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ABSTRACT

Electroencephalogram (EEG) signals resulting from recordings of polysomnography play a 
significant role in determining the changes in physiology and behavior during sleep. This study aims 
at demarcating the sleep patterns of yogic and non-yogic subjects. Frequency domain features based 
on power spectral density methods were explored in this study. The EEG recordings were segmented 
into 1s and 0.5s. EEG patterns with four windowing scheme overlaps (0%, 50%, 60%, and 75%) to 
ensure stationarity of the signal in order to investigate the effect of the pre-processing stage. In order 
to recognize the yoga and non-yoga group through N3 sleep stage, non-linear KNN classifier was 
introduced and performance was evaluated in terms of sensitivity and specificity. The experimental 
results show that modified covariance PSD estimate is the best method in classifying the sleep stage 
N3 of yogic and non-yogic subjects with 95% confidence interval, sensitivity, specificity, and accuracy 
of 97.3%, 98%, and 97%, respectively.
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INTRODUCTION

Sleep is a spontaneously occurring phase of mind and body, marked by changed state of cognizance, 
diminished sensory activity, inhibition of almost all voluntary muscles and minimized external 
encounters. During sleep, the brain uses considerably less energy than when awake, notably during 
non-rapid eye movement (NREM) sleep. Humans secrete growth hormone surges in slow-wave sleep. 
Sleep is broadly classified into: rapid eye movement (REM) sleep and NREM. NREM Stage 1(Wake) 
is focused on whether your eyes are closed or open. Alpha and beta waves, primarily beta waves, are 
active when awake with eye-opened. When people get dizzy and close eyes, the prevailing pattern is 
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the alpha wave Getting up from Stage N1 is easy One spends at least less than 10 minutes in Stage N1 
sleep in the first sleep cycle. It makes up about 5% of total sleep duration. Stage 2 sleep usually takes 
approximately 25 minutes in the immediate cycle and extends by each subsequent cycle, gradually 
about 50%. Stage 3 is the deepest sleep stage and is distinguished by relatively slow frequency with 
signals of higher magnitude termed as delta waves. It’s the toughest level to wake up from. REM sleep 
is an active brain sleep cycle, but the body is immobilized. During REM sleep, intense dreams appear 
and the increase in the heart rate and breathing rate is observed (National Institute of Neurological 
Disorders and Stroke, 2019).

Yoga is a mind and body activity of ancient Indian tradition with a 5,000-year history. Specific 
yoga techniques incorporate physical asanas, methods of respiration, and meditation or relaxation. If 
people with insomnia practice yoga every day, they sleep longer, sleep quicker, and gets back to sleep 
quicker than normal if they got up in the middle of the night (The National Sleep Foundation, 2020). 
A national survey reported that more than 55 percent of yoga practitioners felt it assisted in getting 
better sleep (Alyson Ross, 2014). Research by Kalyan Maity et al. (2018) focused on examining the 
positive impacts of Sleep Special Technique (SST) on the quality of sleep, anxiety and well-being of 
fit young yoga practitioners. The experimental group received 1 month of (SST) training and there 
was no reference to SST from the control group. Substantial reductions in the global Pittsburgh sleep 
quality index (PQSI) value, perceived stress scale value and dramatic development in all Quality - of 
– life (QOL) scores were recorded after one month of SST practice. SST training of one month has 
a constructive influence on the entire quality of sleep, mental and physical health. Sarika Chaudhari 
et al. (2013) conducted a cross-sectional study to assess the influence of practicing yoga in the older 
people on quality of sleep and life quality. Overall PSQI score was less in yoga group than control 
group score. The Yoga group also had QOL scores than the control group. Practicing yoga for a long 
time by older people is aligned with little sleep disruptions and improved sleep quality and these 
findings are consistent with other studies involving only 180 days of yoga practice.

The research carried out by Li-Li Wang et al. (2016) was intended to assess EEG sleep efficiency 
from last night. Sleep trial was conducted to receive EEG signals from eight subjects under good, 
normal and poor sleep quality conditions. Taking into account the five different EEG frequency bands, 
the influence of sleep quality on the EEG expressed primarily in one or more frequency bands. The 
widely used EEG feature i.e., PSD was extracted in five frequency bands following the short-time 
Fourier transform. From the research observations, Gamma band is found to be the primary frequency 
band for determining sleep efficiency. Research by Rimpee Verma et al. (2018) helps people understand 
the sleep condition called a rapid eye behavior condition, the EEG signal’s significance. The study 
allows the reader to have better information about sleep disorder, as well as its forms about EEG 
signals how it allows in sleep disorder diagnosis. The signal’s PSD was determined by using Welch 
technique, whereupon the region contributing to delta, theta, alpha and beta bands were measured 
by using Trapezoidal Integration approach for evaluating average power. Power in the delta band has 
been reported to be greater for normal case however it is weakest in REM Sleep Behavior Disorders 
mostly during REM period.

