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ABSTRACT

Engineering sustainable cyber-physical-social systems demand a transdisciplinary approach. Within 
an arbitrary domain, many systems, including those of the physical and cyber categories, may already 
be in-situ; however, heterogeneity permeates such systems, for example, differing protocols, data 
formats, among others. Heterogeneity is not a deliberate feature of an arbitrary system; rather, it is 
the cumulative result of pragmatic decisions that were made during design and is driven by many 
different factors, some of which may not be technological. Nonetheless, heterogeneity represents a 
critical obstacle for system designers as they seek to harness and integrate diverse system elements 
to deliver innovative services. This obstacle is acutely manifested in cyber-physical-social systems 
when collecting and fusing data for evidence-based decision-making; social and human-derived data 
exacerbate the problem. This paper proposes a programming model for fusing information sources 
in cyber-physical-social systems. The efficacy of the model is validated via a usability analysis.
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INTRODUCTION

Cyber-Physical Systems (CPSs) (Delicato et al., 2020; Liu et al., 2017) envisage a tight coupling 
between computing processes and the physical world. Engineering efficient, robust and secure CPSs 
pose many challenges; minor faults in design may result in catastrophic and tragic events in the 
physical world, as documented experiences with autonomous vehicles testify. Nonetheless, CPS are 
an indispensable and often invisible enabler of many services in the modern world. As the complexity 
of CPSs invariably increases, a need for more sophisticated models, methodologies and tools will be 
needed (Lee, 2015). For example, Intelligent CPSs (iCPSs) advocate embedding artificial intelligence 
techniques in the feedback loops for enabling decision-making in next-generation CPS (Vijayakumar 
et al., 2019). A complementary approach, that of Digital Twins (Rasheed et al., 2020), advocates 
constructing replicas of physical processes; in this way, more sophisticated models of reasoning and 
learning may emerge.

CPSs may leverage pre-existing cyberinfrastructures by incorporating them into their technology 
stack. The Sensor Web (Zhang et al., 2018) is an exemplar of such infrastructure; it enables 
programmatic access to networks of heterogeneous sensors for use in system development, sometimes 
in systems with global reach. Thus, when building CPSs, software engineers can call on an array of 
tried and trusted technologies such as Wireless Sensor Networks (WSNs), middleware, and Internet 
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of Things (IoTs) along with a range of mature standards, for example, those of the Open Geospatial 
Consortium (OGC). The net result is that the CPSs concept has been demonstrated in a wide range 
of domains including environmental monitoring (Mois et al., 2016), landslide detection (Liu et al., 
2019), smart agriculture (Liu et al., 2020), health (Ashutosh Sharma et al., 2019) and even space 
technologies (Akyildiz & Kak, 2019).

Cyber-Physical-Social Systems (CPSSs) are, in contrast to their CPSs peers, less-well developed. 
Such systems offer an intriguing vision – the intrinsic incorporation of the human dimension in a 
variety of facets into system operation. Such incorporation may be relatively passive, for example, data 
or information provision, or may involve active human-in-the-loop participation that enables human-
automation symbiosis as envisaged by Industry 4.0 (Rauch et al., 2020). Just as CPSs may leverage 
the Sensor Web, a CPSS may likewise leverage the Social Web (Russell & Klassen, 2018). In practice, 
challenges with data collection arise, especially if a big data solution is envisaged. However, even 
within relatively constrained circumstances, difficulties arising from a lack of software engineering 
toolkits and the inherent complexity. This paper demonstrates that in viewing CPSSs as an extension 
of CPSs, rather than a singular paradigm in its own right, core technologies that underpin CPSs may 
be refactored and augmented to form an intuitive foundation for either or both paradigms.

This paper is structured as follows. A review of the state-of-the-art is presented in the next 
section. A model for a CPSS incorporating social web precepts is then proposed. An implementation 
of this model is then validated using a cohort of software engineers. After discussing the results of 
the evaluation, the paper is concluded.

