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ABSTRACT

The maximum clique problem (MCP) is a classical NP-hard problem that has gained considerable 
attention due to its numerous real-world applications and theoretical complexity. It is inherently 
computationally complex, and so exact methods may require prohibitive computing time. Nature-
inspired meta-heuristics have proven their utility in solving many NP-hard problems. In this research, 
the authors propose a simulated annealing-based algorithm that they call clique finder algorithm to 
solve the MCP. The algorithm uses a logarithmic cooling schedule and two moves that are selected in 
an adaptive manner. The objective (error) function is the total number of missing links in the clique, 
which is to be minimized. The proposed algorithm was evaluated using benchmark graphs from the 
open-source library DIMACS, and results show that the proposed algorithm had a high success rate.
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INTRodUCTIoN

The Maximum Clique Problem (MCP) is a classical NP-hard combinatorial optimization problem 
concerned with finding the largest subset in a graph, where all nodes in the subset share an edge. 
Given an undirected graph G V E,( ) , a clique C  is a subset of the graph, such that there is an edge 
between any two vertices in C . A clique C  is said to be maximal if it is not a subset of any larger 
clique of G . The clique in G  with the largest cardinality is known as a maximum clique, i.e. it cannot 
be extended to a larger one. The MCP seeks a maximum clique in a graph. A related problem is the 
maximum weighted clique problem: an NP-complete problem to find the clique with the maximum 
weight sum in a given undirected graph.

Definition 1: Maximum Clique Problem (MCP). Let G V E,( )  be an undirected graph with vertex 

set V n� � ,� ,� ,�= …{ }1 2  and edge set E V V    ⊆ × . A clique C  is a subset of V  such that every two 

vertices in C  are adjacent; ∀ ∈ ( ) ∈� ,� ;� ,�u v C u v E  .

The MCP is an optimization problem of size n V  = , the number of vertices in G . MCP is NP-
hard because the complexity of this problem is the in order of 2n  (Wu & Hao, 2015).

Figure 1 presents an illustration of MCP. The shaded vertex set in Figure 1.a does not represent 
a clique, because vertices a d,( )  are not directly connected to each other. The second vertex set in 
Figure 1.b ( ,b c  and d) , forms a clique because all shaded vertices are connected to each other. 
However, there is a vertex in the graph, e , that is connected to all the set vertices, so this set is not 
a maximal clique. The vertex set in Figure 1.c b c d e, , ,( )  is a maximal clique with cardinality equal 
to 4, because all vertices are connected to each other and vertex a( )  is not connected to every vertex 
in Figure 1.c. The vertex set a b c, ,( )  in Figure 1.d is another maximal clique with cardinality 3. The 
clique in Figure 1.c is thus considered a maximum clique (Vilakone, Park, Xinchang, & Hao, 2018).

Two problems equivalent to the MCP are the maximum independent set problem (MIS) and the 
minimum vertex cover problem (MVC). MIS problem is a problem which seeks the largest set of 
vertices that are not related to each other. Consider a graph G V E= ( ),  with vertex set V  and edge 

set E  and its complement G V E� � ,�=( )  where E v w E v w V v w= ( ) ∉ ∈ ≠{ }, ; , , . An independent set 
is a vertex set where each pair elements are not adjacent. An independent set is maximal when it is 
not a subset of any larger independent set and maximum when there are no larger independent sets 
in the graph. This problem is similar to MCP in getting a maximum independent set I  of G  provided 
that I  is a clique of G .

The minimum vertex cover generates the smallest subset of the vertex set, where vertices in the 
subset cover all edges (Chen, Kou, & Cui, 2016). Given an undirected graph G V E= ( ), , the minimum 

Figure 1. Relationship between maximal and maximum clique
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vertex cover finds the smallest subset in the vertex set V V' ⊆ , such that each edge of G  is incident 
to at least one vertex of the set. V '  is called a vertex cover, and MVC finds a vertex cover V '  with 
minimum cardinality. Therefore, the size of the vertex cover ′V  is the objective function (Khuri & 
Bäck, 1994).

Several optimization algorithms have been proposed for solving the MCP problem. Exact 
optimization methods like dynamic programming, backtracking, and branch-and-bound methods 
(Man, Tang, & Kwong, 1996) perform well in many problems, but they are efficient only at solving 
small-scale instances of combinatorial optimization problems. Hence, some adaptable and flexible 
algorithms are required to overcome these restrictions.

Motivated by these needs, literature has suggested several algorithms inspired by natural 
phenomena. These methods are interesting because they imitate nature’s wisdom in solving problems. 
Nature-inspired methods are meta-heuristics; solution methods that link an interaction between local 
improvement procedures and higher-level strategies to prevent the process from falling into local 
optima (Wang, Alidaee, Glover, & Kochenberger, 2006). Some nature-inspired meta-heuristics include 
simulated annealing (SA) (Černy, 1985; Kirkpatrick, Gelatt, & Vecchi, 1983), genetic algorithm (GA) 
(Man et al., 1996), ant colony optimization (ACO) (Dorigo, Colorni, & Maniezzo, 1991), particle 
swarm optimization (PSO) (Kennedy & Eberhart, 1995; Shi & Eberhart, 1998), and intelligent 
water drops (IWD) (Hosseini, 2007). This paper presents an algorithm to approximately solve the 
decision version of MCP using a nature-inspired method: simulated annealing. The contributions of 
this work are (1) the introduction of a new move step, and (2) a self-adaptive strategy for selecting 
a new move. The inputs are the graph and the clique size. The algorithm will search for a clique of 
the given size in the graph, and return an answer as to whether the clique was found, or not found. 
Finally, we compare our results with those from similar published work.

The remainder of this paper is organized as follows: First we provide an overview of related 
literature. A detailed description of the method, its techniques and steps is presented next. We then 
specify the dataset, the hardware and software requirements, and experimental design. Following that, 
we report and discuss the results and analyze the performance of our algorithm. Finally, we conclude 
the study with research findings and suggestions for future directions.