A research by Massachusetts General Hospital (MGH) and Beth Israel Deaconess Medical Center 
(BIDMC) showed that a significant improvement in many areas resulted from the deep physiological 
condition that could be accomplished with the aid of yoga (The National Sleep Foundation, 2020). 
A regular yoga exercise relieves pain and anxiety. It also possesses the potential to diminish the 
amounts of hydrocortisone and relieve stress, all of which are exacerbated in anxiety or depression 
sufferers. Yoga triggers the nervous system which is parasympathetic. That’s what makes you feel 
clam in your mind and relax the body, leading to improved sleep. Issues such as snoring and sleep 
apnea are caused by inappropriate respiration, especially hyperventilation. Snoring is almost always 
triggered by tension, problems with the sinus, overweight or issues with breathing, whereas sleep 
apnea is a classic indication in people with stressed, nervous or pulmonary abnormalities. Pranayama 
techniques will address all of these concerns, leading to enhanced sleep quality.
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Researchers have evaluated the influence of yoga on sleep with the cross-sectional studies. 
Analyzing the sleep behavior in the yoga and non-yoga group using the EEG is the novelty of this 
study. Having this context, the objective is to prove that the sleep pattern differs in yoga and non-
yoga group and yoga practitioners get quicker and better sleep compared to non-yoga practitioners. 
This is to be achieved by using PSD based features as a robust approach for identifying the yogic and 
non-yogic deep sleep wave patterns.

To the best of author’s knowledge, no attempts have been made to make use of EEG based 
demarcation of yogic and non-yogic sleep patterns. This proposed study suggests the usage of 
electroencephalogram(EEG) signals as a quantitative indicator to demarcate yogic and non-yogic 
group sleep patterns. Spectral density features based on Lomb-Scargle periodogram, Welch’s spectral 
estimation, multitaper spectral estimation, covariance and modified covariance methods were 
investigated and the best PSD features identified were used to classify yogic and non-yogic group 
sleep patterns using KNN classifier. EEG being a non-stationarity signal, stationarity condition was 
preserved by applying 0.5s and 1s windowing with and without overlapping of EEG patterns for the 
analysis.

METHOD AND MATERIALS

Data Description
All-night PSG sleep recordings were provided by Swamy Vivekananda Yoga Anusandhana Samsthana, 
Bengaluru, India. It was a collection of 18 polysomnographic recordings collected at S-VYASA 
Institute’s Sleep Laboratory, which included EEG channels, Electrooculogram (EOG) channels, 
photoplethysmogram (PPG) channel and other electrophysiological signals. Due ethical clearance 
was obtained and subject consent form was collected before the commencement of the study. In the 
present study, only EEG was considered. Amongst the 18 healthy subjects, nine of those were trained 
yoga practitioners and the rest were not. The overall length of all recordings combined for each subject 
was approximately 108h with an average sleep duration of about 6 h’. The subjects were men and aged 
between 18 to 24 years, 21 years on average. A standard hypnogram describing the classification of 
sleep stages for each overnight sleep recording was obtained. Sampling or resampling of all signals 
was performed to 500 Hz. A notch filter with a 50Hz notch frequency, a 0.3 Hz high-pass filter and 
a 30 Hz low-pass filter were applied on EEG signals to eliminate noise and artifacts.

MATERIALS

Power Spectral Density
It is a well-established method of signal processing which is commonly used. Power spectral density 
is defined as the signal power distribution over frequency (Dressler et al., 2014; Rajak et al., 2016). 
It shows the strength of the energy as a frequency function (Sukhada A. Unde, 2014). Power spectral 
density analysis is often used for quantification of EEG signals (Dressler et al., 2014; Rajak et al., 
2016). A sensible way to identify periodicity within the waveforms and determination of the relative 
energy content of the periodicities are given by this mathematical method of frequency understanding 
of various waveforms which is power spectral density analysis (Rajak et al., 2017).