BACKGROUND

Cyber-Physical computing is considered as the successor to embedded systems and WSNs that 
traditionally underpin pervasive computing research. Definitions of cyber-physical computing 
primarily focus on the technical integration of cyber and physical systems, focusing on the 
communication capabilities of cyber systems and the benefits and complexities of such integration 
(Bordel et al., 2018; Y. Liu et al., 2017). The human element of cyber-physical computing underpins 
the concept of cyber-physical world convergence. Such convergence results in a paradigm shift in 
which “real-world components interact with cyberspace via sensing, computing and communication 
elements” causing information to flow “from the physical to the cyber-world and vice-versa, adapting 
the converged world to human behavior and social dynamics” (Conti et al., 2012, p. 2). Such a view 
is consistent with the definition of CPSSs offered by other researchers. Wang (2010) defines CPSs as 
“the tight conjoining of and coordination between computational (or cyber) and physical resources” 
p. 85, and further defines Cyber-Physical-Social systems as being cyber-physical systems “tightly 
conjoined, coordinated and integrated with human and social characteristics”. Sheth et al. (2013) 
define physical-cyber-social computing as a paradigm that “encompasses a holistic treatment of data, 
information, and knowledge from the physical-cyber-social “worlds to integrate, correlate, interpret, 
and provide contextually relevant abstractions to humans” p. 78. Physical-Cyber-Social computing 
is viewed as a next-generation paradigm which builds on ‘cyber-physical systems’, ‘socio-technical 
systems’, and ‘cyber-social systems’. Such a view explicitly acknowledges the diversity of technologies 
and infrastructures that must be seamlessly integrated if the vision of CPSSs is to become a reality.

CPSSs are at a nascent stage of their development lifecycle; although prototype CPSSs 
are documented (see, for example, Zhang et al., 2018), nonetheless, best practice in design and 
implementation is non-existent. One approach advocates the use of pre-existing methodologies from 
embedded systems and CPSs; one example of this approach has produced a system-level design 
framework (Zeng et al., 2020). Likewise, Zhou et al. (2020) have proposed a virtualization architecture, 
augmented with an integrated framework of caching, computing and networking. Following a theme 
of software reuse, Wang et al. (2020) advocate a Service Oriented Architecture (SOA) approach that 
allows the reuse of both business logic and software components, thereby enabling service composition 
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where pre-existing services can be dynamically selected, integrated and invoked in response to domain 
needs. A variation of SOA, microservice architectures, emphasize very focused, lightweight services; 
a choreography-driven microservice composition approach for CPSSs is proposed by Dai et al. (2020). 
Holistically, CPSSs are inherently trans-disciplinary and trans-domain; thus, the very nature of CPSSs 
may curtail the effectiveness of domain-specific processes. Simulation is a case in point; in response, 
Sánchez et al. (2017) have proposed a methodology for the design of co-simulation tools for CPSSs.

Conceptually and in practice, integrating the human dimension represents the singular most 
formable challenge facing CPSSs. Social media offers a human-centric but viable source of information 
concerning the real-world; such information can be of immense value to CPSSs, although the volume 
and diversity may pose significant problems. One response has been the design of a Country-Level 
Micro-Blog User (CLMB) behavior and activity model for use in CPSSs (Yang et al., 2019). Other 
research, the Social Sensor Cloud (Zhu et al., 2018), envisages an amalgamation of social networks 
and sensor networks modelled on the IoT but enabled via the Cloud.

Contribution
CPSSs have a particular resonance with environmental information systems. Conventional 
environmental sensing networks, either legacy or IoT-enabled, excel at capturing objective, time-series 
data at various spatial and temporal resolutions. However, the human-dimension is not captured; 
the social web offers a partial remedy in that the human experience, albeit subjective, can often be 
extracted from various social media data streams. Mining such streams enable the application of natural 
language processing, text analysis, and computational linguistics to extract meaning, through semantic 
or sentiment analyses, for example. In this way, concepts such as smart environments, smart farms, 
and smart homes may become more human-centric. Nonetheless, collecting, representing and fusing 
data to deliver human-centric and intelligent CPSSs is a formidable undertaking (Wang et al., 2019).

The approach described in this paper differs from other approaches to CPSSs development in that 
it advocates harnessing the middleware paradigm for managing both the physical and social dimension 
of an arbitrary CPSS. The business community has long applied middleware for the integration of 
different services; in the IoT and sensor communities, it is a proven method for enabling sensor 
abstractions and managing network heterogeneity (Martínez et al., 2017; Ngu et al., 2016). Usability 
will serve as the metric of choice for validating the approach.

