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ABSTRACT

To overcome shortcomings when the ant colony optimization clustering algorithm (ACOC) deals with 
the clustering problem, this paper introduces a novel ant colony optimization clustering algorithm with 
chaos. The main idea of the algorithm is to apply the chaotic mapping function in the two stages of 
ant colony optimization: pheromone initialization and pheromone update. The application of chaotic 
mapping function in the pheromone initialization phase can encourage ants to be distributed in as 
many different initial states as possible. Applying the chaotic mapping function in the pheromone 
update stage can add disturbance factors to the algorithm, prompting the ants to explore new paths 
more, avoiding premature convergence and premature convergence to suboptimal solutions. Extensive 
experiments on the traditional and proposed algorithms on four widely used benchmarks are conducted 
to investigate the performance of the new algorithm. These experimental results demonstrate the 
competitive efficiency, effectiveness, and stability of the proposed algorithm.
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Introduction

Data mining is the most critical work in the era of big data. Cluster analysis is one of the most basic 
tasks of data mining (Kao & Cheng, 2006), which can divide a set of data objects into multiple groups. 
Data objects located in the same group indicated that they have close similarities. Otherwise, they 
will belong to different groups. (Ding et al. 2016; Yang et al.2004). By analyzing the similarity and 
dissimilarity between data in the data set, data objects are grouped or clustered (Hidayat, Fatichah, & 
Ginardi, 2016; Jabbar, Ku-Mahamud, & Sagban, 2018). Cluster analysis is also called unsupervised 
learning because class labels and even the number of classes of data objects are unknown before 
analyzing the data (Gonzalez-Pardo, Jung, & Camacho, 2017; Han, Pei, & Kamber, 2011). Although 
cluster analysis and classification prediction tasks are not equal, cluster analysis can be used as a 
prerequisite for classification (Baig, Shahzad, & Khan, 2013). That is, when a set of data objects was 
unknown about what kinds of labels it can be divided into, cluster analysis could be firstly used to 
divide the similar data objects into the same groups. And then, according to certain principles, class 
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labels are affixed to those groups. If data is sufficient, class labels generated by the data set can be 
used for data classification, and the data set can be used as a training data set of the classification task.

Over the past two decades, group intelligence has attracted a great deal of interest among 
researchers because of its dynamic and flexible capabilities and its advantages in solving real-world 
nonlinear problems with high efficiency, and many group intelligence-based algorithms have been 
introduced for optimization in various areas of computer science (Anand Nayyar & Nayyar, 2018). 
Ant colony optimization algorithm is a swarm intelligence algorithm developed based on natural 
genetics and natural evolution of biological circles (Gonzalez-Pardo et al., 2017). As part of group 
intelligence, it solves complex combinatorial optimization problems by mimicking cooperative 
behavior among ants (Anand Nayyar, 2018). The algorithm has great global search ability and does 
not depend on the form of objective functions, so it is applied to solving the clustering problem 
(Menéndez, Otero, & Camacho, 2016; Monmarché, Slimane, & Venturini, 1999). At the same 
time, it has a particularly good ability to solve discrete, stochastic, dynamic problems (A Nayyar & 
Singh, 2016),and routing issues of sensor networks (Anand Nayyar & Singh, 2014). Basic analysis 
ant colony clustering algorithm (ACOC) aims to assign N data objects into K groups, by making the 
square of the Euclidean minimize between the data object and center of the corresponding group 
(Zhang Jianhua Jiang He, 2006). ACOC uses artificial ants (agent) to construct paths, each artificial 
ant starts with an empty string with length N, and each element in the string represents a data object 
in the data set. The value of this element object represents the grouping to which the corresponding 
data object is assigned. (Gao, Wang, Cheng, Inazumi, & Tang, 2016; Pei Zhenkui Li Hua, 2008).In 
order to improve the convergence rate, the principle of direct allocation is adopted in the initial stage 
of the ACOC algorithm, putting the ants on the data point at random and generating random global 
memory(Wang & Luo, 2019).In order to further improve the ACOC convergence and search ability, 
the variation factor of genetic algorithm was combined to improve the ant colony algorithm, and it 
enables the ant colony algorithm to generate genetic algorithm initial data in each iteration process, 
so as to improve the species diversity, expand the search scope of the solution and avoid getting into 
the local optimal solution dilemma(Wu, Yan, Zhang, & Shen, 2018).A hybrid algorithm for Big 
Data preprocessing ACO-clustering algorithm approach was proposed, which can help to increase 
search speed by optimizing the process. As the proposed method using ant colony optimization with 
clustering algorithm it will also contribute to reducing pre-processing time and increasing analytical 
accuracy and efficiency(Singh, Singh, & Pant, 2019).

