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ABSTRACT

The study examines the relationship between the big five personality traits (extroversion, agreeableness, 
conscientiousness, neuroticism, and openness) and robot likeability and successful HRI implementation 
in varying human-robot interaction (HRI) situations. Further, this research investigates the influence 
of human-like attributes in robots (a.k.a. robotic anthropomorphism) on the likeability of robots. 
The research found that robotic anthropomorphism positively influences the relationship between 
human personality variables (e.g., extraversion and agreeableness) and robot likeability in human 
interaction with social robots. Further, anthropomorphism positively influences extraversion and 
robot likeability during industrial robotic interactions with humans. Extraversion, agreeableness, 
and neuroticism were found to play a significant role. This research bridges the gap by providing 
an in-depth understanding of the big five human personality traits, robotic anthropomorphism, and 
robot likeability in social-collaborative robotics.
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INTRodUCTIoN

Technology has been improving our lives dramatically and drastically in the last several decades. 
COVID-19 pandemic and the changing landscape presents a testimony to the above statement. 
Technology is playing an important role in our lives today, and we are trying to find a new normal 
during the present world crises through technology usage. The ‘new normal’ emerging out of the 
current turbulent times will subsequently need more technology usage and enhancement whether it 
means connecting students online; schools and Universities experimenting more with online/hybrid 
classes; continuous and consistent sanitation requirements of high touch areas in both developed and 
emerging economies; remote work possibilities for people who are sick, unwell, elderly or sensitive; 
reduced face-to-face interaction for increasing productivity, and much more. For achieving all this, 
we will need ‘social robots’ in our everyday lives to meet the new demands of the ever-changing 
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global world. Social robots provide comfort to the elderly and have shown to improve their well-
being (Wada & Shibata, 2007). People who feel lonely, tend to anthropomorphize robots more than 
others (Samuel, 2019). These social robots may serve as tools and agents to alleviate their loneliness 
(Eyssel & Reich 2013) and additionally decrease their stress levels (Wada et al. 2004). Social robots 
are known to have been used in a variety of situations including (but not limited to) patients suffering 
from dementia, therapeutic applications for children with autism, adults with health issues, mental 
health issues, and in stroke patients’ recovery processes (Tapus, Ţăpuş, & Matarić 2008; Ab Aziz 
2015; Libin & Libin 2004).

Human-robot interaction (HRI) is a research domain dedicated to understanding communication 
between robots and humans (Kaplan, 2019). This research area is gaining popularity and attention in 
the diverse fields of study – science, technology, engineering, and mathematics (STEM), along with 
business and management (Arora & Arora, 2020). One of the early contributions to HRI study is 
artificial intelligence research. Artificial Intelligence (AI) is a term used for robotic technologies, which 
refers to the ability of computers/robots to acquire knowledge and think like humans (Arora & Arora, 
2020). With the advancement in AI technology and the expansion of HRI, social-collaborative robots 
have emerged in HRI space in the past few years (Lungarella et al., 2003). According to the Big Five 
trait taxonomy, personality can be broadly classified as being comprised of five significantly different 
traits. These five characteristics are Extraversion, Agreeableness, Conscientiousness, Neuroticism, 
and Openness (Goldberg, 1981), and the generalizability of the Big Five dimensions remains constant 
across all cultures (McCrae & Costa, 1997; Pulver et al., 1995; Salgado, 2002). ‘Extraversion’ is a trait 
that is energetic and enthusiastic to social settings, and typically emotionally positive. ‘Agreeableness’ 
can be described as affectionate, altruistic, modest, and sympathetic. ‘Conscientiousness’ refers to 
an organized, responsible, reliable, goal-oriented, and controlled personality style. ‘Neuroticism’ is 
characterized as tense, anxious, fearful to the world around, and typically, emotionally negative and 
sad. The ‘Openness’ characteristic is described as open-minded, having broad interests, insightful, and 
curious (John & Srivastava, 1999). People utilize such personality variables in describing themselves 
and others as well as in how they perceive the world around them (John & Srivastava, 1999). In 
this new era of social-collaborative robots where robots are continuously assuming roles of family 
members, teammates, and/or therapists, Big Five traits can be a strong predictor of differential reaction 
to robots, and play a crucial role in successful HRI implementations. Given the current turbulent 
times and the emerging focus on adapting to humanless touch technology, there is a dire need to 
study and examine Big Five human personality dimensions to understand the field of HRI through 
the lenses of robotic anthropomorphism, robot likeability, and successful HRI implementation. Our 
research aims to fulfill this gap.

Robotic anthropomorphism refers to the attribution of human form, behavior, or characteristics 
to robots (Bartneck et al., 2009). In addition to employing human personality traits or Big Five to 
understand human/consumer behavior towards robots, we conceptualize that anthropomorphism 
(along with the Big Five) will help researchers understand HRI. Previous research has examined the 
impact of anthropomorphism in the field of social robotics (Kaplan, Sanders, and Hancock, 2019). 
Still, not much literature is available on the role of the Big Five personality traits in the context of 
robotic anthropomorphism. Robot likeability refers to a positive initial impression (usually within 
seconds) of robots, and the concept of robot likeability significantly influences our positive or negative 
judgments about social-collaborative robotics (Bartneck et al., 2009).