MODELLING A CYBER-PHYSICAL-SOCIAL SYSTEM

At present, the “Cyber-Physical” dimension of CPSSs may be regarded as mature, especially when 
developments in IoTs are considered. This situation contrasts with the “Cyber-Social” dimension, 
which is less well developed despite the proliferation of Web2.0/3.0 and social media platforms. 
Remedying this deficiency is fundamental to delivering mature CPSSs thus, the conceptual design 
being proposed focuses on this element. The following principles underpin the design:

•	 The mature model of WSNs, fundamental to CPS, is complemented and replicated in so far as 
possible;

•	 Heterogeneity is intrinsic to CPSs and CPSSs; hence, the conventional strategy for managing 
diversity, that of middleware, is adopted;

•	 A uniform model of sensing that is tractable in both physical and cyberspace is a prerequisite; 
therefore, the core design entity is that of the Cyber Sensor (O’Grady et al., 2018).

In adhering to these principles, a holistic unified abstraction model emerges that delivers a 
pragmatic basis for enabling the rapid development of CPSSs prototypes and testbeds.
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Data Sources for Cyber-Social Systems
Cyber-social systems constitute a rich array of disparate data sources; Figure 1 illustrates a taxonomy 
of these data sources; each is now further elucidated upon:

•	 Static Resources: These relate to sources where the information is, in theory, always valid, and 
does not change over time. Such sources are only queried in response to a need, for example, 
when seeking concept definitions.

•	 Evolutionary Resources: These may be regarded as the dynamic equivalent of static resources, 
providing information that evolves slowly; Wikipedia is an exemplar.

•	 Event-driven Resources: These resources constitute web sites, services or applications that 
consistently provide new information in response to real-world events. IoT and Sensor Web are 
exemplar.

•	 User-driven Resources: Such resources are comprising the Social Web, that is, social networking 
platforms, blogs amongst others.

•	 Computational Resources: These may be regarded as web services that provide data, given 
some contextual data as input.

Sensor Abstractions for Cyber-Physical-Social Systems
Cyber sensors constitute a logical abstraction for modelling the diverse data sources encountered in 
CPSSs and the monitoring of these sources in cyberspace. This abstraction embraces social, virtual 
and physical sensors. It may be broadly defined as a software component that monitors that particular 
environment which it is (programmatically) connected to, thus acquiring context of relevance to an 
arbitrary application. In terms of application development, sensor networks are usefully modelled in 
terms of node, network and infrastructure abstractions, as explained in the next section. Cyber Sensors 
are node-level abstractions. Extended this concept of abstraction result in the following typology:

•	 A Location Sensor acquires data from the perspective of a defined location. A location may 
be a geographical region or a personal space, for example, but it is always defined by a set of 
geographical coordinates.

•	 An Entity Sensor acquires data from the perspective of a defined entity. An entity can be a physical 
object or device in the real-world, or it may constitute a concept that represents a phenomenon, 
event or topic. An entity is described using keywords that capture its semantic meaning, for 
example, temperature.

•	 A User Sensor acquires data from the perspective of a defined user. A user in a Social Web context 
is a digital representation of a person, for example, a Facebook or Twitter profile.

Figure 1. Taxonomy of WWW-based sources of context
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These categories of cyber sensors enable targeted monitoring of the various data sources necessary 
for CPSSs as outlined above.

Individual sensors generally have a 1-to-1 relationship with a data source. The value of a sensor 
network lies in its totality; in other words, the whole is greater than the sum of its parts. In practice, 
middleware is fundamental to realizing this value, enabling a process of discovery of both sensors and 
services. In this way, new services can be quickly composed, with added value being derived from 
the novelty of the composition. For software engineers, harnessing the pipeline design pattern offers 
one intuitive approach for chaining different services within middleware. However, a prerequisite for 
a Cyber Sensor Network is that of a programming model.

A Programming Abstraction for Cyber-Physical-Social Systems
When considering approaches to CPSs, well-established models used in the physical sensor network 
community offer a roadmap. For WSNs, high-level programming models may be categorized into 
two sub-levels: network-level and group-level abstractions (Sugihara & Gupta, 2008). Network-level 
abstractions are considered synonymous with macro-programming, in which an entire network is 
viewed and managed as a single abstract machine. Group-level abstractions are further classified into 
two categories of horizontal abstractions - regional and logical:

1. 	 Regional abstractions define groups of sensor nodes based on the physical closeness of sensors. 
These neighborhood-based groups are typically defined by locality and consist of a node and its 
neighbors. While membership of nodes to a neighborhood-based group is mostly static, mobile 
and ad-hoc networks require dynamic management of such groups as nodes enter and leave the 
region.