Lomb-Scargle Periodogram
The Lomb-Scargle Periodogram is a widely used statistical tool designed to locate and test weak 
periodic signals in otherwise random, unevenly sampled observations .The standard periodogram 
formula was modified by Scargle to first find a time delay τ such that the pair of sinusoids would 
be mutually orthogonal at sample times tj, instead of only taking dot products of data with sine and 
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cosine waveforms, and even modified for the potentially unequal powers of the two basis functions, 
to achieve a better estimation of the power at a frequency.

Welch’s Spectral Estimation
The Welch Periodogram is obtained by splitting the time signal into successive sections, forming 
the periodogram for each section, and averaging. This is to say, it’s just an average of periodograms 
across time. This is an improvement on the standard periodogram spectrum estimating method and 
on Bartlett’s method, in that it reduces noise in the estimated power spectra in return for reducing the 
frequency resolution. Because the process is wide-sense stationery and Welch’s system employs PSD 
estimates of various segments of the time series, the updated periodograms represent approximately 
uncorrelated estimates of the true PSD and the variability is reduced by averaging.

Consider a sequence {xd(n)}, d=1, 2, 3, L are the signal intervals with a data window w(n) and the 
length of each interval is M. Thus, according to Welch, the PSD is given by (Peter, 1967; Sabraj, 2016)
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Where P̂ Welch is the periodogram of the EEG signal of each interval.

Multitaper Spectral Estimation
The periodogram is not a reliable estimator of a wide-sense stationary process ‘s true power spectral 
density. To provide a clear PSD estimate, the multitaper approach combines modified periodograms 
obtained with the mutually orthogonal taper family. The Multi-Taper method of spectral analysis 
is used for the study of a time series, which is assumed to contain both continuous and singular 
components. This method aims at reducing the variance in spectral estimates by using a small set of 
tapers instead of the single data taper or spectral window used in Blackman-Tukey methods. A set 
of independent power spectrum estimates are calculated, by pre-multiplying the data by orthogonal 
tapers built to reduce the spectral leakage due to the finite length of the dataset.

Covariance Method
Welch ‘s approach is a specialized version with a single line, triangular or rectangular windowing 
with 0% overlap. The covariance approach fits the autoregressive (AR) linear prediction filter model 
to the signal that is presumed to be the outcome of the AR system guided by white noise by lessening 
the forward prediction error only in least square. The obtained spectral estimate is the squared 
measure of this AR model’s frequency response. This approach is inexpensive on computation. The 
corresponding variation can be relatively high.

Let y(n) be a wide-sense stationary random process achieved with the system function A(z) by 
filtering white noise of variance e. If Py(e

jω) is the power spectral density of y(n), then
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Since the approach involved an all-pole model to categorize the input signals, the right selection 
of model order p is essential.

The Modified Covariance Method
The Modified Covariance method is an advancement on both the Covariance method and the Burg 
method of funding the PSD. This autoregressive model assumes the collection of data can be used 
completely described by a linear combination of past outputs and driving noise. This method fits 
an AR model to the signal (Mark Lee, 2005). The modified covariance method anticipates the P 
coefficients, where P is the model order, by minimizing the forward and backward prediction errors 
in the least squares sense (Mark Lee, 2005):
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and similarly, for ρ̂b , where N is the data length and ak is the kth AR coefficient.
It also does not suffer from the splitting of spectral lines, and provides even less distortion when 

compared with Covariance method. This is more demanding computationally than the Covariance 
method.

Power Spectrum
The power spectrum is generally known as the Fourier transform of the autocorrelation function. It 
makes use of linear interpolation and assumes a sample time same as the median of the differences 
among neighboring time points. Power spectrum detects a balance between the achievable spectral 
resolution for the entire signal length and the performance limitations arising from result from 
calculating large FFTs.

Feature Extraction
Features were obtained for a segmentation length of both 0.5s and 1s with various overlapping 
conditions, i.e. 0 per cent, 50 per cent, 65 per cent and 75 per cent overlap and the appropriate 
one chosen based on the classifier performance. Table 1 includes a list of features that are used in 
proposed work.