There is a dearth of human psychology and consumer behavior research in the field of human-robot 
interaction. The success of HRI between humans and social-collaborative robotics cannot be assessed 
without recognizing human judgment towards different levels of robotic anthropomorphism and its 
subsequent influence on robot likeability. Social-collaborative robotics exhibits social characteristics 
that are more human-like than traditional artificial intelligence designs. Therefore, developers utilize 
both robotic anthropomorphism and likeability into account when designing social-collaborative robots 
for consumers of all ages with either emotional (therapeutic) or physical needs. In order to bridge 
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the identified research gaps in HRI space pertaining to the Big Five, Robotic anthropomorphism, 
robot likeability, and overall HRI implementation, our research addresses the following questions:

1.  Do the Big Five personality traits (Extroversion, Agreeableness, Conscientiousness, Neuroticism, 
and Openness) impact robot likeability in human-robot Interaction (HRI) situations?

2.  Will the degree of human-like attributes in robots (a.k.a., robotic anthropomorphism) influence 
the likeability of robots?

3.  Will robotic anthropomorphism influence the relationship between human personality variables 
and robot likeability in varying (industrial versus social) HRI situations?

The research makes the following contributions. First, the study focuses on the Big Five human 
personality traits and how they are linked to positive and/or negative reactions to robots. Previous 
research (e.g., Eysenck, 1950; Donnellan et al., 2006) has provided evidence of extraversion and how 
it is linked with robot likeability through strong communication preferences and low communication 
apprehension (Nomura et al., 2008; Kaplan, Sanders and Hancock, 2019); however there is not much 
research available on how different human personality traits can be associated with positive and/
or negative reactions towards social robots in varying HRI settings. Kaplan et al. (2019) utilized 
the Mini International Personality Pool (Mini-IPIP; Donnellan et al., 2006) and examined Big Five 
personality traits for social robots, yet their research focus was on extroversion-introversion trait and its 
relationship with anthropomorphism and robot likeability. They did not investigate the entire breadth 
of Big Five personality traits, and the subsequent impact of Big Five on a positive and successful HRI 
implementation. Our research aims to fulfill this gap. Second, there is limited research conducted on 
how these human personality traits are associated with anthropomorphic tendencies, and human’s 
ability to anthropomorphize robots by attributing human-like characteristics to robots (Woods et al., 
2007; Letheren et al., 2016; Kaplan, Sanders and Hancock, 2019). Furthermore, the following question 
arises: Does robotic anthropomorphism acts as a bridge (or mediator) between human personality 
traits and our reactions and likeability for robots. Our research explores this question and fulfills the 
research gap through an in-depth examination of robotic anthropomorphism and its relationships with 
the Big Five human personality traits, along with robot likeability and overall positive/successful HRI 
implementation. Last but not least, most HRI research focused on any social robot without getting into 
details of the robot’s appearance and its real usage in industry and home settings. The issue of robot 
morphology plays a significant role in human perception of robots, especially in the context of “two 
robots of differing appearance, even if they worked in the same job domain” (Kaplan, Sanders, and 
Hancock, 2019, p. 135) since varying robots’ appearances will yield different results with respect to 
human personality traits and their reactions (likeability) towards robots. In our research, we tried to 
overcome this research gap by examining two different robots (one social robot used in therapeutic 
situations called PARO Baby Seal robot, and another industrial robot called KUKA robot generally 
used in organizations, as a supplier of intelligent automation solutions) through the lenses of Big 
Five human personality traits; and investigating how anthropomorphism mediates the relationship 
between Big Five and robot likeability leading to a successful HRI implementation. To the authors’ 
knowledge, this is the one-of-its-kind HRI research attempted in the interdisciplinary areas of Big 
Five personality traits (Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness 
to experience), robotic anthropomorphism, robot likeability, and successful HRI implementation by 
utilizing two different robot settings from home and industry.

This article consists of four sections. First, we focus on defining and describing social-collaborative 
robotics in HRI. Second, we examine how Big Five human personality traits impact social-collaborative 
robotics either directly or through the mediating effect of robotic anthropomorphism. Thereafter, 
we investigate the effects of Big Five and robotic anthropomorphism on robot likeability, and the 
subsequent impact of these HRI interrelationships on the success of HRI implementation. Next, 
we propose our Personality – Anthropomorphism – Likeability framework and utilize SmartPLS 



International Journal of Intelligent Information Technologies
Volume 17 • Issue 1 • January-March 2021

22

methodology to investigate the impact of our framework on consumers and businesses through human 
personality traits, robotic anthropomorphism, robot likeability, and (successful) HRI implementation 
in the context of social-collaborative robotics and HRI.

THEoRETICAL FRAMEwoRK

Social-collaborative robots possess skills related to cognition (reasoning, planning, manipulation, 
navigation, etc.), and collaboration through their interaction with human-supported HRI environments 
(Lungarella et al., 2003). According to Arora and Arora (2020), social-collaborative robots can be 
classified in multiple categories in the HRI domain – therapeutic robots, physically-assistive robots, 
robot interrogators, Wizard-of-Oz (WoZ), and industrial robots with human interaction capabilities. 
Social-collaborative robots not only possess cognitive skills (i.e., logical thinking, decision- making, 
and consciousness, problem-solving, etc.) but are also equipped with the ability to understand and 
exhibit social and ethical norms by displaying socially acceptable behaviors (Arora & Arora, 2020). 
Social-collaborative robots can assist humans in various situations, both therapeutically (emotionally) 
and physically. Human-robot interaction (HRI) focuses on the interaction between humans and robots 
(Kaplan et al., 2019). Therefore, it is crucial to understand the human side of personality differences 
in order to implement HRI successfully. An important question arises here. Do different human 
personality traits influence (and change) a person’s attitudes about and their behavior towards robotic 
technology? The answer may lie in the extensive research literature available on human personality 
traits that suggests that all personality measures may be categorized under the umbrella of a 5-factor 
model of personality, also called the “Big Five” (Goldberg, 1990).