In view of drawbacks of the basic ant colony clustering algorithm, such as running slowly, easy 
to fall into local optimal, unstable, and so on. This paper introduced a new ant colony clustering 
algorithm based on chaotic mapping function, named ACO-Based Clustering Algorithm with Chaos 
(ACOCC). In general, this algorithm has the next two main contributions:

(1) The sequence generated by chaotic mapping function is used to initialize the pheromone 
matrix, which aims to solve the problem of the incomplete searching state of ants caused by using the 
same tiny value as initial pheromones or using random number generators. So, artificial ants would 
distribute in different initial states as much as possible at the beginning of the algorithm.

(2) In the pheromone updating stage of ant colony local search, chaotic mapping function was 
introduced to generate slight perturbation factors for paths construction of artificial ants, so as to 
avoid premature and enable the ant to explore more nearby solution paths.

To verify the efficiency and effectiveness of the proposed algorithm, extensive experiments 
on four widely used benchmark data sets (Iris, Wines, Thyroid diseases, user knowledge modeling 
(UKD)) are conducted, also making wide comparisons with basic ant colony clustering algorithm. 
The results show that ACOCC has advantages compared with ACOC in the following aspect: quality 
of generated solutions, number of iterations, and stability.

The rest of this paper is organized as follows. Section 2 introduces the traditional ACOC. The 
details of our new ACOCC are described in Section 3. In Section 4, the performance of ACOCC is 
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validated by extensive experiments. Finally, conclusions with future research directions are given 
in Section 5.

ACO Clustering Algorithms

Ant Colony Optimization
The visual abilities of many ant species in nature are only a rudimentary development, and many 
have no vision at all (Andries P. Engelbrecht, 2005; Dorigo & Gambardella, 1997), most of the 
communication between ants depends on the chemicals produced by ants, these chemicals are used 
to mark paths on the ground, such as the nest to the food source, by sensing these chemicals on the 
ground, ants can find the shortest path from nest to food. The behavior of these ants to release and 
sense chemicals on the path is a heuristic factor in the development of ant colony optimization (ACO) 
algorithms (Dorigo, Birattari, & Stützle, 2006), the application fields of ACO are extended from 
the TSP problem (Gao et al., 2016) to classification, clustering, association rules analysis and so on 
(Yu Hui Pei Zhenkui, 2010). For example, applying ACO on the optimization of routing protocols 
provides solutions for developing energy-efficient routing protocols for wireless sensor networks to 
improve the reliability and lifetime of sensor nodes (Anand Nayyar & Singh, 2015).

Cluster Analysis Based on ACO Algorithm
The data is regarded as the ants with different attributes, and the clustering center is food sources 
that ants are looking for, then data clustering can be regarded as a process of ants searching for the 
food source.

To construct a solution, artificial ants assigns a class label to each element in the string S (i.e., 
each data object in the data set) by using the information provided on the pheromone path. At the 
beginning of the algorithm, the pheromone matrix t  is initialized with a small value t

0
, and the 

value t
ij

 on the path represents pheromone concentration of the data object i and group j. For the 
problem of “dividing N data objects into K groups,” the size of the pheromone matrix is N K´ . As 
the algorithm iterates, the pheromone matrix will change accordingly.

Each artificial ant will construct a similar solution by using pheromone-based communication 
with other ants to obtain a near-optimal partition scheme for the given data set in each iteration. After 
generating R solution paths, the local search steps will be performed, which makes it possible to further 
improve the performance of these solutions. Then the pheromone matrix is updated according to the 
generated solution path. Artificial ants continue to build solution paths according to such steps until 
a certain number of iterations or certain conditions are reached.

Ant Colony Clustering Algorithm

Pheromone Initialization
At the beginning of the first iteration, each element of the pheromone matrix is initialized to the same 
initial value t

0
 or a sequence initialized by the random number generator. Artificial ants begin with 

an empty string S of length N, and then the solution path S will be gradually improved by ant colonies 
with the iteration, and the pheromone matrix will be updated according to the quality of solutions 
constructed by the artificial ants.

The formula for pheromone matrix initialization is shown below.

�� ��; ,� , ,� , , ������������������������������P i N j K
ij
= = =t

0
1 1  ����������	 (1)



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

4

Construction of Solution Paths

To build a complete solution path, artificial ants assign a class tag to a data object at each time, 
that is, each time a class tag is assigned to an element of the solution path S. In order to balance 
the relationship between the amount of pheromone (represented history information) and heuristic 
information (the desirability of state transition xy), artificial ants use one of the following two ways 
to select the class tags for the solution path.

(1) 	 Selected by the probability of q
0
: artificial ants select the class tag with the highest pheromone 

concentration from the pheromone matrix to the corresponding data object, where q q
0 0
0 1( )< <  

is a predefined parameter.
(2) 	 Selected by the probability of 1

0
-q : a pseudo-random probability distribution (denoted as P

ij
) 

is used to select a is assigned to the corresponding data object.