LITeRATURe ReVIew

In this section, we review different literature related to our problem, or its equivalent problems. This 
section is organized as follows: First, solutions to the MCP that are based on swarm intelligence; 
namely, ant colony optimization (ACO) and intelligent water drops (IWD), are presented. Next, 
solutions based on evolutionary methods, specifically genetic algorithms, are overviewed, followed 
by studies using methods based on physics and harmony search. All algorithms used the DIMACS 
benchmark set, the standard set for evaluating MCP algorithms (Wu & Hao, 2015).

Starting with swarm-intelligence-based methods, a generic ACO algorithm Ant Clique, was 
proposed by Solnon and Fenet (2006). Two variants were introduced; the first is Edge-AC and Vertex-
AC, depending on where pheromones are set. An ant constructively forms a clique by starting from a 
random vertex, then repeatedly adding vertices chosen probabilistically from a group of candidates, 
defined as the set of vertices adjacent to each vertex of the partial clique being constructed. ACO was 
combined with local search. Xu, Ma, and Lei (2007) noted that the probability to choose and add a 
vertex into a clique depends only on the traces of pheromone. Other quality measures, such as higher 
degrees, could be used in selecting a favorable vertex. An algorithm based on IWD (Hosseini, 2007) 
constructs a clique in a similar manner. However, contrary to the pheromone, the soil on the edges 
of the construction graph in the IWD algorithm represent the degree of undesirability of the incident 
vertices to belong to the same clique. When a single iteration is complete, a new iteration will start 
with the new IWDs and the updated soil from the best previous iteration solution. The reason the 
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soil is updated is to increase the desirability of each vertex in the current solution in order to attract 
new IWDs to that spot (Al-Taani & Nemrawi, 2012).

To evaluate a solution for the maximum independent set problem, an ACO algorithm used two 
evaluation levels, local and global information (Li & Xu, 2003). The local heuristic is a probability 
value that represents the vertex potential quality (Choi, Ahn, & Park, 2007), The global heuristic 
function is the reciprocal of the degree of a vertex relative to the total degree of its neighbors.

The paper of Jovanovic and Tuba (2011), solved the minimum weight vertex cover problem 
(MWVCP) by ACO with the pheromone trail correction method. If suspicious vertices with highly 
undesirable properties are in the global best solution, a pheromone correction is made on suspicious 
points.

Evolutionary algorithms-based methods have also been applied to MCP. In Fast Genetic Algorithm 
(Zhang, Wang, Wu, & Zhan, 2014), binary chromosomes of length n  encode a candidate clique. 
Uniform crossover and inversion mutation are used to maximize the variant population, with repair 
method. The fitness of a chromosome is equal to the size of the sub-graph it represents if it is a clique, 
and equal to zero otherwise. The study of Zhang, Sun, and Tsang (2005) proposed a guided mutation 
operator that combines local and global information in accord with a probability model, heuristic 
repair, and partitioning of the search area. Good quality solutions were obtained albeit with high 
computational cost. Marchiori (2002) used blind genetic variation operators and applied different 
types of local search such as iterated and multi-start local search. Singh and Gupta (2006) generate 
initial candidate cliques using steady-state GA with specialized variation operators then extend it 
using the CP90 heuristic (Carraghan & Pardalos, 1990).

Simulated annealing and harmony search were also applied to solve MCP. Geng, Xu, Xiao, and 
Pan (2007), proposed an SA algorithm as follows. The graph G V E,( )  with n V=  vertices is 
represented using an adjacency matrix A a l

G k
,( ) , with vertices sorted in descending order according 

to their degree. The objective function for a clique of size m  is calculated by 

k

m

l k

m

k l
a

=

−

= +

−

( ) ( )∑ ∑ −( ) =0

2

1

1
1 0

σ σ,
, where σ  is a permutation of V . By minimizing the left-hand-side 

of the formula and experimenting with stochastic variables of permutation σ , exchanging two vertices 
of G V E,( ) , to convert the adjacency matrix A a l

G k
,( ) .

Xu, Ma, and Wang (2006) developed an improved SA algorithm for the maximum independent 
set problem. A binary string of length n  is used to encode the candidate independent set with a 
random alteration move operator. The objective function combines the independent set size and 
quality. A modified Boltzmann acceptance function according to the degree of the vertex is used. 
Following a similar approach, Xu and Ma (2006) presented an efficient simulated annealing algorithm 
for the minimum vertex cover problem. It discovers the subset V V' ⊆  in G , that applies to each 
edge a b,( )  in G , and either or both its end points are in the vertex cover of G , termed V ' .

In a binary harmony search algorithm approach to MCP (Afkhami, Ma, & Soleimani, 2013), the 
solution is represented by a binary string of length is n , and fitness based on clique size. A clique 
is constructed starting from a random vertex and repeatedly extending the clique by adding a vertex 
from the set of neighbors. To generate a new solution, the authors apply global sampling for each 
vertex based on the harmony memory and a probability vector P  representing the potential of the 
vertex on the harmony memory followed by a repair operator. The newly generated solution depends 
on the quality of solutions of the harmony memory. The heuristic repair process randomly adds 
vertices, in large steps without determining whether they are potentially worse, which risks reducing 
the quality of the solution to remove a better vertex.

From our literature review, we see that ACO algorithms retain the memory of an entire colony 
instead of previous generations only. Thus, poor initial solutions do not overly impair it, due to a 
combination of random path selection and colony memory. However, according to Wu and Hao 
(2015), the overall performance of ACO-based algorithms is not competitive compared with recent 
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local search methods. The IWD and binary harmony search algorithms have many parameters to be 
initialized, which is not an easy task.

Evolutionary algorithms that are used to solve the MCP are less effective compared with local 
search, since there are no known meaningful variation operators for MCP yet. Usually various repair 
operators are applied to restore a clique. It is unclear how search discovers improved cliques by the 
help of random operators (Wu & Hao, 2015).