Personality is an essential human attribute for human social interaction, and researchers (e.g., 
Dicaprio, 1983; Woods et al., 2005; and Tapus and Matarić, 2008) defined personality as: “the pattern 
of collective character, behavioral, temperamental, emotional and mental traits of an individual that 
has consistency over time and situations” (Aly and Tapus, 2015, p. 186). Several personality models 
can be utilized in the human social interaction context, of which the predominant ones are: Big Five 
(Openness, Conscientiousness, Extraversion, Agreeableness, and Neuroticism) (Goldberg 1990, 
1999); Eysenck Model of Personality (PEN) (P: Psychoticism, E: Extraversion, and N: Neuroticism) 
(Eysenck 1953, 1991); and Meyers-Briggs (Extraversion-Introversion, Sensation-Intuition, Thinking-
Feeling, and Judging-Perceiving) (Myers-Briggs and Myers 1980; Murray 1990). We use the Big Five 
personality traits for our HRI research, as “it is the most descriptive model of human personality” 
(Aly and Tapus, 2015, p. 186). The 5-factor structure of Big Five personality model has been analyzed 
in various languages, integrated into existing personality inventories (McCrae & John, 1992; Judge 
et al., 1999); assimilated and generalized across all cultures (McCrae & Costa, 1997; Pulver et al., 
1995; Salgado, 2002), and has maintained stability and consistency over time (Costa & McCrae, 
1992). The big five personality traits are: (1) Extraversion, which “implies an energetic approach 
toward the social and material world and includes traits such as sociability, activity, assertiveness, 
and positive emotionality”; Agreeableness, which “contrasts a prosocial and communal orientation 
toward others with antagonism and includes traits such as altruism, tender-mindedness, trust, and 
modesty”; Conscientiousness, which describes a “socially prescribed impulse control that facilitates 
task- and goal-directed behavior such as thinking before acting, delaying gratification, following norms 
and rules, and planning, organizing, and prioritizing tasks”; Neuroticism, which “contrasts emotional 
stability and even-temperedness with negative emotionality, such as feeling anxious, nervous, sad, and 
tense”; and openness to experience, which measures “the breadth, depth, originality, and complexity 
of an individual’s mental and experiential life” (John et al., 2008: 120).

The current study focuses on extraversion-introversion as strong predictors of diverse reactions 
towards robots in HRI contexts. Individuals who score high on the extraversion trait tend to be 
enthusiastic about social settings and are more open to new experiences or entities, typically describing 
then as likable and/or positive. Extraverts exhibit positive responses to technologies and robots due 
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to low communication apprehension and their inherent ability to demonstrate strong preferences 
for communication, while introverts portray negative reactions and attitudes towards robots due to 
their need for higher levels of communication apprehension (Nomura et al., 2008). Since robotic 
anthropomorphism is linked with human-like characteristics in robots (e.g., facial features of robots 
like big eyes, smiling face, interactive voice, speech, hand and body gestures integrated into robots 
like ASIMO, Nao, Kirobo Mini, Pepper, etc.), the ability to anthropomorphize robots is strongly 
linked to attributing these specific personality traits related to user’s personality (Kaplan et al., 2019) 
leading to robot likeability. Individuals with a high extraversion trait are predicted to show more 
positive attitudes in HRI settings. Furthermore, since extraversion integrates strong anthropomorphic 
tendencies (Letheren et al., 2016), we hypothesize that extroversion will be strongly related to robot 
anthropomorphism in addition to direct relationships and associations with robot likeability in HRI 
situations. Therefore, we posit the following hypotheses:

H1A: Extraversion will be positively associated with robotic anthropomorphism.
H1B: Extraversion will be positively associated with robot likeability.

Agreeableness is another trait that can be expected to demonstrate a favorable reaction in HRI. 
This is because agreeableness includes characteristics such as favorable to others, sympathetic and 
altruistic. Agreeable people are likable, caring, cooperative, good-natured, cheerful and gentle, 
along with their ability to trust others easily (Judge et al., 1999). Research has shown that the trait 
of agreeableness is associated with less need for physical distance between robots compared to 
other traits (Takayama & Pantofaru, 2009). With all the positive traits of agreeable individuals, the 
cooperative nature of agreeable individuals may lead to more successful careers in life; however, high 
levels of agreeableness may pose a problem sometimes as they may tend to sacrifice their success 
in pleasing others (Judge et al., 1999). Conscientiousness is a characteristic that follows social rules 
and norms dedicated to the achievement of goals, and consists of three significant orientations 
or facets – (a) dependability orientation (responsible and careful), (b) achievement orientation 
(hardworking and persistent), and (c) orderliness (planned and organized) (Judge et al., 1999). Once 
the human’s interaction with a robot is accepted as a goal, conscientiousness will strive to achieve 
the goal of successful HRI. Both agreeableness and conscientiousness demonstrate higher levels of 
robot likeability and anthropomorphism (Kaplan, Sanders, and Hancock, 2019). Thus, we posit the 
following hypotheses:

H2A: Agreeableness will be positively associated with robotic anthropomorphism.
H2B: Agreeableness will be positively associated with robot likeability.
H3A: Conscientiousness will be positively associated with robotic anthropomorphism.
H3B: Conscientiousness will be positively associated with robot likeability.