The next point selected from the existing pheromone matrix joins the existing solution path 
according to the state transition formula in the (2) method. The state transition probability is defined 
by the following formula (2).

P K
ij

ij

k

K

ik

= = …

=∑

t

t
1

1, ,� �� �������������������������������������������������������	 (2)

Where P
ij

 is the normalized pheromone probability of the data element i belonging to group j.

Assessment of Solution Paths
In order to evaluate the quality of solution paths constructed by artificial ants, it is necessary to 
perform an objective function on solution paths of the problem. The objective function is defined as 
the sum of squares of the Euclidean distances of each data object to the center of its group. Suppose 
that a given data set of N data objects x x x x

N1 2 3
, , , ,{ }  is needed to cluster into K groups, and the 

path estimation function of this clustering problem is described as follows:

minF x m
j

K

i

N

v

n

ij iv jv
= −

= = =∑ ∑ ∑1 1 1

2w 	 (3)

Where

Table 1. Relevant properties of the experimental data set

Iris Wine Thyroid diseases UKD

N(data set size) 150 178 215 258

n(number of attributes) 4 13 5 5

K(number of groups) 3 3 3 5



International Journal of Cognitive Informatics and Natural Intelligence
Volume 15 • Issue 4

5

j

K

ij
i N

=∑ = =
1

1 1w , , , 	 (4)

i

N

ij
j K

=∑ ≥ =
1

1 1w , , , 	 (5)

Where x
iv

 is the value of the v-th attribute of data element i, m is a center points matrix with 
N K´  size, m

jv
 is average value of the v-th attribute of all data objects in group j;w  is a weight 

matrix with N K´  size, w
ij

 is the associated weight indicated whether the data object x
i
 belongs 

to the group j, defined as

w
if group j

otherwisei j,

,

,
=

∈






1 1

0
	 (6)

m w x w j K v n
jv i

N

ij iv i

N

ij
= = =

= =∑ ∑1 1
1 1/ , , , , ,  	 (7)

After obtaining the weight matrix, the central m
j
 of each class can be obtained by using the 

following formula (7).

m w x w j K v n
jv i

N

ij iv i

N

ij
= = =

= =∑ ∑1 1
1 1/ , , , , ,  	 (8)

Pheromone Update
Pheromones play an important role in solving problems, and the pheromone matrix will be updated at 
the end of each iteration. The strategies of pheromone update the reflect use of dynamic information 
generated by artificial ants. Pheromones is updated by the following formula:

τ ρ τ τ
ij ij l

L

ij
lt t i N j K+( ) = −( ) ( )+ = =

=∑1 1 1 1
1
∆ , , , , , ,  	 (9)

Where r  is a constant between 0 and 1, 1−( )r  represents the volatilization rate of pheromones. 
Larger r  indicates that the pheromone in the artificial ant’s past solution path volatilized faster. If 

the group label j is assigned to the i-th element of the solution path, Dt
ij
l  is equal to 1

F
l

, otherwise 

Dt
ij
l  is 0.
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The ACO-Based Clustering Algorithm 
with Chaotic Function Mapping

This section applies the ACOC to four common datasets and studies the performance and shortcomings 
of the ACOC

on datasets, and then a new algorithm is proposed: ACO-Based Clustering Algorithm with 
Chaos (ACOCC).

Summary of Experimental Datasets

In this paper, experiments to compare the ACOC and ACOCC on the four public datasets are conducted. 
The relevant attributes of the experimental data are shown in Table 1, and the datasets are available 
from UCI’s Machine Learning Data Warehouse (Bache & Lichman, 2013).

The Iris dataset consists of N = 150 data objects, belonging to K = 3 different irises, each 
sample is described by n = 4 attributes. The Wines dataset consists of N = 178 chemical analyses 
data of red wine, which originated from three different cultivars, and the type of the red wines was 
described by n = 13 continuous attributes. The Thyroid diseases dataset consist of N = 215 samples 
of patients with K = 3 thyroid diseases, and each data object is described by n = 5 attributes. The 
User Knowledge Modeling (UKD) dataset consist of N = 258 examples of the cognitive user model, 
and the types of user cognition are distinguished by using an intuitive cognitive classifier, and each 
sample is described by N = 5 attributes.