Simulated annealing-based algorithms have showed competitiveness in finding optimal or near 
optimal solutions despite their simple structure and few parameters. They are more efficient than 
population-based metaheuristics like GA, ACO and IWD since they deal with a single solution rather 
than a whole population of solutions. According to the review by Wu and Hao (2015), local search 
is considered the most effective approach for the maximum clique problem. The authors indicate 
that the performance of the local search algorithm varies according to the suitability of the search 
operators in exploring the structure of the intended graphs. To address this problem, the authors 
recommend the use of several search operators within an algorithm such that the algorithm decides 
the most suitable operators to apply through the search process in a dynamic fashion. Thus, in this 
research, we propose a simulated annealing algorithm with multiple move operators, in which the 
algorithm selects the operator during each step of the search dynamically in a self-adaptive manner.

MeTHodoLoGy

In this section, we will explain the MCP in full detail and define some of the terms we will be using 
to construct the solution. In addition, to solve the decision version of the MCP, we will design a 
nature-inspired algorithm; specifically, we are going to use simulated annealing with an additional 
move operator and a few elements similar to Simple SA (Geng et al., 2007).

Problem Statement
In this section, we detail the problem by determining the variables and the objective function essential 
to providing a full definition of the problem.

Variables. A graph G V E,( )  has a set of vertices V v v v v
n

= { }1 2 3
, , , . . . ,  and a set of edges 

E v v i j n i j
i j

= ( ) ≤ ≤ ≠{ , | , ; }1 . The clique size is an input value m .
Objective Function. To evaluate the generated state in the simulated annealing algorithm, the 

objective function to be minimized is shown in Equation 1:

E G A
k

m

l k

m

k l
,

,
ρ

ρ ρ( ) = −( )=

−

= +

−

( ) ( )∑ ∑0
2

1

1
1  (1)

where k l,  are the vertices 0 1... –n( ) , m  is the size of clique, A  is the adjacency matrix, and ρ  is 
the permutation of vertices.

The objective function serves as an error function, since it counts the number of missing links 
in a candidate clique of size m . Thus, when the objective function becomes equal to 0, no missing 
links exist in the candidate clique, or alternatively, the vertices in the candidate clique are fully 
connected, and therefore a clique has been found. The maximum value is when all the links are 

missing in the candidate clique, which is �
n n −( )1
2

.

Algorithm design
The simulated annealing algorithm starts with a current solution, on which a move is applied to 
generate a neighboring solution, which is accepted probabilistically based on the energy (objective 
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function) and temperature (search state). Therefore, the chance of escaping local optima is increased. 
The solution is more likely to be found if the cooling schedule is slower (Talbi, 2009). The proposed 
algorithm is based on Simple SA (Geng et al., 2007), with the following modifications: First, we 
introduce a new move. Second, we introduce an adaptive strategy that is more likely to select the more 
successful move, as shown in Algorithm 1. The first step of the algorithm is the initialization of the 
parameters and the adjacency matrix. Next, a new neighbor is generated. A decision is made whether 
to make a move to the newly generated neighbor or not, and then finally, check if the termination 
condition has been reached.

Parameter Initialization. First, the starting temperature, T
fmax

, is initialized, and is set to a high 
initial value. The terminal temperature, T

e
, is also initialized, and is related to the termination 

condition. The threshold for the probability of choosing a move, p
m

, is initialized as well: p
m
= 0 5. . 

The click size m  is an input value.
The cooling parameter α  is used to cool the temperature to reach termination condition, normally 

ranging between 0 5 0 99. – .  (Talbi, 2009). There are a number of various schedules to reduce the 
temperature. In this work, we study two schedules: the geometric and logarithmic cooling schedules. 
The geometric schedule is shown in Equation 2:

T T
i i+ = ×1

� � �α  (2)

Various SA studies (Geng et al., 2007; Xu & Ma, 2006; Xu et al., 2006) use a geometric schedule 
with a value of 0 995 0 996. .≤ ≤α . Mahdi, Medjahed, and Ouali (2017) show that geometric schedules 
are preferred in terms of computation compared with logarithmic cooling schemes. The second 
schedule we study is the logarithmic cooling schedule (Talbi, 2009), as in Equation 3:

T T
T

ii i+ = ×
( )1
0� �

log
 (3)

Our solution is represented as an m m  ×( )  adjacency matrix A  of graph G . We calculate the 
objective function E G,ρ( )  based on Equation 1, where ρ  is a permutation ρ i n( ) = −� ,�,�.�.�.�,�0 1 1 , 
and n  is the number of vertices.

Adjacency Matrix Initialization. The adjacency matrix A  will be initialized such that the 
vertices will appear in descending order of their degree, denoted by d , meaning a vertex with a larger 
degree is more likely to be included in the clique. As an illustrative example, consider the graph 
shown in Figure 2.a, with its corresponding initial order of vertices along with their respective degrees 
in the adjacency matrix. Ties are broken arbitrarily. The current candidate solution is represented in 
the top-left m m  ×  section of the adjacency matrix.

Neighbor Generation. To generate a neighboring solution, we apply one of two possible moves 
to the candidate clique: Move1 or Move2. We select a move based on a random probability. First, a 
random number r  is drawn from a uniform distribution r U∈ 



� ,�0 1 . If r p

m
< , we apply Move1, 

otherwise, we apply Move2 as shown in Algorithm 1. In the following, we detail Move1 and Move2 
along with an illustrative example. Next, the method for updating the move probability p

m
 is explained. 

In both moves, the equilibrium state at time T  specifies the maximum number of trials allowed to 
find vertex v

w
 having the desired property.
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Move1: First, select a random vertex v
u

 within the candidate clique, and another random vertex 
v
w

, outside the candidate clique. If v
w

 has more connected edges to vertices within the clique than 
v
u

, swap v
u

 and v
w

. Otherwise, continue searching until found or the equilibrium state is reached. 
As shown in Algorithm 2, Move1 is stochastic and this is helpful in avoiding local optima.