Neuroticism, unlike the other Big Five traits, is likely to demonstrate an adverse reaction in 
HRI. Neuroticism refers to a lack of positive emotional stability and psychological adjustment. It, 
therefore, may be related to two characteristics: anxiety (instability and stress proneness), and one’s 
well-being (personal insecurity and depression) (Judge et al., 2019; Takayama & Pantofaru, 2009). 
The trait of neuroticism is characterized as nervous, tense, fearful, and exhibiting a tendency to 
see the world negatively. Costa and McCrae (1992) differentiated among six facets of neuroticism: 
anxiety, depression, self-consciousness, hostility, vulnerability, and impulsiveness. In the HRI context, 
neuroticism is associated with adverse attitudes towards robots (Takayama & Pantofaru, 2009) and 
robotic anthropomorphism.

On the contrary, openness to experience is characterized by philosophical and intellectual abilities, 
along with unconventionality (imaginative, autonomous, and nonconforming) attributes (Judge et 
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al., 1999). The openness personality trait is characterized as having a high level of curiosity for new 
entities and being open-minded to novel objects. Therefore, individuals with a high level of openness 
will be more likely to see robots as new entities, be able to anthropomorphize robots positively, and 
will be more willing to accept them in HRI situations. Therefore, we posit the following hypotheses:

H4A: Neuroticism will be negatively associated with robotic anthropomorphism.
H4B: Neuroticism will be negatively associated with robot likeability.
H5A: Openness to Experience will be positively associated with robotic anthropomorphism.
H5B: Openness to Experience will be positively associated with robot likeability.

As defined earlier, robotic anthropomorphism is the human-like attribution of human behavior 
and characteristics in robots (Bartneck et al., 2008). Prior research has shown some significant results 
on robotic anthropomorphism in HRI (Kaplan et al., 2019; Woods et al., 2007; Epley et al., 2007; 
Reich and Eyssel, 2013). Robots with higher anthropomorphism or stronger attribute-similarities 
and characteristics with humans in both appearance and behavior may facilitate constructive and 
natural HRI (Duffy, 2003; Złotowski et al., 2015; Strait et al., 2017). Robotic anthropomorphism 
increases comfort levels for users (humans) during their interactions with robots (Sauppé & Mutlu, 
2015; Strait et al., 2017). A robot exhibiting a high degree of anthropomorphism is often perceived 
to be intelligent and more likable (Bartneck et al., 2008). Therefore, we posit:

H6: Robotic Anthropomorphism will be positively associated with robot likeability.

Robot likeability is usually determined within seconds during social-collaborative robots’ 
interactions and, thus, the impression of likeability significantly influences (positive or negative) HRI 
implementation (Kaplan et al., 2019; Bartneck et al., 2008). While human-like robots have resulted in 
positive outcomes, such as increased feelings of familiarity or ease in working with robots (Sauppé 
& Mutlu, 2015), researchers have also identified adverse (negative) feelings (Mori et al., 2012) of 
consumers towards robots. This psychological phenomenon is referred to as ‘the uncanny valley effect,’ 
originally described by Japanese robotics professor Masahiro Mori in the 1970s (Mori et al., 2012).

Figure 1 describes the ‘uncanny valley’ as a dip between a humanoid robot and a healthy person. 
The graph shows that robot likeability increases to a highly human-like robot up to a point, and 
then drops if the robot becomes too human-like. In short, people respond more adversely to robotic 
anthropomorphism as the degree of human-like attributes increase. Consequently, the uncanny valley 
effect is another factor to consider in designing social-collaborative robotics, to remember that if robots 
are too human-like, they may be viewed less positively (Arora and Arora, 2020). Robot likeability 
is particularly interesting because the amount of information that humans process within seconds 
is limited to very few variables. For instance, it may be the robot’s appearance and one or two of its 
motions. Therefore, it is vital to design robots with consideration to appearance and behavior, (or 
robotic anthropomorphism), for the purpose of a successful HRI implementation. The more likable 
a robot is, the more successful its implementation in practical, real-world settings (Zheng et al., 
2013). Therefore:

H7: Robot likeability will be positively associated with a successful HRI implementation.

Figure 2 demonstrates our Personality – Anthropomorphism – Likeability conceptual framework. 
Figure 2 exemplifies relationships among the constructs of Big Five personality traits, robotic 
anthropomorphism, and robot likeability, leading to a successful and positive HRI implementation, 
as described in H1-7.
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METHodoLoGy

To test the conceptual framework, the X-Culture project was used to collect the data. X-Culture 
(www.X-Culture.org) is a large-scale international business collaboration and consulting project, which 
in a given semester attracted about 5,000 business students and working professionals from all six 
continents across the globe. The project is run twice a year on a semi-annual basis. The participants 
work in global virtual teams, typically six to seven people per team, each from a different country. The 
project participants rely on such as tools as Google Docs, Dropbox, WhatsApp, Facebook, Twitter, 
Snapchat, Google Hangouts, Skype, and the for communication and collaboration.

Sample
About 37 percent of the participants were graduate MBA and EMBA students, and the rest were 
business students in their last or second to last (senior or junior) year of studies. The average age 
was 23.3 years, and 39 percent were male. The vast majority of the participants had at least some 
work experience (average of 3.2 years), and many (31.1 percent) were employed at the time of the 
project. Some even ran their own businesses or held managerial positions (5.1 percent). The X-Culture 
project teams submitted weekly deliverables, and all project participants completed weekly progress 
surveys. The average response rate was 97.2% resulting in a sample size of 308 usable fully-completed 
questionaries.