Table 2. The results of basic ACO clustering algorithm (ACOC) on four data sets

1 2 3 4 5 6 7 8 9 10

Iris
fitness 97.222 97.222 97.222 97.222 97.222 97.222 121.277 97.222 121.277 97.222

time 75.27 100.68 116.03 106.84 56.915 91.760 59.06 71.541 52.073 52.66

Wines
fitness 1960.59 1960.59 1960.59 1975.66 1977.92 1976.32 1975.66 1976.75 1974.83 1960.59

time 103.68 257.26 200.11 142.26 160.19 92.92 126.87 156.98 112.44 98.83

Thyroid
fitness 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5

time 83.86 135.89 89.85 91.85 86.48 89.99 76.50 83.45 109.96 85.93

UKD
fitness 98.9992 97.6877 97.8315 97.6877 97.6877 97.7235 97.8316 97.6877 97.7235 97.8315

time 1117.34 708.76 835.39 1144.78 1150.95 977.86 1158.54 953.71 963.70 742.95

Table 3. The statistics on 4 datasets of the basic ACO clustering algorithm (ACOC)

fitness time

optimal worst average variance optimal worst average variance

Iris 97.222 121.27 102.03 10.1426 52.07 116.03 78.29 23.92

Wines 1960.59 1977.92 1969.95 8.0945 92.92 257.26 145.16 51.60

Thyroid 16530.5 16530.5 16530.5 0 76.50 135.90 93.38 17.27

UKD 97.6877 98.9992 97.8692 0.4021 708.72 1158.54 975.40 169.50
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The Performance Analysis of The Basic ACO Clustering Algorithm (ACOC)
After finishing experiments, the performance of the ACOC is analyses. Table 2 shows the final fitness 
and running time (All time units in this article are seconds) of ACOC on ten times experiments.

As can be seen from Table 2, for the Iris dataset, with the ten times repeating experiments,the 
ACOC converges to the same optimal solution in eight times. But the other two(7 and 9) times 
converge to the same suboptimal solution, which indicates that the ACOC has not searched the path 
of the optimal solution in these two times, that is, they have fallen into the local optimal situation. 
The running times converged to the optimal solution of the algorithm starts from 52.66 to 116.03 
in the other eight times. This is indicated the instability of the ACOC. Regarding the Wines dataset, 
the ACOC converges to the optimal solution four times in ten experiments, and the other six times 
converge to other different solutions. And running times converged to the optimal solution in the four 
times distributes from 98.83 to 200.1, it also greatly indicates the instability of the ACOC. For the 
Thyroid dataset, the ACOC stably converges to 16530.5, and its running times from 76.502 to 109.96 
indicates the instability of the ACOC. For the UKD dataset, the optimal solution of the ACOC is 
97.6877, the worst case is 98.9992, and the running time is from 742.945 to 1158.54, which indicates 
that the ACOC is very unstable.

As can be seen from Table 3, Figure 1 and Figure 2, optimal solution and running time of the 
ACOC have a large variance in the Iris dataset and Wines dataset, indicating that the ACOC is relatively 
unstable on finding solutions. The variance of the running time is large too in the Thyroid and UKD 
dataset, but the variance of the obtained optimal solution is small. This situation indicated that the 
artificial ant colony in the algorithm could not evenly search all the solutions in the solution space.

Figure 1. The fitness on 4 datasets of the basic ACO clustering algorithm (ACOC)
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According to the above problem happened ACOC, an improved ACO clustering algorithm based 
on chaotic mapping function (ACOCC) is proposed in this paper. The chaotic sequence is well known 
for its sensitivity to initial conditions, which makes it a good choice for the deterministic stochastic 
generator and other chaotic search function algorithms. These special applications and features make 
it become a candidate for improving evolutionary algorithms. And we attempt to improve the ACOC 
from two directions based on the chaotic mapping function.

Chaotic Mapping Function

An Overview of Chaotic Mapping Function
The chaotic mapping function has two important characteristics, and one is abnormally sensitive to 
the initial conditions, another one is ergodicity, which means the chaotic motion can reach all the 
states in the relevant problem domain without repetition (Liu Daohua Li Gang, 2011). and these two 
characteristics help the chaos search optimization algorithm proposed (L. Li, 2013).

In this paper, the selected function is Logistic function which is a simple chaotic mapping 
function, and the function is:

Z Z Z n Z
n n n+ = −( ) =
1

1 1 2 3m ; , , , , 	 (10)

Where m  is the control parameter, and when m  = 4, the logistic function map is completely in 
the chaotic state (B. Li & Jiang, 1997). And we can obtain i  chaotic variables, by giving i  initial 
values with small difference in the equation (9) by using the properties of value-sensibility from 
chaotic function to initial values (Liu Lezhu Zhang Jiqian, 2013)). In this paper, all the control 
parameter m  and chaotic initial value Z

0
 set as Z

0
0 6 3 8= =. , .m .

Figure 2. The running time on 4 datasets of the basic ACO clustering algorithm (ACOC)
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ACO-Based Clustering Algorithm with Chaos (ACOCC)

The ACO-Based Clustering Algorithm with Chaos (ACOCC) mainly includes two algorithms, and 
one is the ACO-Based Clustering Algorithm with Chaos initialization (ACOCI), another one is 
ACO-Based Clustering Algorithm with Chaos initialization and pheromone updating (ACOCIU). 
The ACOCI only uses chaotic mapping function when initializing the pheromone matrix. Based on 
AOCI, the ACOCIU additionally utilize chaotic mapping function in the pheromone updating stage.