Figure 2. A graph and the corresponding adjacency matrix and degree of vertices

Algorithm 1. Clique Finder Algorithm

Input: Adjacency matrix A, size of clique m
Output: maximum clique of size m

Initialize parameters and adjacency matrix A;
iter � �=0  ; // iteration counter
repeat

   Draw a random number r  ∈  U 0 1,

 ;

    if r p
m

  <  then
       perform Move1;
    else
       perform Move2;
    end

   ∆� � � ,� ’ � � ,� ;E E G E G= ( )− ( )ρ ρ
    if ∆E ≤ 0 then
        accept move; 
    else

        accept with probability p
E

t
=
−∆

;

    end
    Update t  according to cooling schedule;
    iter iter� � � �;= +1
     //check if window iterations has passed
     if itermodwindow = 0  then

         Update  p
m

 according to success rate; reset Move1 and Move2 counters;
     end
until termination condition;
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Move2: Here, a vertex within the candidate clique is replaced with a vertex outside the clique 
that is already adjacent to one in the clique. This is a greedy strategy and is more likely to be useful 
than replacing a vertex in the clique with an arbitrary vertex outside the clique. The move proceeds 
as follows: select two vertices v

u
 and v

y
 randomly within the candidate clique, and a vertex v

w
 

outside the candidate clique. If v
w

 is adjacent to v
y

, then swap v
u

 and v
w

. Thus, a new neighbor is 
generated, see Algorithm 3.

Figure 3 and Figure 4 depict an illustrative example on Move2. As shown in Figure 3.a, vertices 
a , b , c  and d  represent the current state of a candidate clique with size m = 4 ; Figure 4.a is the 
corresponding adjacency matrix. Move2 is applied where v a

u
= , v c

y
=  and v e

w
= .  A swap 

Algorithm 2. Move1 algorithm

Input: Adjacency matrix A , size of clique m
Output: Move1 applied to A
 

v
u

= random vertex in range 0 1, . . . , ;m−





found = false;
repeat

     v
w

= random vertex in range m n, . . . , ;−



1

   if v
w

 has more connected edges than v
u

 then
      found = true;
   else

      Select another vertex v
w

 in range � ,...,� � � ;�m n−



1

  end
until found or equilibrium;

swap(v
u

, v
w

);

Algorithm 3. Move2 algorithm

Input: Adjacency matrix A , size of cliquem
Output: Move2 applied to A

v
u

= random vertex in range 0 1, . . . ,m−



 ;

v
y

= random vertex in range � ,�.�.�.�,� � �0 1m−



 , vu ≠  v

y
;

found = false;
repeat

    v
w

 = random vertex in range � ,�.�.�.�,� � �m n−



1  ;

     if A
y w,( ) =1  ; // v

y
 and v

w
 are adjacent then

          found =true;
     end
until found or equilibrium;

swap(v
u

, v
w

) ;
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between a  and e  is made, resulting in Figure 3.b, and Figure 4.b is its corresponding adjacency 
matrix. Figure 3.c shows the state after a second application of Move2, where v b

u
= , v c

y
=  and 

v f
w
= . Another swap between b  and f  is made, and Figure 4.c shows its adjacency matrix.
The objective function after applying a move is computed using Equation 1. Figure 5 shows the 

objective function corresponding to each state in Figure 3. The energy value E G,ρ( )  reflects the 
number of edges that are missing in the candidate clique. Figure 5.a and Figure 5.b shows that after 
swapping, the energy E G,ρ( )  has a value of 2 , which means that two edges are missing. A workable 
solution should have energy of zero. Thus, it is a minimization function.

Updating The Probability of p
m

: Choosing a move is based on a probability p
m

, which is 
initialized to 0.5 to allow an equal chance for both moves in the beginning. Then, p

m
 is updated 

Figure 3. Performing a swap with Move2. (a) current state, (b) after first application of move
2

, and (c) after another application 
of Move2

Figure 4. Adjacency matrix representation of candidate cliques in Figure 3

Figure 5. Objective function representing the states in Figure 4.a, 4.b, and 4.c, respectively
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regularly every window  iterations in a self-adaptive manner based on the success ratio of both moves 
as shown in Algorithm 1 and explained next. If the success ratio (SR) of Move1 is better than that of 
Move2, pm  is updated so that Move1 has a higher probability of being selected, and vice versa. To 
update p

m
, we define a learning rate parameter τ ∈ 


0 1, . In our experiments, we initialize τ = 0 02. . 

Equation 4 is used to update the value of p
m

. The value of p
m

 is bound as needed during program 
execution in the range 0 1,


 .

p
p p SR SR

p p SR SRm
m m

m m

=
+ × ( ) ≥ ( )
− × ( ) <
τ

τ

� � �

� �

Move Move

� Move Move
1 2

1 22( )







 (4)

Move Acceptance
A neighbor ρ'  to a current state ρ  is found as explained in the previous section. ∆E  defines the 
difference between the current state energy and the new move energy as shown in Equation 5:

E E G E G� � ,� � ,�= ( )− ( )′ρ ρ  (5)

If ∆E ≤ 0 , indicating a better neighbor, the new solution is accepted; otherwise the solution 
is accepted with a controlled probability P , as measured by the acceptance function in Equation 6, 
where the current temperature is symbolized as t , and e  is the exponential function.

P e
E

t=
−∆

 (6)

Termination Condition
The algorithm terminates either when the objective function reaches zero, indicating a clique of size 
m  is found, or when t T

e
  ≤ . The temperature t  is cooled according to the schedule used.