Admittedly, the present sample is comprised of students and certain concerns about the 
generalizability of the findings exist. However, the threat to the validity and generalizability of the 

Figure 1. Masahiro Mori’s (2012) ‘Uncanny Valley Effect’ curve (Adapted from MaDorman et al. (2015)
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findings is likely minimal. The concern is that students differ from the general population in terms of 
their demographic characteristic, particularly age. However, the fact that students are typically younger 
is of little concern if the maturation effect does not influence the effects studied. For example, in the 
case of the present study, some organizations offered post-market commissions to the students, as 
well as prospects of internships and job offers. So the stakes and motivation were high and closer to 
those in the real world, rather than a typical symbolic bonus that professors offer to their students for 
participating in a study. The participants, the project settings, and the inter-member differences were 
real, and the work design was closely reminiscent of the real business world. Therefore, the threat 
that the findings of the present study would not generalize to the real world consumer population is 
minimal.

In subsequent sections, measures used in the framework, data collection process, and data analysis 
are discussed. The X-Culture participants watched 3 videos (2-3 minutes each) of social robots in 
industrial (e.g., KUKA Industrial Robot - https://www.youtube.com/watch?v=lv6op2HHIuM) and 
personal, social- collaborative (e.g., PARO – Personal Assistive Robot – Seal Robot - https://www.
youtube.com/watch?v=2ZUn9qtG8ow) situations before being exposed to the final questionnaire. 
The idea was to get the participants to understand and enjoy the field of industrial and social 
robotics through videos. Research in social sciences and interpersonal communication has revealed 
that messages/communications can be made more persuasive and compliant by cueing humans’ 
involvement with objects and behaviors (Clark 1998; Cleveland, Kalamas, and Laroche 2005). 
Thus, for the respondents to understand the field of social-collaborative robotics, we used video 
messages/advertisements as cues to understand social behaviors in varying HRI situations. Once 
the respondents felt connected to the topic (after multiple exposures to industrial and social robots 
through videos), an electronic Web-based questionnaire was provided to the X-Culture participants 
with questions focusing on two robots: (a) KUKA Industrial robot 1used by manufacturing companies 
for automation and digitization, turnkey production facilities, and smart software solutions; and (b) 
PARO Seal Therapeutic Robot2 – a personal assistant social robot helping humans to reduce anxiety, 
depression, and loneliness, while also stimulating, collaborating and engaging with people who are 
living with dementia (Pu et al., 2020).

Measures
The questionnaire consisted of measures from existing literature that were adapted to this study. 
Godspeed questionnaires using 5-point semantic differential scales were utilized as measures for 
robotic anthropomorphism, robot likeability, and HRI implementation (Bartneck et al., 2008). Big Five 
human personality traits (Extraversion, Agreeableness, Conscientiousness, Neuroticism, and Openness 

Figure 2. Human Personality – Robotic Anthropomorphism – Robot Likeability HRI Framework
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to Experience) were assessed on a 5-point Likert scale using measures from John & Srivastava 
(1999). All eight constructs in the conceptual model constitute latent variables requiring indirect 
measurement (Churchill, 1979; Bagozzi and Phillips, 1982). As the constructs in our research reflect 
(i.e., cause) their indicators, they were specified to be reflective (Diamantopoulos and Winklhofer, 
2001; Diamantopoulos et al., 2008). All indicators were selected based on an extensive literature 
review as well as evidence from academicians. A 5-point Likert scale was used to measure the items. 
We conducted Harman’s single-factor test (Podsakoff and Organ, 1986), the most widely used method 
to evaluate the possibility of common method variance (Podsakoff et al., 2003). We did not find 
any general factor that accounted for the majority of the variance in these variables. Therefore, we 
conclude that common method variance is not a problem in our study (Podsakoff and Organ, 1986).

data Analysis
We validated our measures and tested our hypothetical model using partial least squares (PLS), 
and more specifically, SmartPLS version 3.2.8 (Ringle et al., 2015). PLS is a structural equation 
modeling tool that employs a fixed point or component-based least squares estimation procedure 
to obtain parameter estimates. PLS uses a series of interdependent OLS regressions to minimize 
residual variances, placing minimal demands on data in terms of measurement scales, sample size, 
and distributional assumptions (Chin, 1998; Fornell and Bookstein, 1982; Wold, 1982). Therefore, it 
is preferable to approaches that employ covariance-based maximum likelihood methods (e.g., Lisrel, 
EQS, etc.) in examining data where the sample size is relatively small (Bagozzi et al., 1991; Hulland 
et al., 2010). PLS is also a conservative modeling approach that tends to underestimate rather than 
overestimate path coefficients (Dijkstra, 1983), reducing the likelihood of Type 1 errors in hypothesis 
testing (Bagozzi et al., 1991).

The conceptual model (Figure 1) was tested by analyzing the data using partial least squares (PLS) 
following a two-step process. The first step involved assessing the measurement model to evaluate the 
consistency, reliability, and validity of the measures. The second step involved assessing the structural 
model to evaluate the significance and strength of the path coefficients between the variables.

Measurement Model
Indicator reliability was tested using a bootstrapping procedure with 1,000 randomized samples 
taken from the original sample and of original cardinality (Henseler et al., 2009). While checking the 
estimates of outer loadings of all indicators with their constructs, it was found that the indicators of 
the construct “Openness to Experience” did not exhibit sufficient outer loadings values. Therefore, the 
construct “Openness to Experience” was dropped from the final analysis. Finally, the measurement 
model containing seven constructs was assessed. As shown in Table 1, all estimates of the outer 
loadings exceed the recommended minimum value of .7 and exhibit sufficient t-values.