ACOCI

The ACOC initialize the pheromone matrix to a tiny initial value called t
0

 when initializing the 
pheromone matrix or generate the same size of the pheromone matrix by using a random number 
generator. Whether using a chaotic mapping function or using a random generator to generate a 
random function is still controversial (Mombeini M., 2011), but using deterministic chaotic mapping 
has shown excellent experimental results compared with random number generator in the experiment 
(Bucolo, Caponetto, Fortuna, Frasca, & Rizzo, 2002).

In many other improved ACOC, it is a common method to make the algorithm more exploratory 
at present when insert random number generator which generate the random number to initialize 
the pheromone matrix in the first iteration and using chaotic mapping function has achieved good 
results instead of random number generator when initializing the pheromone matrix in other areas. 
Therefore, this paper will use the chaotic mapping function to initialize the pheromone matrix in 
the first iteration.

It can make the artificial ants as much as possible distribute to the different initial state by using 
the chaotic mapping function to initialize the pheromone matrix, and the artificial ants in the search 
process can achieve more states so that it can improve ergodicity of the search.

The formula of initializing pheromone matrix for the ACOC can be expressed as follows:

P i K j N
ij
= = … = …t

0
1 1, , , ; , , 	 (11)

or

P r i N j K k N K
ij k
= = … = … = … ×, , , ; , , ; , ,1 1 1 	 (12)

Where r
k

 represents the k  random number generated by the random number generator.
The formula when the ACOCI initializes the pheromone concentration is as follows:

P Z i K j N k N K
i j k,

, , , ; , , ; , ,= = … = … = … ×1 1 1 	 (13)

Z Z Z k N K
k k k+ = −( ) = … ×
1

1 1m , , , 	 (14)

Assuming that a set of data containing N data objects needs to be clustered into K different 
groups, the pseudo-code which ACOCI initialize the pheromone concentration can be described as 
Algorithms 1.
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Local Search
The local search can help find good results when the heuristic information of the problem is not easy to 
obtain in many ACO algorithms. In these algorithms, local searches may be performed on all solutions 
built by artificial ants or may also be performed on a portion of them, such as in a percentage of the 
number of solutions on the local search (Shelokar, Jayaraman, & Kulkarni, 2004). In this paper, a 
local search is performed using 20% of the optimal solution for all artificial ants. Before making a 
local search, the solution set built by the artificial ant will be sorted ascending order according to 
the value of the objective function. The local search step is performed using the L solution paths of 
the highest fit (i.e., the lowest objective function).

The local search algorithms are as follows.
With the probability threshold p

ls
 between 0  and 1 , the adjacent path of the solution path 

S k L
k
=( )1, ,  is generated by the following steps:

(1) 	 k = 1 .
(2) 	 Let S

t
 as a temporary solution path and assign S S i i N

t k
= ( ) =, , ,1 .

(3) 	 For each element of S
t
, a random number r between 0 and 1 is generated. If r p

ls
£ , then an 

integer j that is between 1,K

  and not equal to S i

k ( )  is generated, and then j is assigned to 
S i
t ( ) .

(4) 	 Calculate the clustering centers and weights associated with S
t
, and use the path quality formula 

to find its objective function F
t

. If F
t

 is less than F
k

, then replace S
k

 with S
t
 and replace F

k
 

with F
t

.
(5) 	 k  is incremented by 1, if k L£ , return to step (2), otherwise, it stops.

ACOCIU
Adding local search steps in the ACOC can help the algorithm to obtain better solutions path in 
some areas. However, the basic local search step may cause the pheromone on the solution path 
to accumulate too fast, leading to the early maturing of the algorithm finally which represents the 
algorithm may converge to a suboptimal solution rather than optimal solution early. And the reason 

Algorithm 1 A high-level description of improved initializing

          1. Initialize t = Z
0

      2. For i=1 to N

3. ���������For�j �to�K= 1
4.        P

ij
= t

          5. τ µτ τ= −( )1

6. End

7.End
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for the early maturing of the algorithm is that some of the segments that do not exist in the local 
search are searched and given a higher pheromone concentration, which causes the artificial ants 
frequently select this path due to the pheromone concentration instead of the unexplored path, and 
then result in the optimal solution is not found or its likelihood is reduced.

In order to solve the problem of early convergence of the ACOC, this paper introduces a chaotic 
mapping function model in the pheromone updating step and tries to avoid stuck into local optimal 
situation by applying the three characteristics of the chaotic mapping function to the local search step.