In this section, we explained in detail the problem statement, including the variables and the objective 
function. We also explained the algorithm design for the Clique Finder algorithm, which includes: 
parameter and adjacency matrix initialization, new neighbor generation, acceptance or rejection of the 
new solution, and the termination of the algorithm. In the next section we explain the experimental setup.

eXPeRIMeNTAL SeTUP

This section details the setup of our experiments in evaluating the Clique Finder algorithm. We shall 
describe the datasets, followed by identifying the performance metrics and evaluation method used. 
Next, the design of the experiments is described, and the parameters are defined. The algorithm was 
implemented using Python, and experiments were performed on an Intel Core i5 CPU (2 3.  GHz) 
with 8  GB RAM, and an Intel Core i7 CPU (2 9.  GHz) with 8  GB RAM.

dataSet
Five benchmark graph datasets from the open-source repository DIMACS (Johnson & Trick, 1996) 
are used in the experiments. Table 1 reports the number of vertices, number of edges, density, and 
clique size for each dataset.
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Performance Metrics and evaluation Method
The effectiveness of the algorithm is measured by its success rate (SR); the percentage of successful 
attempts in finding the maximum clique among a number of attempts made. The efficiency of the 
algorithm is measured by the average evaluations to a solution (AES); the number of objective function 
evaluations averaged over all successful runs, and CPU time. Each experiment is repeated ten times. 
For each experiment, AES, SR, and average CPU time are reported. The results of our algorithm 
are compared to those of Geng et al. (2007). To obtain a solid statistical basis for our comparisons, 
we use non-parametric tests, implemented on SPSS1. The Wilcoxon signed rank test is used to test 
the median difference in paired data (Oyeka, Ebuh, et al., 2012). The Friedman test is often used to 
compare many related data samples (Theodorsson-Norheim, 1987).

experimental design
The experiments are divided into five studies to set the values for the initial temperature and the 
cooling schedule, and to evaluate our proposed algorithm. The five studies are defined as follows:

Study 1: Setting the initial temperature parameter T
fmax

. We will experiment with three values for 
T
fmax

 based on previous studies as follows: T
fmax
= 100  (Geng et al., 2007), T

fmax
= 60  (Xu et 

al., 2006) and T
fmax
= 50  (Xu et al., 2006).

Study 2: Setting the cooling parameter α . Talbi (2009) suggests the cooling parameter to be in the 
range ( . . )0 5 0 99< <α . Using a geometric schedule of T T

i i+ = ×1
� � �α , where T

i
 refers to the 

temperature at iteration i . We will try the values α� � .=0 9992 , α� � .=0 9995 , and α� � .=0 9998  with 
the best initial temperature parameter T

fmax
 obtained from Study 1.

Study 3: Here, we compare the logarithmic schedule with the geometric schedule using the best 
combined parameters from the two studies above. The logarithmic cooling schedule is defined 

as T T
T

ii i+ = ×
( )1
0� �

log
.

Study 4: This study compares the combination of Move1 and Move2 (clique finder algorithm) with 
using Move2 alone.

Study 5: This study compares Clique Finder with Simple SA (Geng et al., 2007). We will compare 
the clique finder algorithm with the best combination of parameters obtained with Simple SA 
(Geng et al., 2007).

Table 2 shows all parameters used for the Clique Finder algorithm. p
m

 is initialized to 0 5.  to 
give equal chance to both moves initially, and then updated in a self-adaptive manner over the course 
of the algorithm’s run as explained previously. We arbitrarily choose to update the move probability 

Table 1. Benchmark Datasets

Dataset Vertices Edges Density Clique Size

hamming6-4 64 704 0 349206. 4

johnson8-2-4 28 420 1 1111. 4

johnson16-2-4 120 5 5. K 0 764706. 8

keller4 171 9 4. K 0 649123. 11
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p
m

 after windows of n  iterations. In this simulated annealing algorithm, the static approach of 
equilibrium state is used and set to 8×n  iterations, where n  is the number of vertices, based on 
Simple SA (Geng et al., 2007).

ReSULTS ANd dISCUSSIoN

Here, we report the results of each of the five studies in five consecutive sections. We analyze the 
performance of the models examined in each study separately in terms of effectiveness and efficiency.

Selection of Initial Parameter (Study 1)

The aim of this study is to select the model with the best initial temperature, T
fmax

, as explained 
previously. All datasets were tested on each of the models where T

fmax
 is set to the values 50 , 60  

and 100  respectively. The cooling schedule used is geometric with parameter α = 0 9995. . Table 3 
shows for each dataset the objective function obtained E G� ,�ρ( )( ) , success rate (SR), average evaluations 
to a solution (AES), and average time in seconds. N/A stands for not applicable, as AES is considered 
only over successful runs. Table 4 shows the minimum (Min.), maximum (Max.) and standard 
deviation (SD) of AES and Time obtained for various T

fmax
 values of successful runs in Study 1.

As shown in Table 3, the SR values are similar among the three models, but the model having 
initial temperature 50, in particular, obtained the highest error in dataset keller4 as the objective 
function found was 8, in comparison to 7 in the other two models. The model with initial temperature 
100 achieved the best objective function among the other models. In addition, the SR of this model 
is among the highest obtained. Considering the efficiency as measured by AES and time, we see that 
when the temperature is 60 , the corresponding model consumes more resources than others. The 
Friedman test did not detect a difference in AES obtained in the three models with a p -value of 
0.606. According to the results obtained and through comparison, the model with initial temperature 
100  was adopted to allow for a larger area for search.

Geometric Cooling Parameter α  (Study 2)
The goal of this study is to determine the model with the best cooling schedule parameter α  value 
as explained previously. The initial parameters in this study are as follows: initial temperature 

Table 2. Parameters used in proposed Clique Finder algorithm

Clique Finder Parameters Initial Value Comment

Logarithmic / 
Geometric 

cooling 
schedule

T
fmax 100 Tuning applied in Study 1

T
e 0 001. Static

p
m 0 5. Self-adaptive

α 0 9995. Tuning applied in Study 2

τ 0 02. Static learning rate

window n Adaptive window for updating p
m
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T
fmax
= 100 , and final temperature T

e
= 0 001. . Table 5 reports the objective function (E G,ρ( ) ), 

success rate (SR), average evaluation to a solution (AES), Time (s), and the final reached temperature 
obtained in this study. The minimum, maximum, and standard deviation of AES and Time obtained 
for various α  values of successful runs in Study 2 are shown in Table 6.

