As shown in Figure 3, training samples are being randomly selected. Accordingly, the feature 
set’s appropriateness for the segmentation of the tumor should be validated. In our case, a 10-fold 
cross-validation has been implemented to validate the sturdiness of our developed model while 
averting having to over-fit the data. Subsequent to training the classifier, the rate of recognition of 
the classifier on independent data is used as the basis to track performance in brain tumor extraction 
vis-à-vis our proposed model.

5.2 Tumor Localization
After detecting the tumorous slice, the localization of the tumor region via a sliding window is 
implemented. The window moves around the entire brain slice which consists of brain tumors. There 
are a series of steps in the tumor localization process.

First, a training data set of 45 x 45 window size of 100 images representing both healthy v. non-
healthy brain tissues are generated. Hereto, texture features are applied onto this window and are being 
classified via SVM with a linear kernel. Second, for every instance of window feature set classified 
via SVM with the training data set, features are being computed from every occurrence of window 
(size 45x45) throughout the tumor slice. Third, if the window is categorized as tumor-positive, then 
the centre pixel of the window will be labelled as tumorous; conversely, if the window is categorized 
as healthy, then the centre pixel of the window is labelled as healthy.

Figure 4 shows the entire series of steps, where the overlapping window of the dimension 45 X 
45 are classified as tumorous v. non-tumorous groupings.

5.3 Performance Measure
Performance measures, including sensitivity, specificity, accuracy and diice similarity coefficient, 
are defined as:

Figure 2. Block Diagram of the Implemented System
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Figure 3. Different Implemented Classification Techniques

Figure 4. Representation of the implemented system used for localization of brain
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Sensitivity = tps

tps fns+
100% 	 (5)

Specificity = tns

tns fps+
100% 	 (6)

Accuracy = tps tns

tps tns fps fns

+
+ + +

100% 	 (7)

where:

tps = Accurately classified positive samples	
tns= Accurately classified negative samples	
fps = Inaccurately classified positive samples	
fns = Inaccurately classified negative samples	

Dice similarity coefficient (DSC): The DSC of two sets A and B is expressed as:

dice(A,B) = 2 * | intersection(A,B) | / (| A | + | B |)	 (8)

6. DATASETS, RESULTS OBTAINED AND DISCUSSION

6.1 Data Set
We have used brain dataset obtained from the NCI-MICCAI 2017 challenge on Multimodal 
Brain Tumor Segmentation (Menze et al., 2015). NCI-MICCAI 2017 database comprises entirely 
anonymized images from the institutions: the University of Bern, University of Debrecen, ETH Zurich 
and University of Utah and also it is publicly accessible images from The Cancer Imaging Archive 
(TCIA). We have used HGG (High-Grade Glioma) and LGG (Low -Grade Glioma) of 285 subject 
patients. There were 4 types of brain MR sequences T1, T2, T1ce, FLAIR. We have considered only 
FLAIR brain MR scans.

6.2 Brain Tumor Slice Detection
This process includes three steps depicted in Figure 2. In the first step for pre-processing, we have 
used a median filter to remove noise from the image. In the second step, above-mentioned features 
extracted from MR data and applied PCA for feature reduction. Then in third step classification 
through SVM with linear and RBF kernel is implemented to identify tumorous and healthy MR 
slices. For the detection, 400 FLAIR tumorous and non-tumorous brain MR scans are considered 
after implementing 10-fold cross-validation. Further for brain tumor slice detection, a deep model 
is also implemented for comparing the accuracy of the deep model with the other machine learning 
technique. Deep learning is a subset of the machine learning field which gained a lot of interest by 
the researchers in the last several years.
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We have implemented a CNN (Convolutional Neural Network) model that consists convolution 
layer, ReLU (Rectified Linear Unit) layer, pooling layer (Naceur, Saouli, Akil & Kachouri, 2018). 
Firstly, the convolution layer is applied then different sensitivity of the filter is sub-sampled. Further, 
the transfer of signal from one to another layer is controlled by the activation layer. Then relu layer is 
used. We have used small kernels for the architecture and got 96.7% training accuracy. Further, we 
got high validation accuracy and low validation loss. We can conclude that the CNN model gives the 
best accuracy in brain tumor slice detection. However, the overall time complexity in the case of CNN 
model is higher than the other. Figure 5 demonstrates the accuracy obtained from different classifiers.

6.3 Brain Tumor Localization
After implementing the above steps as given in section 5.2 following results are obtained. Figure 6 
shows the tumor localization of three sample brain slices using statistical features and SVM with a 
linear kernel. Figure 6(a) shows that some misclassification of the pixels is there which means some 
non-healthy pixel mistakenly labelled as healthy pixel and some healthy pixel mistakenly labelled as 
non-healthy pixels. So, some tumor part is labelled as healthy. Further, in the fourth step for removing 
misclassified pixels fuzzy c- means clustering technique has been implemented as described in 
section 4. For the better results, we also applied some morphological operations (erosion, dilation) 
on the segmented MR scans. Figure6(c) shows the segmented tumor after removing the misclassified 
window. Table 6 shows the result of SVM with a linear kernel for statistical feature extracted from 
FLAIR images of data set it gives 97.89% accuracy. To classify each window SVM with a linear 

Figure 5. Statistical analysis of the different classifiers used in brain tumorous slice detection, where d denotes the distance

Table 6. SVM classifiers accuracy of FLAIR dataset of tumor localization steps (Average after 10 cross-validations)

SVM Sensitivity Specificity Accuracy

Linear 97.87 97.91 97.89
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kernel is used. Table 6 depicts the classification accuracy of SVM with the linear kernel which is 
implemented for classifying window as tumorous and non-tumorous.