The update pheromone function of the ACOC is shown in formula (8). For introducing the chaotic 
mapping function into the pheromone update step, the update pheromone formula will be replaced 
by the following formula:

τ ρ τ τ ε
ij ij k

L

ij
k

ij
t Z i N j K= −( ) ( )+ + = =

=∑1 1 1
1
∆ , , , ; , ,  	 (14)

Dt
ij
k  represents the pheromone produced by the artificial ant k in searching solution path, Z

ij
 

means the perturbation factors produced by using the chaotic mapping function, r r0 1≤ ≤( )� �  
represents the volatilization rate of pheromone, and e represents a tiny controlled constant.

The core idea of introducing chaotic mapping function in pheromone update step is to introduce 
chaotic mapping function for generating a scrambling factor, which introduces a perturbation factor in 
the solution path created by artificial ant, so that the artificial ants’ path selection not only depend on 
the past “experience” as a guide but also add certain ergodicity to increase the artificial ants search 
space and avoid falling into the local optimal solution.

Figure 3. The convergence of the three algorithms on the data set Iris
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Experiment and result analysis

The ACO-Based Clustering Algorithm with Chaotic Function Mapping proposed in this paper is 
implemented in MATLAB language. Our experiments using 4 publicly available data sets and compares 

Figure 5. The convergence of the three algorithms on the data set Wines

Figure 6. The convergence of the three algorithms on the data set UKD

Figure 4. The convergence of the three algorithms on the data set Thyroid
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the convergence, the fitting, the run time, the number of iterations, the stability of the ACOCC and 
ACOC algorithm, all the statistics are based on 30 independent runs, and the maximum number of 
iterations per experiment is 1000.

Comparison and Analysis of Algorithm Convergence
In order to compare the convergence performance of ACOC and ACOCC algorithm, we draw the 
graph of the convergence data of the ACO, ACOCI, and ACOCIU algorithms running ten times on 
the four data sets in this section, so as to intuitively see the differences.

Figure 3 shows the convergence of the three algorithms running ten times on the data set Iris, 
respectively. It can be seen that for the data set Iris, compared to the ACO, the convergence rate of 
the ACOCI is basically the same, and for the ACOCIU, the convergence speed is faster than that of 
the other two algorithms, and the number of iterations needed to achieve the convergence value is 
also relatively reduced.

Figure 4 shows the convergence of the three algorithms running ten times on the data set Thyroid, 
respectively. It can be seen that for the data set Thyroid, the ACOCI tends to converge to chaos at the 
beginning of the algorithm, and the solution decreases rapidly and converges, and finally converges 
to the same result of the ACO. And for the ACOCIU, the fitness of solution decreased rapidly in the 
process of solving, but some fluctuations in the falling process, indicating that the introduction of 
the chaotic mapping function makes the artificial ants explore space increases, in order to obtain the 
optimal solution under the same iteration is better than basic ant colony clustering, and the fluctuations 
in the iterative process can also make the artificial ants jump out of sub optimal solutions have been 
obtained solution to explore other solutions.

Figure 5 is the convergences of the ACO, the ACOCI, and the ACOCIU on the data set Wines. The 
red figure is the convergence of ACO, at the beginning stage of the algorithm, the rapid convergence 
of the ACO, but there is a stage of stagnation in the middle, follow-up and then continue to converge 
downward, indicating that the ACO trapped into a local optimal solution in the middle stage, and 
jump out of local optimal solution limit after a period of time.

The ACOCI approaches chaos at the beginning of the algorithms and converges to the optimal 
solution after sharp declines. It means that the ACOCI with the chaotic mapping function at the 
beginning of the algorithm makes the artificial ants accumulated enough path information in the 
beginning stage, which can quickly converge in the following.

The fitness of the ACOCIU is steadily descending in the operation process of the whole algorithm, 
and the descent speed is faster than the ACO. In the convergence stage, the ACOCI converges slowly, 
which shows that the introduction of chaotic mapping function in the pheromone initialization 
stage makes the search space of artificial ants larger so that the search time is longer. The ACOCIU 
convergences faster than the ACO, the reason is that the chaotic mapping function introduced at the 
pheromone update stage is conducive to the introduction of disturbance factors for artificial ants 
(Andries P. Engelbrecht, 2005), which can make the algorithm jump out of local optimal solution 
faster to get a better solution, so the convergence speed is faster.

Figure 6 shows the convergence of the three algorithms running ten times on the data set UKD, 
respectively. In the initial stage of the traditional ACOC algorithm, the lines of 10 overlapping part 
of the ACOC is thick, which illustrated the ACOC is not stable in the beginning stage, and there 
are many solution paths to search, the following solution path fitness decreased gradually, gradually 
convergence.

The line of the ACOCI is below the ACOC, which shows that the fitness of the solution path 
obtained by the improved algorithm is generally lower than that of the ACOC. And its convergence 
point is prior to the ACOC, which shows that the ACOCI has faster convergence speed than the ACOC.