2. 	 Logical abstractions define groups of sensors nodes that are defined by the commonalities of 
logical properties between nodes, for example, node type and sensed modalities. Membership 
of nodes to logical groups is dynamic when dynamic property values determine membership.

Laukkarinen et al. (2012) define three levels of vertical abstraction - node, network and 
infrastructure; These programming abstractions are summarised in Table 1. Each is now considered.

Node Level Abstractions
Node-level abstracts the resource-constrained, embedded, node hardware and communication protocols 
such that each node abstraction executes applications on each physical node. Node-level is the lowest 
level of abstraction, providing software engineers with a single point of access to data. Access is 
enabled through the provision of Entity and Location sensors for all Web resources, and User Sensors 
for all Social Web resources. Figure 2 illustrates this abstraction. In this example, the developer tasks 
the abstraction to monitor the sentiment of all “Keyword” entities found in the Twitter Environment. 
As a first step, an Entity Sensor for the Twitter environment is produced; this sensor is then tasked 
to produce information relating to “Keyword”. The next step in the processing chain is a call to the 

Table 1. Cyber Sensor Programming Abstractions

Vertical Logical Regional Social

Node-Level Entity Sensor Location Sensor User Sensor

Network-Level Entity-Focussed Sensor 
Network

Location-Focussed Sensor 
Network User-Focused Sensor

Infrastructure-Level Entity-Focussed Sensor 
Infrastructure

Location-Focussed Sensor 
Infrastructure

User-Focussed Sensor 
Infrastructure
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IBM Alchemy API to detect sentiment; finally, the fused data is made available for consumption at 
the application layer.

Network-Level Abstractions
Network-level abstracts the distributed node network from data-interested users. At this level, 
distributed nodes cooperate for providing services such as data access through queries and data-
processing in-network through aggregation and fusion. Network-level abstractions provide developers 
with a single point of access to data from entities, locations, or users identified as being relevant to 
an application at runtime. Figure 3 illustrates this abstraction, depicting a use case where a developer 
configured a network abstraction to monitor the sentiment of all Twitter users related to the entity 
“Keyword” (for example, ‘ebola’). In this example, an Entity Sensor is created to monitor “Keyword” 
entities on Twitter. This sensor is considered the ‘base sensor’ of the homogenous network. For each 
entity identified, a unique User ID is extracted and used in the generation of a User Sensor to monitor 
that user’s presence in the Twitter Environment. A call to the AlchemyAPI (via Sentiment Fuser Pipe) 
is then made to detect sentiment; a unique process (pipe) is created for each User Sensor generated.

Infrastructure-Level Abstractions
Infrastructure-level abstracts multiple heterogeneous sensor networks behind one interface. Such 
abstractions provide the same functionality as Network-Level abstractions but without tying the 
developer to a specific environment, for example, Twitter. Figure 4 illustrates this abstraction; here, the 
software developer wants to monitor the sentiment of Twitter users in countries with a hot climate. The 
base sensor in this example is an Entity Sensor monitoring the entity “hot” in a Weather environment. 
This Entity sensor produces information relating to all locations that are related to the entity “hot”. 
From this base sensor, location information is extracted and used in the generation of Location Sensors 
to monitor each detected location. From these (Twitter) Location Sensors, user ID information is 
extracted and used in the generation of User Sensors from which sentiment information is retrieved.

Implementation
For implementation, a logical strategy is to adopt a proven sensor middleware platform that is tried 
and trusted for the physical sensors and adheres to a Sensor Web paradigm. Such a platform can then 

Figure 2. The Node Level Abstraction for a Cyber Sensor data flow
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be augmented with cyber-social-sensing functionality, as outlined in the previous sections. Thus, 
the design is implemented as an extension to a mature Sensor Web middleware, SIXTH (Carr et 
al., 2013). Within this extended implementation, cyber sensors are treated as equal citizens to their 
physical sensor counterparts. This equality facilitates the rapid development of CPSSs through a 
unified interface that shields developers from the underlying heterogeneity. Extensibility is facilitated 
by the definition of new node abstractions in the core middleware platform.