As shown in Table 5, all three models were very similar in their effectiveness at finding the 
clique as measured by the SR; all models failed in 3 out of 5 datasets and achieved close results in 
the remaining two. Considering the objective function found in all datasets and based on the statistical 
analysis, the α� � .=0 9992  model is confirmed to be inferior to the other two. In terms of efficiency, 

Table 3. Comparison of models for various T
f max

 values in Study 1

T
f max Dataset E G,ρ( ) SR AES Time(s)

50

hamming6-4 
johnson8-2-4 
johnson16-2-4 

keller4 
MANN-a9

0
0
1
8
2

1 0.
1 0.
0 0.
0 0.
0 0.

1102 9.
442
N/A 
N/A 
N/A

0 0158.
0 0183.
0 0203.
0 0152.
0 0158.

60

hamming6-4 
johnson8-2-4 
johnson16-2-4 

keller4 
MANN-a9

0
0
1
7
2

0 8.
1 0.
0 0.
0 0.
0 0.

1730 38.
126 6.

N/A 
N/A 
N/A

0 0122.
0 0230.
0 0167.
0 0183.
0 0152.

100

hamming6-4 
johnson8-2-4 
johnson16-2-4 

keller4 
MANN-a9

0
0
1
7
2

1 0.
1 0.
0 0.
0 0.
0 0.

1020
56
N/A 
N/A 
N/A

0 0198.
0 0195.
0 0220.
0 0196.
0 0178.

Table 4. Detailed statistics for various T
fmax

 values of successful runs in Study 1

T
fmax Dataset

AES Time(s)

Min. Max. SD. Min. Max. SD.

50
hamming6-4 1 5821 2186 56. 0 0118. 0 0267. 0 0760.

johnson8-2-4 1 3316 984 67. 0 0138. 0 0290. 0 0048.

60
hamming6-4 1 10221 33656 1. 0 0104. 0 0117. 0 0007.

johnson8-2-4 1 972 294 33. 0 0153. 0 0412. 0 0077.

100
hamming6-4 1 10191 3057 0 0124. 0 0308. 0 0055.

johnson8-2-4 1 551 165 0 0134. 0 0365. 0 0062.
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Table 5 shows that the model with α� � .=0 9998  had the highest number of AES and time followed by 
that with α� � .=0 9995 . This is expected since the larger value of α  is, the slower the schedule, however, 
this is based on two datasets only. The third column in Table 5 reports the best fitness obtained. 
Considering the average best fitness obtained over all runs for each of the five datasets, the average 
best fitness of the model with α=0.9992 is the worst of all three models of α. Therefore, we made 
the statistical analysis, Friedman tests, on the best fitness obtained in each of the 50 runs per model. 
The Friedman test shows that there is a significant difference between the three models ( p -value = 
0.003). We then applied the Wilcoxon Signed-Rank test on paired models as: (α = 0.9992 and α = 
0.9995) pair that resulted in a p-value of 0.68, and (α = 0.9995 and α = 0.9998) pair that resulted in 

Table 5. Comparison of models for various α  values in Study 2

Α Dataset E(G, ρ) SR AES Time (s) Temperature

0 9992.

hamming6-4 
johnson8-2-4 
johnson16-2-4 

keller4 
MANN-a9

0
0
1
8
2

1 0.
1 0.
0 0.
0 0.
0 0.

716 7.
127 7.

N/A 
N/A 
N/A

0 0576.
0 0303.
0 0404.
0 054.
0 0373.

84 4941.
80 7273.
0 0009.
0 0009.
0 0009.

0 9995.

hamming6-4 
johnson8-2-4 
johnson16-2-4 

keller4 
MANN-a9

0
0
1
7
1

0 8.
1 0.
0 0.
0 0.
0 0.

3847 5.
495 2.

N/A 
N/A 
N/A

0 032.
0 05.
0 0413.
0 0371.
0 03.

50 6498.
82 7135.
0 0009.
0 0009.
0 0009.

0 9998.

hamming6-4 
johnson8-2-4 
johnson16-2-4 

keller4 
MANN-a9

0
0
1
7
1

0 9.
1 0.
0 0.
0 0.
0 0.

5292 8.
202 3.

N/A 
N/A 
N/A

0 0387.
0 0603.
0 0386.
0 0405.
0 0335.

70 5494.
96 353.
0 0009.
0 0009.
0 0009.

Table 6. Detailed statistics for various α  values of successful runs in Study 2

α Dataset
AES Time(s)

Min. Max. SD. Min. Max. SD.

0 9992.
hamming6-4 1 6138 1832 5. 0 0405. 0 0709. 0 0106.

johnson8-2-4 1 1268 380 1. 0 0153. 0 0414. 0 0084.

0 9995.
hamming6-4 1 10191 3057 0 0124. 0 0308. 0 0055.

johnson8-2-4 1 551 165 0 0134. 0 0365. 0 0062.

0 9998.
hamming6-4 1 57559 10804 98. 0 0168. 0 0743. 0 0206.

johnson8-2-4 1 1020 402 64. 0 0383. 0 0733. 0 0127.
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a p -value of 0.14. The pair (α = 0.9992 and α = 0.9998) resulted in a  p -value of 0.001. The Holm 
post-hoc correction revealed that the model with α = 0.9992 is inferior to the other two.

Based on the earlier analysis, the model with α� � .=0 9995  is selected.