Classifier
The classifier predicts the respective class of independent features as the input to which a independent 
variable belongs (Pereira, 2009; Amin, 2017). A training dataset and a test data set are necessary 
for the classification. The trained classifier must construct the relation among classes as well as 
the respective features. The model employed for the classification in this study was the K-nearest 
neighbor (KNN) classifier. It is a classifier which is non-linear. It is simple yet robust. It can deliver 
high-performance outcomes including for challenging applications (Mustafa, 2012). In order to decide 
the data belonging to which category, KNN uses a distance of features within a data set, a test sample 
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class is classified by k nearest neighbor as per the majority class of k-nearest training samples (Amin, 
2017). A group shall be created when the gap between the data is near. Many classes are established 
whenever the distance among the data points is farther (Mustafa, 2012).

METHODOLOGY

We obtained 18 subjects’ pre-processed EEG sleep data with a comprehensive list of annotations 
for each. There were six EEG channels (F3A1, F4A2, C3A1, C4A2, O1A1, and O2A2) in the EEG 
recordings. In addition, each EEG channel had five sleep stages-W, N1, N2, N3, R. Sample estimation 
was conducted for the entire length of each subject’s sleep study. Many instances of the same sleep 
stage have been recorded as the subject undergoes various sleep cycles during the overall sleep 
time. This work uses only the Sleep Stage N3 data, since most of the deep sleep occurs in this stage. 
The block diagram of the proposed methodology is shown in Figure 1. Every N3 sleep stage data 
samples are segmented with 1s and 0.5s window with various overlapping conditions. Six different 
PSD estimations were carried out on each segment and the features like mean frequency, median 

Table 1. List of EEG features

EEG Feature Description

Mean Frequency It is the ratio of sum of product of power spectrum of EEG 
and frequency to the total power spectrum.

Median Frequency The frequency which separates the power spectrum of EEG 
into two parts with half the total power or equal amplitude.

Maximum-to-minimum difference The difference between the maximum and minimum values 
in EEG signal

Peak-magnitude-to-RMS ratio The largest absolute value in x divided by the root-mean-
square (RMS) value of EEG signal.

Root-mean-square level The root-mean-square (RMS) level of the EEG signal

Root-sum-of-squares level The root-sum-of-squares (RSS) level of the EEG signal

Spurious free dynamic range The strength of the fundamental signal divided by the 
strength strongest spurious output signal.

Figure 1. Proposed schematic diagram for yoga- non-yoga group recognition
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frequency, maximum-to-minimum difference, peak-magnitude-to-rms ratio, root-mean-square level, 
root-sum-of-squares level and spurious free dynamic range were extracted.

The statistical testing of the hypothesis was carried out using the p-value approach to ensure that 
the null hypothesis was rejected. The p-values obtained for different combinations of features are < 
0.05, suggesting the presence of variations in the patterns of sleep. The box-plots of the extracted 
attributes showed fairly significant contradictions in the second quartile for stage N3 of yogic and 
non-yogic subjects, implying a clear contrast in the sleep patterns. The k-nearest neighbor algorithm 
has been used to classify the sleep pattern of stage N3 among yoga and non-yoga practitioners. The 
weighted classifier type which performs medium distinctions between classes, using a distance weight 
and 10 nearest neighbors. Sets of training and testing are planned in a ratio of 70 to 30 with a 5-fold 
cross validation. 70% data samples are randomly selected without substitution from each yogic set 
and non-yogic set for the training set and 30% from the test set.

RESULTS & DISCUSSION

For evaluation purposes, EEG signals from all the channels of eighteen subjects were used to 
distinguish between the sleep patterns in this study. Figures 2 and 3 displays a contrast between EEG 
of a yoga and non-yoga practitioner with the sleep stage N3 extracted.

From the raw EEG plots of Sleep Stage N3 of yoga and non-yoga practitioner, it can be inferred 
that the yogic sleep pattern has less disturbances compared to the non-yogic sleep pattern. The EEG 
wave of stage N3 is comparatively slower in yogic than in non-yoga practitioner.

In this study EEG signals were segmented between two successive time windows into a number 
of time windows with different overlapping conditions. As illustrated in Figure 4, EEG data is loaded 
every 1 second. After which, the EEG data is segmented by a 1-s window with 0, 50, 60 per cent 
and 75 per cent overlap between two consecutive windows. The same sliding windows structure is 
followed for 0.5s window as well.

EEGdata are loaded every 1 second. Then, a 2-s window with a 50% overlap between two 
consecutive windows is used to segment the ðltered and artifact-free EEGdata. 105 EEGfeatures 
are computed in each 2-s window to predict emotional states. We make a decision upon the three 
consecutive 2-s windows according to the majority rule. In other words, we make the ðrst decision 

Figure 2. EEG-Raw data (Stage N3) of a yogic subject
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after EEGdata are continuously imported for 4 seconds. After that, emotional states are predicted 
every 1 second.