When testing for indicator reliability, convergent validity is also assessed, as loadings greater than 
.7 imply that the indicators share more variance with their respective constructs than with the error 
variances (Chin, 1998). To assess construct reliability, Cronbach’s alpha (α) and composite reliability 
(CR) were determined. As depicted in Table 1, the α for the constructs are all above the suggested 
cut-off value of .7 (Cronbach, 1951; Litwin, 1995). Similar results were observed for the CR values, 
which were all greater than the suggested cut-off value of .6 (Bagozzi and Yi, 1988; Henseler et al., 
2009). Convergent validity was assessed using the average variance extracted (AVE). As depicted 
in Table 1, the AVE is in all cases above the recommended value of .5 (Fornell and Larcker, 1981; 
Henseler et al., 2009). AVE was also used to evaluate discriminant validity. Table 2 indicates the 
correlations between the latent variables and the square roots of AVE on the diagonal. As the square 
root of AVE is in each case greater than the correlation among the latent variable scores with respect 
to its corresponding row and column values, we can conclude that none of the constructs shares 
more variance with another construct than with its own indicators, thus exhibiting sufficient levels 
of discriminant validity (Fornell and Larcker, 1981; Henseler et al., 2009). To assess the structural 
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model’s prediction relevance, we applied a blindfolding procedure with an omission distance of 5 
(Henseler et al., 2009). All resulting Q2 values are larger than zero, indicating sufficient predictive 
power of the structural model (Stone, 1974; Geisser, 1975).

Structural Model
After evaluating and assuring measurement model validity, SmartPLS was employed to test the 
structural model. The significance of the hypothesized paths was determined using the T-statistic 
calculated with the bootstrapping technique. The explanatory power of the structural model was 
assessed according to the variance accounted for by the endogenous variables (Oh et al., 2012). Stone–
Geisser criterion Q2 values were obtained by running blindfolding procedures; these ranged above 
the threshold value of zero, thus establishing the model’s predictive relevance (Ringle et al., 2015).

Two structural models were assessed, one with constructs of Anthropomorphism, Likeability 
and HRI Implementation related to KUKA (industrial robot); and the second model with constructs 
of Anthropomorphism, Likeability, and HRI Implementation related to PARO (social-collaborative 
personal assistant robot). Both models included the constructs of Extraversion, Agreeableness, 
Conscientiousness, and Neuroticism.

Table 3 shows the PLS results of the theoretical model that contains the constructs related to 
KUKA. The results include standardized path coefficients and significance based on two-tailed t-tests. 
The relationships between extraversion and anthropomorphism (b = .199, p < .10), anthropomorphism 
and likeability (b = .373, p < .01), agreeableness and likeability (b = .123, p < .05), neuroticism and 
likeability (b = -.170, p < .01), and likeability and HRI implementation (b = .472, p < .01) were all 
significant. On the other hand, the relationships between conscientiousness and anthropomorphism; 
agreeableness and anthropomorphism; neuroticism and anthropomorphism; extraversion and 
likeability; conscientiousness and likeability were non-significant.

Table 4 shows the PLS results of the theoretical model that contains the constructs related 
to PARO. The relationships between extraversion and anthropomorphism (b = .152, p < .05), 
agreeableness and anthropomorphism (b = .120, p < .10), anthropomorphism and likeability (b 
= .586, p < .01), likeability and HRI implementation (b = .752, p < .01) were significant. On the 
other hand, the relationships between conscientiousness and anthropomorphism; neuroticism and 
anthropomorphism; openness to experience and anthropomorphism; extraversion and likeability; 
agreeableness and likeability; conscientiousness and likeability; neuroticism and likeability were 
non-significant.

dISCUSSIoNS

The COVID-19 pandemic has changed how we perceived the world, and we are gradually adopting 
a ‘new normal’ of interacting with others virtually. We are learning that, through social distancing, 
we are capable of working as a team and be able to learn and study without face-to-face interaction. 
In contrast, many of us are facing challenges, such as feeling isolated, anxious, or stressed in addition 
to uncertainty and fear. Individuals will need to take care of their mental health during and after 
the pandemic without physical interaction with humans. Touchless robotic technology (e.g., social-
collaborative robots) has emerged as a critical support system for humans in the present times for 
automation, digitization, therapeutic and emotional needs.

In this new era of diffused humanized technology, social robots have become ubiquitous. 
Social-collaborative robots have emerged as our pets and/or our family members in some situations. 
Task-oriented robots improve the quality of human lives. Artificial intelligence (AI) is continuously 
impacting and changing our globalized landscape, both at the individual (consumer) and organizational 
levels. Some organizations employ humans and robots as collaborative teams for enhancing 
productivity. Such teamwork has resulted in significant positive outcomes in the field of Human-Robot 
Interaction (HRI). While individuals are adopting a new environment and landscape, businesses are 
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Table 1. Overview of indicators and measures of reliability and validity

Constructs and Indicators Outer Loadings

Point Estimation t-Value

Extraversion (α = .710, AVE = .590, CR = .812)

ex1 Is talkative

ex6 Is reserved (reverse scale)

ex11 Is full of energy .765 3.346

ex16 Generates a lot of enthusiasm .730 2.796

ex21 Tends to be quiet (reverse scale)

ex26 Has an assertive personality .808 3.368

ex31 Is sometimes shy, inhibited (reverse scale)

ex36 Is outgoing, sociable

Agreeableness (α = .697, AVE = .695, CR = .819)

ag2 Tends to find faults in others (reverse scale)

ag7 Is helpful and unselfish with others .751 2.899

ag12 Starts quarrels with others (reverse scale)

ag17 Has a forgiving nature

ag22 Is generally trusting

ag27 Can be cold and aloof (reverse scale)

ag32 Is considerate and kind to almost everyone

ag37 Is sometimes rude to others (reverse scale)

ag42 Likes to cooperate with others .909 5.566

Conscientiousness (α = .727, AVE = .648, CR = .846)