To illustrate the use of the API, consider a scenario where virus monitoring is needed. A proxy 
for environmental monitoring on the ground is that of social media; the translation is not exact, but it 
does serve as an indicator of trends. Thus, a Cyber Sensor is commissioned that monitors the “twitter” 
environment for the keyword “virus”. In this case, an Entity Sensor is required:

Sensor mySensor = createEntitySensor(“twitter”);	
mySensor.task(“virus”);	

However, if the resultant data is needed for decision making, information concerning its quality 
is essential. Assessing sentiment offers an indicator; the AlchemyAPI service may be harnessed 

Figure 3. Network Level Abstraction for Cyber Sensor data flow

Figure 4. Infrastructure Level Abstraction for Cyber Sensor dataflow
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to aggregate sentiment information relating to “virus”. To interact with this Web service, a pipe 
is created; this pipe fuses sentiment information with the sensor (twitter) data stream in real-time:

Pipe sentimentPipe = CreateEntityAggregatorPipe(‘Alchemy ‘, ‘sentiment’);	

However, a sensor stream must be specified for the pipe to act on, thus:

mySensor.applyPipe(myPipe);	

Now that the Cyber Sensor is fully configured, it can be initiated:

mySensor.start();	

Middleware usually directs its output to either a database or the application layer; output can also 
be directed to a console if needed. Figure 5 illustrates the high-level architecture of this middleware. 
Sensors and pipes are instantiated, configured and deployed according to the needs of the application 
domain in question. A task handler enables the definition of sensors and pipes, and their immediate 
configuration. On initialization, they become an intrinsic element of the service provision of the core 
middleware platform, using conventional services such as resource management and data storage.

EVALUATION: METHODS AND MATERIALS

The objective of this validation exercise is to assess the degree to which experienced software 
developers can intuitively grasp the cyber-sensor construct and harness a suite of customized 
middleware services to obtain data and undertake some processing on this data. A variety of metrics 
can be adopted to evaluate a CPS or CPSS. Quality, cost and security have been proposed for modeling 
iCPS deployment configurations (Gisselaire et al., 2019). Accuracy and timeliness are of particular 
importance in disaster management CPSs (Amit Sharma et al., 2019). For complex CPSs constituting 
many subsystems, an appropriate approach may be that of validating each system individually, as well 
as exploring the coupling between each of the subsystems (Legatiuk et al., 2017). Similarly, viewing a 
CPS through the lens of a system-of-systems approach offers a viable approach to analysis and design 
(Guariniello et al., 2020). For human-in-the-loop CPSs, rapid prototyping offers a basis for analyses 
(Gil et al., 2020). Energy consumption, security-level, and user satisfaction may be considered vital 
dimensions when designing CPSSs (Zeng et al., 2017). For this discussion, the evaluation is user-
centric, focusing on the usability of the middleware platform. In this way, the intuitiveness of the 
concepts, and the perceived applicability of the API design, may be assessed. Efforts may be directed 
at optimization after usability has been addressed.

Methodology
Four (4) discrete steps define the evaluation methodology.

Prior Experience
Prior experience of technology has the potential to influence how it may be perceived, experienced 
and utilized. Four categories of prior experience were identified:

1. 	 Java programming experience;
2. 	 Exposure and utilization of Web APIs;
3. 	 Familiarity with sensor networking constructs and systems;
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4. 	 Utilization of middleware platforms.

Each category is assessed using a standard 5-point Likert scale ranging from no experience (0) 
to expert (5). For analysis purposes, subjects were categorized as being novices (scoring 0 to 3 on 
the Likert scale) or expert (scoring 4 to 5 on the Likert scale).

Understanding and Application
In order to evaluate each of the node, network and infrastructure abstractions, three distinct exercises 
were constructed. Each followed a similar pattern. A small tutorial (one page) was prepared that 
provided definitions for any particular abstractions that needed an explanation, e.g. “Entity Sensor”. 
Code snippets illustrated the creation and configuration of the corresponding classes and methods. 
Sample output was provided to illustrate what kind of results to expect. For each exercise, several 
discrete tasks were specified. On completion of each exercise, the participants complete a short 
questionnaire constituting 5-point Likert-scale questions.