EEGdata are loaded every 1 second. Then, a 2-s window with a50% overlap between two 
consecutive windows is used to segment the ðltered and artifact-free EEGdata. 105 EEGfeatures 
are computed in each 2-s window to predict emotional states. We make a decision upon the three 
consecutive 2-s windows according to the majority rule. In other words, we make the ðrst decision 
after EEGdata are continuously imported for 4 seconds. After that, emotional states are predicted 
every 1 second.

EEGdata are loaded every 1 second. Then, a 2-s window with a 50% overlap between two 
consecutive windows is used to segment the ðltered and artifact-free EEGdata. 105 EEGfeatures 
are computed in each 2-s window to predict emotional states. We make a decision upon the three 
consecutive 2-s windows according to the majority rule. In other words, we make the ðrst decision 
after EEGdata are continuously imported for 4 seconds. After that, emotional states are predicted 
every 1 second.

EEGdata are loaded every 1 second. Then, a 2-s window with a 50% overlap between two 
consecutive windows is used to segment the ðltered and artifact-free EEGdata. 105 EEGfeatures 
are computed in each 2-s window to predict emotional states. We make a decision upon the three 
consecutive 2-s windows according to the majority rule. In other words, we make the ðrst decision 
after EEGdata are continuously imported for 4 seconds. After that, emotional states are predicted 
every 1 second

In order to show channel wise demarcation between yogic and non-yogic group, feature plots 
with 1s and 0.5s windowing was shown. It can be inferred from the feature plots that the PSD 
features shows distinguishable difference between sleep patterns of yogic and non- yogic group. It 
can be further observed that the features values of both the groups differ greatly for all the channels. 
According to Figures 5 and 6, the median frequency values of the modified covariance PSD estimate 
are situated well above the origin, i.e., in the higher range, while the values for non-yoga lies close 
to the origin i.e., in the lower range. The trend repeats for all the channels. The pattern is similar for 
all other features as well. Hence, it can be concluded that the features for both the groups are distinct 
and strongly aids in classification. Table 2 and Table 3 shows the statistical analysis results

Figure 3. EEG-Raw data (Stage N3) of a non-yogic subject
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The p-tests were performed using Kruskal-Wallis test, ttest and Anova tests. The null hypothesis 
is that there is no relationship between the sleep stage N3 of Yoga and Non-Yoga practitioners, while 
the alternate hypothesis states the opposite. The h value 1 and p<0.05 supports the strong rejection 
of null hypothesis. All the three p-tests indicates that there is a statistically very notable difference 
in the N3 stage of sleep with the p<0.05 and h value of 1 for all the features extracted. The results 
suggest there exists a very notable difference between the Stage N3 sleep pattern of both the groups.

The box-plot is used as a descriptive statistic to summarize the differences in the sleep stages. 
The second quartile gives the median values of the selected features for the sleep stage N3. The box 

Figure 4. Representation of sliding-time-window-approach for 1s and Window

Figure 5. Feature plots of the best PSD method for median frequency using 1s window
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Figure 6. Feature plots of the best PSD method for median frequency using 0.5s window

Table 2. Statistical analysis of the best PSD method using three different tests for 0.5s window with (a)0% (b)50% (c)60% 
(d)75% overlap condition

Overlap 
Condition

meanfreq medfreq max2mindiff peak2rms RMS SFDR RMS

0% (No) Kruskal 
Wallis

p-value 0 0 0 3.33E-11 0 7.92E-
12

0

ttest p-value 0 0 1.60E-13 6.39E-12 4.52E-
13

1.20E-
27

4.52E-
13

Anova p-value 0 0 1.60E-13 6.39E-12 4.52E-
13

1.20E-
27

4.52E-
13

50% Kruskal 
Wallis

p-value 0 0 0 1.27E-25 0 4.29E-
22

0

ttest p-value 0 0 1.19E-264 9.09E-25 1.43E-
25

2.18E-
40

1.43E-
25

Anova p-value 0 0 1.19E-264 9.09E-25 1.43E-
25

2.18E-
40

1.43E-
25

60% Kruskal 
Wallis

p-value 0 0 0 1.719e-32 0 3.95E-
280

0

ttest p-value 0 0 0 0 1.30e-32 9.58E-
51

1.30e-32

Anova p-value 0 0 0 0 1.29e-32 9.58E-
51

1.29e-32

75% Kruskal 
Wallis

p-value 0 0 0 0 0 0 0

ttest p-value 0 0 0 0 0 6.29E-
81

0

Anova p-value 0 0 0 0 0 6.29E-
81

0
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plots in the Figures 7 and 8 clearly show that the median value varies significantly for all the features 
which indicates that the data sample is skewed and there exists a remarkable distinction between the 
N3 sleep stage of yoga and non-yoga subjects.