Co3 Does a thorough job

Co8 Can be somewhat careless (reverse scale)

Co13 Is a reliable worker

Co18 Tends to be disorganized (reverse scale)

Co23 Tends to be lazy (reverse scale) .821 5.678

Co28 Perseveres until the task is finished

Co33 Does things efficiently

Co38 Make plans and follows through with them .724 4.372

Co43 Is easily distracted (reverse scale) .864 7.123

Neuroticism (α = .767, AVE = .586, CR = .850)

Ne4 Is depressed .730 5.919

Ne9 Is relaxed, handles stress well(reverse scale)

Ne14 Can be tense .733 6.544

Ne19 Worries a lot

Ne24 Is emotionally stable, not easily upset

Ne29 Can be moody .804 8.047

Ne34 Remains calm in tense situations (reverse scale)

Ne39 Gets nervous easily .791 7.632

Anthropomorphism (α = .738, AVE = .548, CR = .829)

An1 Fake - Natural .771 17.183

An2 Machine-like – Human-like .753 19.712

An3 Unconscious - Conscious .712 12.803

An4 Artificial - Lifelike .722 14.403

An5 Moving rigidly – Moving elegantly

Likeability (α = .860, AVE = .643, CR = .900)

Li1 Dislike - Like .718 15.516

Li2 Unfriendly - Friendly .815 34.963

Li3 Unkind - Kind .839 36.594

Li4 Unpleasant - Pleasant .848 42.130

Li5 Awful - Nice .782 23.736

HRI Implementation (α = .868, AVE = .791, CR = .919)

HR1 Inert - Interactive .915 51.416

HR2 Stagnant - Lively .899 35.220

HR3 Failure - Success .845 29.903
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also facing continuous changes in response to disruptive technology advancement and data-driven 
management. There are many companies utilizing robots in order to implement tasks effectively and 
efficiently and to provide better service to consumers. For instance, Amazon works with robots that 
assist in the preparation of customer orders as a team. Similarly, Uber’s artificial intelligence assigns 
human drivers to pick up guests. AI and HRI seem inevitable and essential in this data-driven and 
ever-changing work environment.

Prior research has shown that human personality traits (especially extraversion) play a crucial 
role in building robot likeability (Kaplan, Sanders, and Hancock, 2019), however previous researchers 
did not include constructs of robotic anthropomorphism and HRI implementation. Furthermore, 
researchers did not include diverse HRI situations (e.g., industrial and social robotics). In our research, 

Table 2. Correlations between constructs and Discriminant Validity

Construct AG AN CO EX HR LI NE

Agreeableness (AG) .834

Anthropomorphism (AN) .074 .740

Conscientiousness (CO) .360 .122 .805

Extraversion (EX) .447 .096 .392 .768

HRI implementation (HR) .111 .282 .050 .017 .786

Likeability (LI) .148 .374 .101 .064 .472 .802

Neuroticism (NE) -.208 -.014 -.449 -.236 -.021 -.169 .765

Table 3. Path coefficients and R2 of structural model (KUKA)

Constructs Path coefficients Hypotheses

Point estimate t-Value

AN (R2=.201)

EX .199 1.679 H1a Accepted*

AG .018 0.268 H2a Rejected

CO .055 0.674 H3a Rejected

NE -.056 0.716 H4a Rejected

LI (R2=.178)

AN .373 6.856 H5 Accepted***

EX -.049 0.712 H1b Rejected

AG .123 1.940 H2b Accepted**

CO -.045 0.596 H3b Rejected

NE -.170 2.597 H4b Accepted***

HR (R2=.071)

LI .472 10.057 H6 Accepted***

*p < 0.10; ** p < 0.05; *** p < 0.01
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we aim at understanding human-robot interaction in both industrial and social robots’ interactions/
situations by examining the constructs of Big Five personality traits (Extraversion, Agreeableness, 
Conscientiousness, Neuroticism, and Openness to experience), robotic anthropomorphism, robot 
likeability, and HRI implementation. Our research focused on these constructs through KUKA 
industrial and PARO social robots. We got some noteworthy results that are discussed below.

For both industrial KUKA and social PARO robots, we found strong relationships between 
robotic anthropomorphism, robot likeability, and HRI implementation. Robotic anthropomorphism 
was positively associated with (and resulted in) robot likeability, which positively resulted in HRI 
implementation in both industrial and social HRI situations. This means that the more a robot looks/
behaves like a human being, the more it is likable by the humans; and positive robot likeability leads to 
a positive and successful human-robot implementation, where HRI yields positive results for humans 
in industry and home (social) settings. The main differences occurred in the way human personality 
traits relate to robotic anthropomorphism and/or robot likeability. During HRI interactions with 
KUKA robots, we found extraversion resulted in positive anthropomorphism, and then to positive 
robot likeability. However, the direct relationship between extraversion and robot likeability was 
not significant. This means that extraverted individuals like robots which are anthropomorphic or 
human-like. For KUKA robots, agreeableness resulted in positive robot likeability, while neuroticism 
resulted in negative robot likeability. Conscientiousness and Openness did not exhibit any significant 
relationships with either robotic anthropomorphism or robot likeability. Unlike extraversion, we found 
that agreeableness and neuroticism did not have strong and significant relationships through robotic 
anthropomorphism to robot likeability. This means that unlike extraverted individuals, agreeable and 
neurotic individuals like or dislike the robot without experiencing any feelings of anthropomorphism. 
For these individuals, anthropomorphism has no effect in the context of industrial human-robot 
interactions.