Comparing the Logarithmic Schedule with the Geometric Schedule (Study 3)
The goal of this study is to select the cooling schedule. Two models are compared as follows. The 
first model uses a geometric schedule SA with alpha α� � .=0 9995 , and the second model uses a 
logarithmic schedule SA, where initial parameters used are T

fmax
= 100 , T

e
= 0 001. . In this study, 

the CPU time is not reported because of the use of more than one machine to run the algorithm. Table 
7 reports for each dataset the objective function obtained E G, ,ρ( )( )  average evaluations to a solution 
(AES), the average number of times Move1 and Move2 were performed over all runs (Count Move1 
and Count Move2, respectively), the average number of times Move1 and Move2 succeeded (Success 
Move1 and Success Move2, respectively), and the probability of move ( p

m
) upon termination. The 

minimum, maximum, and standard deviation statistics for AES of successful runs in logarithmic and 
geometric models in Study 3 are shown in Table 8.

A 100%  SR was obtained in all datasets using a logarithmic schedule model, whilst the geometric 
schedule model obtained a 100%  SR in the datasets hamming6-4 and johnson8-2-4. For the remaining 
two datasets, the SR using the geometric schedule model was zero. Considering the AES for the first 
two datasets where both models succeeded in finding the clique, Table 7 shows that the model with 
the logarithmic schedule is more efficient than that with the geometric schedule in the datasets where 
the clique was found in both. Therefore, we will use the logarithmic schedule model in subsequent 
studies.

Table 9 shows the results averaged over all datasets per model in Study 3. As can be seen in the 
table, the AES for the first two datasets where both models succeeded in finding the clique, the 
logarithmic schedule model is more efficient than that with the geometric schedule. Considering 
Count Move1, Count Move2, their success and p

m
as shown in the table, Move2 was more frequently 

successful than Move1. The p
m

 reflects that both models adaptively moved towards giving a higher 
probability of selection to Move2.

Table 7. Comparison of logarithmic and geometric models in Study 3

Cooling 
Schedule Dataset E G,ρ( ) AES Count 

Move1

Count 
Move2

Success 
Move1

Success 
Move2

p
m

Geometric 
α = 0 9995.

hamming6-4 0 6 60 3. e 7 08 2. e 5 98 3. e 2 48 1. e 1 49 2. e 0 2992.

johnson8-2-4 0 1 81 2. e 1 04 2. e 8 12 1. e 9 0 0. e 5 2 0. e 0 5147.

johnson16-2-4 1 N/A 9 15 3. e 1 39 4. e 3 15 2. e 1 27 2. e 0 4082.

MANN-a9 2 N/A 3 59 3. e 1 99 4. e 4 50 2. e 9 82 2. e 0 1441.

Logarithmic

hamming6-4 0 5.33e3 5.54e2 4.84e3 1.74e1 1.81e2 0.3950

johnson8-2-4 0 8.23e2 6.90e1 7.77e2 2.8e0 7.16e1 0.3966

johnson16-2-4 0 6.50e5 5.75e3 6.49e5 1.42e1 2.98e4 0.4001

MANN-a9 0 3.88e7 5.78e6 3.39e7 7.70e5 5.08e6 0.3380
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Combination of Move1 and Move2, Versus Move2 Alone (Study 4)
The goal of this study is to evaluate the effectiveness of Move2 alone versus that of the two moves 
combined. The parameters used in this study are the initial and final temperature, T

fmax
= 100  and 

T
e
= 0 001. , respectively. As concluded by Study 3, a logarithmic cooling schedule is used. Table 

10 shows the objective function E G,ρ( )( ) , average evaluations to a solution (AES), the average 
number of times Move1 and Move2 were performed over all runs (Count Move1 and Count Move2, 
respectively), the average number of times Move1 and Move2 succeeded (Success Move1 and Success 
Move2, respectively), and the probability of move ( p

m
). The success rate was 100%  for both models 

over all datasets and the objective function obtained was zero for both models and all datasets, which 
indicates that both models were equally effective in finding the clique. Table 11 shows the minimum, 
maximum and standard deviation statistics for AES of successful runs of the model using a combination 
of Move1 and Move2 versus the model using Move2 alone.

Considering the AES of the models, the Wilcoxon Signed-Rank test did not detect a significant 
difference between the two models at a p -value of 0.596. However, the Move2 model required more 
evaluations on each dataset than that of Move1 and Move2 combined (on average, 1 85 7. e  vs 9 87 6. e  
fitness evaluations, respectively). In conclusion, the model of Move1 and Move2 combined performs 
better in terms of efficiency than the Move2 alone model. Notably in that model, the value of p

m
 in 

most datasets gives more chance for Move2, which proves that Move2 was more successful than Move1 
and thus confirms the added value of this move to the algorithm.

Compare Clique Finder with Simple SA (Study 5)
This study aims to evaluate our Clique Finder algorithm against the rival algorithm, Simple SA (Geng 
et al., 2007). In this work, our focus is on the decision version of the maximum clique problem. As 

Table 8. Detailed statistics for AES of successful runs in logarithmic and geometric models in Study 3

Cooling 
Schedule Dataset Min. Max. SD

Geometric 
α = 0 9995.

hamming6-4 1 10191 3057

johnson8-2-4 1 551 165

Logarithmic

hamming6-4 1 22947 8924.49

johnson8-2-4 1 4002 1589.88

johnson16-2-4 1 3249061 1299624

MANN-a9 1 120843597 44078932.04

Table 9. Summary results of Study 3

Cooling 
Schedule AES Count 

Move1

Count 
Move2

Success 
Move1

Success 
Move2

p
m

Geometric 
α = 0.9995 3.39e3 3.39e3 9.99e3 2.00e2 3.16e2 0.34155

Logarithmic 3.08e3 1.45e6 8.65e6 1.92e5 1.28e6 0.382425
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such, we compare our work with decision problem versions in the literature, such as Simple SA 
(Geng et al., 2007). In addition, we compare with Marchiori (2002) and Bomze et al. (2000), both of 
which address the optimization version of the problem, for common datasets in which the maximum 
clique has been found.