Figures 9 and 10 compares accuracy of the KNN classifier which was modeled using the features 
extracted from 0.5s and 1s window length for four different overlap conditions. Although we observed 
a slight increase in the performance for all the PSD methods, there was not much of a difference for 
welch and multitaper methods. When the ensemble of both 0.5s and 1s window was done as shown in 
Figure 11, we observed that the classifier performance didn’t improve but was similar to 0.5 window 
performance. Since, 1s window performed slightly better than 0.5s window, an ensemble of all the 
overlapping conditions of 1s was performed and surprisingly the accuracy obtained was higher than 
the best overlapping method (75%) as depicted in Figure 12.

The performance of the KNN classifier was high when trained for features of Modified covariance 
PSD estimate with an accuracy of around 97.3% with an F1-score of 0.98 which is a very good score in 
detecting False Negatives and False Positives. Also, the model has an Area under ROC curve (AUC) 
of 0.99 which is an excellent score in determining how much model is capable of distinguishing 
between classes. The ROC curve quite closely follows the left-hand border and then the top border 
of the ROC space indicates the tests conducted are precise. These results suggest that the Stage N3 
of both the groups differ in great amount and can be significantly classified.

Table 3. Statistical analysis using three different tests for 1s window with (a)0% (b)50% (c)60% (d)75% overlap condition

Overlap 
Condition meanfreq medfreq max2mindiff peak2rms RMS SFDR RMS

0% (No) Kruskal 
Wallis p-value 0 0 0 7.22E-34 0

2.46E-
266 0

ttest p-value 0 0 7.29E-216 4.67E-70
2.89E-

215
1.67E-

217
2.89E-

215

Anova p-value 0 0 7.29E-216 4.67E-70
2.89E-

215
1.67E-

217
2.89E-

215

50% Kruskal 
Wallis p-value 0 0 0 2.43E-74 0 0 0

ttest p-value 0 0 0 8.60E-149 0 0 0

Anova p-value 0 0 0 8.60E-149 0 0 0

60% Kruskal 
Wallis p-value 0 0 0 1.46E-102 0 0 0

ttest p-value 0 0 0 1.77E-193 0 0 0

Anova p-value 0 0 0 1.77E-193 0 0 0

75% Kruskal 
Wallis p-value 0 0 0 6.22E-160 0 0 0

ttest p-value 0 0 0 1.27E-305 0 0 0

Anova p-value 0 0 0 1.27E-305 0 0 0
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Figure 7. Box plot indicating median of feature values of best PSD estimate for yoga (red) and nonyoga (blue) with 1s window 
for the best overlapping condition (75%)

Figure 8. Box plot indicating median of feature values of best PSD estimate for yoga (red) and nonyoga (blue) with 0.5s window 
for the best overlapping condition (75%)
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Figure 9. Classifier performance for 0.5s window
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Figure 10. Classifier performance for 1s window
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Figure 11. Classifier performance for ensemble of 0.5s and 1s window
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CONCLUSION

This work aims at understanding the impact of yoga on the patterns of sleep and how it helps to improve 
sleep. In this analysis, among the studied six PSD estimates, modified covariance is found ideal for 
classifying the EEG sleep of a yoga practitioner with 97.3% accuracy. The extracted features from 
this PSD method shown 98%, 97%, and 98% sensitivity, specificity and precision of the classifier, 
respectively Choosing and integrating features that show opposite actions works with KNN. The 
attributes included in this work show optimal and acceptable results with KNN. The quantitative 
results obtained through this proposed study showed distinguishable difference between the sleep 
patterns of yogic and non-yogic group. The study can be extended for developing computer aided 
tools for yoga assessment. Further the results contribute significantly to the growing field of yoga by 
improving sleep latency and quality, which in turn brings peace to mind and body.
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