6.4 Dice Similarity Coefficient (DSC)
It is used for comparing the similarity between two data sample. Here we have compared similarity 
between ground truth segmented image and automatically segmented image. The following graph 
as shown in Figure 7 is plotted for 100 tumorous FLAIR brain MR scans of DSC. That is found to 
be lying between 0.851 to 0.982. For perfect matching, it should be 1. DSC lies between 0 to 1. Zero 
means no similarity and 1 is for a perfect match.

6.5 Discussion
In existing current literatures, many techniques are used for the accurate segmentation of brain tumor 
such as improved edge detection (Aslam et al., 2015), super-pixel based ERT (Soltaninejad, Yang 
& Lambrou, 2016), fuzzy c-means (Kumari & Saxena, 2018), CNN based segmentation (Pereira, 

Figure 6. Examples of tumor segmentation on FLAIR data. (a) brain MR scan (b) segmented tumor using sliding window segmented 
tumor after fuzzy c-means for misclassification of pixels (c) overlay of our segmented area on the brain image (d) region outline 
of our segmented region on the brain image (e) Tumor Outlined Results
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Pinto, Alves & Silva, 2016). Our experimental result is comparable, and, in some cases, it is better 
than with different proposed method applied by different researchers. In (Soltaninejad et al., 2016) 
there is an average dice score is 0.88 for BRATS dataset also in (Jaffar et al., 2009) the average dice 
coefficient is 0.729 and, in our experiment, the average dice coefficient is 0.921 for BRATS FLAIR 
dataset. The 0.921 dice score shows the close match of ground truth segmented image with our 
automatic segmented tumor region. The classification accuracy in (Ain et al., 2014) is more than 
99% for segmentation of tumors. The accuracy of our system is in tumor detection step using several 
classifiers are significant and in tumor localisation step it is lying between 0.851 to 0.98. For tumor 
localization in (Nabizadeh & Kubat, 2015) the SVM with linear kernel classification accuracy is 95.1% 
for HGG. In this work, the BRATS data set is used for evaluation and testing which is easily publicly 
available. FLAIR dataset has been used in our system, it is 97.89% accurate using statistical feature 
extraction. Recently, deep learning plays a very vital role in the area of brain tumor segmentation and 
classification. In (Alqazzaz, Sun, Yang & Nokes, 2019) authors have used deep learning-based fully 
convolutional network (SegNet) for a brain tumor on multi-model brain MR images. They have used 
four MRI modalities such as T1, T2, T1ce and FLAIR. They have also used BRATS 2017 data set for 
the analysis. They have achieved maximum of 0.85 F-Measure scores for the whole tumor. Though, 
they have used several multimodalities MR scans. However, on average, our obtained result is quite 
comparable with their result. In (Havaei et al., 2017), authors have implemented a deep neural network 
for brain tumor segmentation and tested different architecture. Further, in (Abd-Ellah, Awad, Khalaf 
& Hamed, 2018) authors have implemented a two-phase multi-model automatic diagnosis system 
for brain tumor detection and localization. The authors have achieved dice score 0.87 for brain tumor 
localization phase while evaluating using 804 3D MRIs from the BRATS 2013 database. This also 
shows that our proposed method is quite comparable & better in terms of accuracy and dice value with 
the other existing methods as well as deep learning-based approaches for brain tumor segmentation.

Figure 7. DSC of segmented brain tumor MR Scans
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7. CONCLUSION

Altogether, a fully automated system is developed for diagnosing the brain tumor from brain MR 
images. This integrated automated framework can detect FLAIR MR images containing tumor and 
then segmentation of the tumorous region. This system performs the diagnosis in three phases. The 
first phase is used for detecting the tumorous brain MRI. The second phase consists of the localization 
of the tumorous area using a sliding window mechanism followed by fuzzy c means. The remarkable 
accuracy in the performance of the proposed method in tumor segmentation by its low computational 
complexity shows the efficiency of the proposed system. Further, the main advantage is its sovereignty 
from atlas-based registration, earlier anatomical knowledge which restricts the general application 
of a lot of state-of-the-art methods. All experiments show that this system gives exceptionally better 
results in comparison with the lately proposed methods. Further, despite several other methods in 
which there is the need for initial assumptions, the proposed method here does not require any such 
input. This makes the method much more appealing and common than other methods. The authors 
have achieved significant accuracy in terms of sensitivity, specificity and DSC at time of extracting 
tumorous image and at the time of localization. As per the future work, the authors are working on 
the time complexity of the method via current tools such as CUDA and GPU.
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