The line of the ACOCIU is thin at the beginning of the algorithm, which indicates that the 
overlapping part is not much, that is, the path quality of the algorithm is little different at the beginning. 
But the slope of the line is much larger than that of the basic ant colony clustering algorithm. It is 
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shown that the ACOCIU is better than the ACO in the process of solving the path to jump out of 
local optimal and find more optimal solutions. This is mainly due to the introduction of the chaotic 
mapping function in the pheromone update stage so that the artificial ants can introduce the disturbance 
factor in the search stage and search for more paths. In the vicinity of the convergence point of the 
algorithm, the convergence point of the ACOCIU is ahead of the convergence point of the ACO, 
but there are a few times stagnant running in the upcoming convergence, and then converge again 
after a certain period of time, which shows that the disturbance factor introduced by the ACOCIU 
for the artificial ants does effectively make the artificial ants find more solutions in the vicinity of 
the solution, which can effectively make the artificial ants find a better solution path with fast speed. 
So the convergence rate of the ACOCIU is faster than the ACO. But stagnation in the vicinity of the 
upcoming convergence point indicated that there are still a few operations sink into the local optimal 
solution for some time in the iterative process and then jumping out. This shows that the parameter 
setting of the improved ant colony clustering algorithm is not optimal, which may be a direction for 
future research.

Comparison and Analysis of Algorithmic Performance Statistics
Table 4 shows the fitting and time of the final convergence of the ACOCI running ten times on the 
data sets Iris, Wines, Thyroid, and User Knowledge Modeling. Table 5 shows the fitting and time of 
the final convergence of the ACOCIU running ten times on the data sets Iris, Wines, Thyroid, and 
User Knowledge Modeling.

Table 4. Experimental results of ACOCI

1 2 3 4 5 6 7 8 9 10

Iris
fitness 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221

time 85.01 90.49 86.4 91.37 86.26 85.65 96.07 90.82 88.26 67.09

Wines
fitness 1975.66 1980.28 1980.28 1980.28 1975.66 1976.98 1980.28 1980.83 1976.98 1960.59

time 116.92 146.57 117.12 191.72 123.73 132.09 111.14 119.70 134.64 109.16

Thyroid
fitness 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5

time 65.445 73.91 76.07 79.42 65.42 63.96 61.41 67.00 68.66 63.94

UKD
fitness 97.7234 97.6877 97.7234 97.6877 97.6877 97.6877 97.7235 97.7235 97.6877 97.7234

time 495.833 521.396 503.053 1434.14 536.867 880.911 660.152 505.732 804.622 1196.35

Table 5. Experimental results of ACOCIU

1 2 3 4 5 6 7 8 9 10

Iris
fitness 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221 97.2221

time 94.760 101.93 91.993 90.426 103.37 80.737 98.974 89.974 93.285 86.360

Wines
fitness 1975.66 1977.92 1980.83 1976.98 1976.98 1975.66 1977.92 1976.98 1976.98 1976.85

time 138.832 146.548 144.565 148.340 143.772 144.521 148.606 155.361 140.661 157.829

Thyroid
fitness 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5 16530.5

time 94.401 85.258 87.005 88.652 95.655 91.426 87.111 91.980 89.309 87.087

UKD
fitness 97.7234 97.6877 97.6877 97.828 97.7234 97.7234 97.7235 97.8174 97.7235 97.8315

time 862.066 2069.26 705.226 830.87 670.962 832.233 1017.37 1126.05 859.758 689.602
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In order to compare the overall performance of the ACOCC and the ACOC. The following 
statistics are used to compare the experimental data of the two algorithms, which are the optimal 
fitting degree, the worst fitting degree, the average fitting degree, the shortest running time, maximum 
run time, average run time, convergence fit variance. Table 6 shows the statistics of the ACOC and 
the ACOCC in the data set Iris.

The experimental data show that the ACOCC can find better solutions than the ACOC in searching 
the solution path, the better stability, and the comparable running time. Table 8 and Table 9 respectively 
show the Statistics of the ACOC and the ACOCC on the data set Wines and Thyroid. Figure 7 to 
Figure 10 shows the running time and the fitting curve of the ACOC, the ACOCI, and the ACOCIU.