Notably, Simple SA uses only Move1, while Clique Finder uses a combination of the two moves. 
The parameters for Simple SA are as follows: a geometric cooling schedule with α = 0 9995. , 
T
e
= 0 001. , and T

fmax
= 100 . The parameters used in Clique Finder are the same as Simple SA, but 

we use the logarithmic cooling schedule. A 100%  SR was obtained in all datasets by Clique Finder, 
whilst Simple SA obtained a 100%  SR in the datasets hamming6-4 and johnson8-2-4. In the remaining 
two datasets, the SR of Simple SA was zero. Table 12 shows the average of the results obtained. The 

Table 10. Comparison of the model using a combination of Move1 and Move2 versus the model using Move2 alone (Study 4)

Algorithm Dataset AES Count 
Move1

Count 
Move2

Success 
Move1

Success 
Move2

p
m

Move2 alone

hamming6-4 2 77 4. e − 2 77 4. e − 1 06 3. e −

johnson8-2-4 2 53 2. e − 2 52 2. e − 2 28 1. e −

johnson16-2-4 1 28 5. e − 1 28 5. e − 5 88 3. e −

MANN-a9 7 40 7. e − 7 40 7. e − 1 14 7. e −

Move1 and
Move2 combined

hamming6-4 5 33 3. e 554 2. 4840 4. 17 4. 180 8. 0 3950.

johnson8-2-4 8 23 2. e 6 90 1. e 7 77 2. e 2 80 0. e 7 16 1. e 0 3966.

johnson16-2-4 6 50 5. e 5 75 3. e 6 49 5. e 1 42 1. e 2 98 4. e 0 4001.

MANN-a9 3 88 7. e 5 78 6. e 3 39 7. e 7 70 5. e 5 08 6. e 0 3380.

Table 11. Detailed statistics for AES of successful runs of the model using a combination of Move1 and Move2 versus the model 
using Move2 alone (Study 4)

Algorithm Dataset Min. Max. SD.

Move2 alone

hamming6-4 1 93152 34415 98.

johnson8-2-4 1 1265 505 6.

johnson16-2-4 1 638101 255240

MANN-a9 1 2 39 8. e 8 78 7. e

Move1 and
Move2 combined

hamming6-4 1 22947 8924 49.

johnson8-2-4 1 4002 1589 88.

johnson16-2-4 1 3249061 1299624

MANN-a9 1 1 20 8. e 4 41 7. e
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minimum, maximum, and standard deviation statistics for AES of successful runs of Clique Finder 
versus Simple SA models are shown in Table 13.

The maximum clique for the johnson16-2-4 dataset was found by Marchiori (2002) in an average 
time of 0.0s versus 0.0183s by Clique Finder. Bomze et al. (2000) reported finding the maximum 
clique for the MANN-a9 dataset in an average time of 0.8333s versus 0.0148s by Clique Finder. 
The results of the proposed Clique Finder algorithm are encouraging. The Clique Finder algorithm 
performed very well at finding the clique and achieving the best success rate compared to Simple 
SA. The Clique Finder algorithm consumes more resources than Simple SA algorithm, as measured 
by the AES of the two first datasets.

CoNCLUSIoN ANd FUTURe woRK

In this research, we defined the MCP and its equivalent problems. We studied nature-inspired methods 
that were applied to MCP such as the harmony search algorithm, ant colony optimization algorithm, 
genetic algorithm, intelligent water drop algorithm, and simulated annealing algorithm. After that, 

Table 12. Comparison of Clique Finder versus Simple SA models (Study 5)

Algorithm Dataset E G,ρ( ) AES Count 
Move1

Count 
Move2

Success 
Move1

Success 
Move2

p
m

Simple 
SA (Geng et al., 

2007)

hamming6-4 0 5 33 3. e 5 32 3. e − 9 94 1. e − −

johnson8-2-4 0 4 54 2. e 4 47 2. e − 3 92 1. e − −

johnson16-2-4 1 N/A 2 29 4. e − 4 47 2. e − −

MANN-a9 2 N/A 2 30 4. e − 1 44 3. e − −

Clique 
Finder

hamming6-4 0 5 33 3. e 5 54 2. e 4 84 3. e 1 74 1. e 1 81 2. e 0 3950.

johnson8-2-4 0 8 23 2. e 6 90 1. e 7 77 2. e 2 8 0. e 7 16 1. e 0 3966.

johnson16-2-4 0 6 50 5. e 5 75 3. e 6 49 5. e 1 42 1. e 2 98 4. e 0 4001.

MANN-a9 0 3 88 7. e 5 78 6. e 3 39 7. e 7 70 5. e 5 08 6. e 0 3380.

Table 13. Detailed statistics for AES of successful runs of Clique Finder versus Simple SA models (Study 5)

Algorithm Dataset Min. Max. SD.

Simple 
SA (Geng et al., 2007)

hamming6-4 1 22661 8801 44.

johnson8-2-4 1 1235 524 56.

Clique 
Finder

hamming6-4 1 22947 8924 49.

johnson8-2-4 1 4002 1589 88.

johnson16-2-4 1 3 25 6. e 1 29 6. e

MANN-a9 1 1 21 8. e 4 41 7. e
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we reviewed the literature to study how these methods were adopted to solve MCP. We found that the 
harmony search and intelligent water drops algorithms require many parameters. On the other hand, the 
crossover in the genetic algorithm is not natural to the clique definition and always requires a repair. 
The ant colony optimization-based methods and those based on simulated annealing were found to 
be more attractive. We concluded this study with the selection of the simulated annealing algorithm. 
We proposed the Clique Finder algorithm which is based on the simulated annealing algorithm with 
few modifications, including the introduction of new moves and the adaptive selection of a move, 
in addition to utilizing a logarithmic schedule. The results show that the newly introduce move was 
very effective, resulting in finding the clique in all benchmark datasets used. In the future, we will 
apply our algorithm to more datasets, as well as investigate some other move options.
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