Exercise 1: Sensors and Pipelines Abstractions

Tasks:
1. 	 Create a ‘world weather’ location sensor to monitor Ireland.
2. 	 Create a ’twitter’ entity sensor to monitor ‘ebola’.
3. 	 Create an ’alchemy’ fuser pipe to monitor the sentiment of ‘ebola’ data.

Questions:
1. 	 To what degree do you feel you completed the tasks?
2. 	 To what degree do you feel you understand the Sensor concept?
3. 	 To what degree do you feel you understand the Pipe concept?

Figure 5. Model of Cyber Sensor enabled middleware for a CPSS
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4. 	 To what degree do you feel you could apply the Sensor Pipeline concept to other problems?

Exercise 2: Sensor Network Abstractions

Tasks:
1. 	 Create a ‘twitter’ network to produce user and location sensors related to the entity ‘ebola’.
2. 	 Create a ‘world weather’ network to produce location sensors for all locations related to the 

entity ‘rain’.
Questions:

1. 	 To what degree do you feel you completed the tasks?
2. 	 To what degree do you feel you understand the Network concept?
3. 	 To what degree do you feel you could apply the Network concept to other problems?

Exercise 3: Introduction to Sensor Infrastructures

Tasks:
1. 	 Create an infrastructure to produce ‘world weather’ location sensors based on a ‘twitter’ 

entity sensor monitoring ‘ebola’.
2. 	 Create an infrastructure to monitor all users in countries where it is raining. You will need 

to monitor ‘rain’ from ‘world weather’ and produce ‘twitter’ location sensors accordingly. 
From this you can generate user sensors.

Questions:
1. 	 To what degree do you feel you completed the tasks?
2. 	 To what degree do you feel you understand the Infrastructure concept?
3. 	 To what degree do you feel you could apply the Infrastructure concept to other problems?

Usability Assessment
For this evaluation, the classic view of usability as articulated by the International Organization for 
Standardization (ISO) 25010 product quality model is adopted; namely, the degree to which specified 
goals may be achieved with effectiveness, efficiency and satisfaction in a specified context of use. 
For assessing usability, the System Usability Scale (SUS) (Lewis, 2018) instrument was harnessed. 
SUS is a mature usability instrument and has been utilized in many domains. Most importantly, SUS 
produces reliable results from sample sizes as small as 8-12. SUS is not diagnostic; it is particularly 
useful for establishing baselines in agile development processes. Where usability issues recur, 
sophisticated techniques, for example, focus groups, might be needed.

Open Feedback
Provision of open feedback gives participants opportunities to raise those issues that may not have been 
captured in the formal evaluation process. Clarifications are offered, and persistent concerns recorded.

Evaluation Process
Twelve (n=12) researchers in computer science were requested to complete the three exercises. 
Each participant, by the nature of their research, was actively engaged in software development. 
Each session was limited to an hour; participants gave their time pro gratis. After verifying that the 
necessary software was installed and functioning on their laptops, they were given their instructions. 
Afterwards, they were debriefed by the lead author. Results were analyzed using SPSS. In the case 
of SUS, results were processed using Excel.
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RESULTS

Initially, the reliability of the questionnaires was assessed; the Cronbach’s alpha coefficient was 
calculated as 0.78. The SUS score resulting from the usability study is 80.2; as this is above the 
acknowledged threshold of 68, it is concluded that within the parameters of this exercise, the usability 
of the platform is above average.

Table 2 provides participant experience scores, using a 5-point Likert scale for knowledge of 
Java, APIs, sensor networks and middleware; individual SUS scores are provided for comparison. It 
is interesting to note that the highest scores are from participants with the least experience in Web 
APIs and Sensor Networks. Four of the participants with experience in sensor networks noted that 
the network and infrastructure-level abstractions made them feel as if they were ‘losing control’ over 
what sensors were being generated in the background. As middleware by its nature seeks to hide the 
intricacies of software, such observations may be expected. Likewise, these observations support the 
provision of higher-level abstractions for those with less experience. During the debriefing session, 
these participants were talked through how the more complex challenges may be solved using the 
node-level abstraction alone. Mainly, the participants were satisfied with the model as a solution for 
their level of expertise. However, three participants noted that they would like to apply the higher-
level abstractions whilst having access to the ‘raw’ rules, rather than just applying the abstracted 
methods in the API.