Table 6. The Statistics of Three Algorithms on the Data Set Iris

     algorithms      fitness      time

     optimal      worst      average      variance      shortest      maximum      average      variance

     ACOC      97.222      121.27      102.03      10.142      52.073      116.03      78.285      23.916

     ACOCI      97.222      97.222      97.222      0      80.737      103.37      93.181      6.9689

     ACOCIU      97.222      97.222      97.222      0      67.090      96.070      86.742      7.690

Table 7. The Statistics of Three Algorithms on the Data Set Wines

algorithms
fitness time

optimal worst average variance shortest maximum average variance

ACOC 1960.59 1977.92 1969.95 8.094 92.92 257.26 145.16 51.60

ACOCI 1960.59 1980.83 1976.78 6.057 109.17 191.72 130.28 5.97

ACOCIU 1960.59 1980.83 1976.78 6.056 109.16 191.72 130.27 24.45

Table 8. The Statistics of Three Algorithms on the Data Set Thyroid

algorithms
fitness time

optimal worst average variance shortest maximum average variance

ACOC 16530.5 16530.5 16530.5 0 76.5 135.90 93.38 17.27

ACOCI 16530.5 16530.5 16530.5 0 61.46 79.43 68.53 3.46

ACOCIU 16530.5 16530.5 16530.5 0 61.41 79.42 68.52 5.95
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For the data set Iris, it can be seen from Figure 7 that the ACOC is unstable on the obtained 
optimal solution, the solution cannot reach the optimal solution twice, and its run time fluctuation 
range is larger. And algorithm ACOCI and the algorithm ACOCIU can stably obtain the optimal 
solution, and the running time fluctuation range is smaller than ACOC.

For the data set Thyroid, it can be seen from Figure 9 that ACOC, ACOCI, and ACOCIU are able 
to obtain the optimal solution stably. But the operation time images of the ACOC are most above the 
ACOCI, all above the ACOCIU, and the fluctuation range is larger than the ACOCI and the ACOCIU.

For the data set UKD, it can be seen from Figure 10 that the ACOC algorithm cannot find the 
optimal solution a few times, the ACOCI and the ACOCIU can find out the optimal solution stably. But 
the operation time images of the ACOC are most above the ACOCI and the ACOCIU, which shows 
that the running time of the ACOC is longer than the running time of the ACOCI and the ACOCIU.

According to the above experimental data and charts of the ACOC, the ACOCI, the ACOCIU 
on Iris, Wines, Thyroid, UKD. The ACOCI and the ACOCIU are better than the ACOC either in 
the optimal solution or in the run time or algorithm stability. We can see that the ACOCC is a better 
algorithm.

There are four data sets using in this paper and data description attribute respectively from 3 to 
13. As mentioned above, the result of the ACOCC is better than that of the ACOC. Therefore, the 
improved ACOCC is a better, effective, and more promising clustering algorithm for cluster analysis.

Figure 7. Experimental Results of Three Algorithms on Data Set Iris

Table 9. The Statistics of Three Algorithms on the Data Set UKD

algorithms
fitness time

optimal worst average variance shortest maximum average variance

ACOC 97.687 98 .999 97.869 0.402 708.71 1158.54 975.39 169.49

ACOCI 97.687 97.723 97.705 0.018 495.83 1434.14 753.90 413.00

ACOCIU 97.687 97.723 97.705 0.018 495.83 1434.14 753.90 329.68
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Figure 8. Experimental Results of Three Algorithms on Data Set Wine

Figure 9. Experimental Results of Three Algorithms on Data Set Thyroid
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Conclusion and future work

Conclusion
In order to overcome shortcomings of the ACOC applied in clustering problems (running time is slow, 
easy to fall into the local optimal solution, the algorithm is unstable, and so on), this paper introduces a 
novel algorithms ACOCC, in which the pheromone matrix is initialized by chaos sequence generating 
mapping function to avoid using a same small value as the initial pheromone or using the random 
number generator to generate an initial sequence. This could help artificial ants initialized as much 
as possible in different initial states at the beginning of the algorithms to solve the problem that ant 
search state is not complete. In order to solve the ACOC easy to fall into the local optimal solution, the 
chaotic mapping function is multiplied by a small control variable as the superposition of pheromone 
in the pheromone update stage of local search to construct a small disturbance factor, so that artificial 
ants jump out of the local optimal solution of the path to explore its nearby solution paths.

The improved ant colony clustering algorithm based on chaotic mapping function can significantly 
reduce the running time, iteration times and increase the stability of clustering algorithms in large 
data sets. In order to evaluate the performance of the ACOCC, we implement and compare the fitness, 
the number of iterations, the optimal solution, and stability between the new algorithm and the basic 
ant colony clustering algorithm in four public data sets. The experimental results show that the 
improved ant colony clustering algorithm based on chaotic mapping function has some advantages 
over the basic ant colony clustering algorithm in the quality of the solution, the number of iterations, 
the optimal solution, and stability.

Future Work

Then there are several areas worth further studying:

Figure 10. Experimental Results of Three Algorithms on Data Set UKD
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(1) 	 This paper only selected four data sets to do a comparison of different algorithms. In the next 
step, we will select more data sets and conduct the algorithm experiments to study the universality 
of the algorithm.

(2) 	 To further study how to set the parameters of the improved ant colony clustering algorithm to 
optimize the clustering effect.

(3) 	 The improved ant colony clustering algorithm based on chaotic mapping function is used to 
perform the parallel computation to improve the operational efficiency of data clustering.
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