Table 4. Path coefficients and R2 of structural model (Paro)

Constructs Path coefficients Hypotheses

Point estimate t-Value

AN (R2=)

EX .152 2.224 H1a Accepted**

AG .120 1.884 H2a Accepted*

CO .044 0.676 H3a Rejected

NE -.018 0.268 H4a Rejected

LI (R2=)

AN .586 15.088 H5 Accepted***

EX -.042 0.566 H1b Rejected

AG .009 0.150 H2b Rejected

CO -.020 0.253 H3b Rejected

NE -.020 0.287 H4b Rejected

HR (R2=.565)

LI .752 25.161 H6 Accepted***
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On the contrary, during social robot interactions with humans, the relationships between human 
personality traits and robotic anthropomorphism were extremely important. We found that both 
extraversion and agreeableness resulted in positive anthropomorphism for PARO robots, which 
further resulted in positive robot likeability. Unlike industrial settings, the direct relationships between 
personality traits and robot likeability were missing in social HRI; all relationships were channeled 
through robotic anthropomorphism. Neuroticism, Conscientiousness, and Openness did not exhibit 
any significant relationships with either robotic anthropomorphism or robot likeability. In both cases 
of industrial KUKA and social PARO robots, we found that extraverted individuals experienced 
anthropomorphism first before liking the robot. However, agreeable individuals experienced 
anthropomorphism before robot likeability in social HRI, whereas they exhibited strong preferences 
for robot likeability (without experiencing robotic anthropomorphism) in industrial HRI. Neurotic 
individuals displayed negative feelings for industrial robots and no feelings for social robots. We did 
not find significant relationships for personality traits of Conscientiousness and Openness (for either 
KUKA industrial or PARO social robots) in our research results.

Our research has the potential to guide policies regarding designing and implementing robots 
in industrial and social HRI situations. This is our biggest research contribution. Watson and Clark 
(1997) pointed out “extraverts are more sociable but are also described as being more active and 
impulsive, less dysphoric, and as less introspective and self-preoccupied than introverts” (p.769). 
Our research strengthens this statement because our findings suggest that extraversion results in 
positive anthropomorphism first, and then leads to positive robot likeability in both industrial and 
social HRI settings. Extraverts engage with robots more than any other personality traits and form 
strong anthropomorphism in any HRI situation. While designing robots for extraverts, roboticists 
and robot designers may need to include stronger anthropomorphic (human-like) attributes in order 
for the extraverts to like their robots. For example, Toyota’s Kirobo Mini (as part of Toyota Heart 
Project and a big step in AI for Toyota since it reads a person’s facial expressions and determines his/
her mood) is specifically designed with big eyes to attract consumers from all ages, especially Japan’s 
lonely, elderly and childless (Prosser, 2016). Since neuroticism can be broken down into six factors 
of anxiety, hostility, depression, self-consciousness, vulnerability, and impulsiveness (Costa and 
McCrae, 1992); neurotic individuals experience negative feelings for robots. Agreeable individuals 
are likable, good-natured, and cheerful and gentle, and possess qualities of trust, cooperation, and 
mutual care for others (Judge et al., 1999); and, therefore, are more prone to like robots than other 
human personality traits. While designing robots for agreeable and neurotic individuals, roboticists 
may not need to pay much attention to physical, behavioral, and anthropomorphic details in robots. 
However, they may need to define stronger non-behavioral, functional robotic features (e.g., robot 
functionality, control, usage, etc.) in robots. Overall, we found the prominence of three personality traits 
(Extraversion, Agreeableness, and Neuroticism) in the 5-factor structure of the Big Five traits while 
examining their interrelationships with robotic anthropomorphism, robot likeability and successful 
HRI implementation in industrial and social settings.

Our research has some limitations. The nature and composition of the sample can be problematic 
since it involves students and working professionals examining HRI situations through video messages. 
It would be beneficial if these HRI interactions can appear in person. However, we would not be able 
to garner more than 300 surveys in the physical situation. Given that the uncanny valley hypothesis 
is supported by prior researchers (Strait et al., 2017; Ho & MacDorman 2010), Ho & MacDorman 
(2010) refer to the likeability (y-axis) as interpersonal warmth, which is the dominant element in 
human perception to the robotic entities. Although eeriness (uncanny) is almost parallel to the y-axis 
(likeability) in the graph, the researchers declare the warmth does not correlate with eeriness (Ho 
& MacDorman 2010). Future researchers and roboticists can include the measures of warmth and 
eeriness as critical components for designing robots. Similar to warmth and eeriness, attractiveness 
and humanness (e.g., human-like motion and skin texture, along with certain levels of physical 
attractiveness that influence various kinds of personal decisions without rationale) can be included 
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in future research for better robotic designs, development, and implementation (Cunningham, 1986; 
Ho & MacDorman 2010). Future research should attempt to replicate the research results and develop 
process models that may explain the following: (a) why ‘extraversion’ has strong relationships with 
anthropomorphism in all HRI situations, why ‘agreeableness’ and ‘neuroticism’ are (positively and 
negatively) related to robot likeability in industrial HRI and not in social HRI situation, and why 
‘agreeableness’ is positively associated with anthropomorphism (and not likeability) in social HRI; 
(b) how anthropomorphism becomes a significant factor in social HRI vis-à-vis industrial HRI; and 
(c) what robot design and implementation will work in different HRI settings while defining situations 
when all five factors of Big Five personality traits become significant in human-robot interaction.
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