In Table 3, participants rated their ability to complete the assigned task, understand the underlying 
concepts, and rate their ability to apply the concept in a real-life scenario. Again, the corresponding 
SUS scores are provided. Overall, the abstractions were understood, and the tasks mostly completed. 
The infrastructure abstraction seems to provide the most difficulties. Two scores fell below the 68 
threshold at 52.5 and 67.5 respectively. The latter participant completed all tasks successfully but noted 
that better, and preferably graphical, documentation would make the concepts easier to understand 
more quickly. The participant also questioned the relationship between the concepts, wondering if the 
same problem could be solved using any of the three techniques. During the debriefing session, this 
was confirmed, and the participant stated that documentation to that effect would make the concepts 

Table 2. Ranking of participants’ expertise using a 5-point Likert scale, and their corresponding SUS score

Participant Java Web 
APIs

Sensor Networks Middleware SUS

1 4 1 0 4 97.5

2 5 0 0 0 92.5

3 5 5 5 5 72.5

4 4 4 3 5 70.0

5 4 2 4 3 52.5

6 4 4 4 4 75.0

7 5 1 5 4 85.0

8 5 2 2 4 67.5

9 4 3 1 3 90.0

10 4 0 0 0 90.0

11 5 3 5 5 82.5

12 5 4 0 4 87.5

Average 4.5 2.4 2.4 3.4 80.2
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easier to grasp. The former participant was able to complete each task but struggled to select the 
appropriate invariant for adaptor names and variable names according to the reference sheet.

Two other participants suggested that it might be better to use static variables rather than ‘free 
text’. However, this is a feature of SOA architectures and is essential for maintaining the loose coupling 
between services thus ensuring the system remains extensible while maximizing the reusability 
of individual components. It is also a feature that developers using Web Services are accustomed. 
The participants that provided this feedback each gave themselves 3 out of 5, or less, for Web API 
experience.

All subjects professed significant experience in Java. Thus, Java could not be considered as a 
potential determinant of the user experience. However, familiarity with sensor constructs influenced 
perceptions. Those classifying themselves as novices in sensor technologies perceived the functionality 
as being well integrated - U = 5.00, p < 0.05. This positive perception suggests that such subjects 
found the notion of a sensor intuitive and found it easy to harness the APIs to fulfil the requested 
tasks. Those with sensor experience were more circumspect, perhaps expecting additional features 
including some that they may have had exposure to in the past. Novice users of middleware found 
the notion of a pipe somewhat difficult to comprehend; those with prior experience in working with 
middleware platforms were more confident they could apply the pipe concept to other problems - U= 
3.00, p < 0.05.

During free feedback, a variety of issues were raised for clarification. However, the key 
recommendation that emerged was the inclusion of additional categories of pipes.

CONCLUSION

Harnessing a distributed sensing paradigm for modelling data sources for CPSSs is tractable, offering 
a novel model for effectively managing data complexity and diversity. Middleware is standard in both 
business information systems and sensor network development; thus, it offers a pragmatic foundation 
for CPSSs. However, a singular middleware approach may not suffice for CPSSs in all circumstances. 
Integrating core middleware precepts of fault-tolerance and load-balancing with a flexible microservice 
architecture encompassing cyber-sensor principles may allow for more scalability as well as enabling 
polyglot software development. In this way, the diversity and complexity of CPSSs may be addressed 
more sustainably going forward.

Table 3. Participants understanding of Cyber Sensor concepts, and their corresponding SUS score

# Pipelines Network Infrastructure SUS

Understood Understood Understood

Complete Sensors Pipes Application Complete Understood Application Complete Understood Application

1 5 5 4 5 5 5 4 4 4 4 97.5

2 5 5 5 4 5 5 5 3 5 3 92.5

3 5 5 4 4 5 5 4 5 5 4 72.5

4 5 5 5 5 5 4 4 5 4 3 70

5 4 3 3 3 3 3 2 4 3 4 52.5

6 4 5 4 4 3 4 4 5 5 5 75

7 4 5 4 5 5 4 5 5 3 4 85

8 5 4 4 5 5 4 4 4 4 4 67.5

9 5 5 4 4 5 5 5 5 4 4 90

10 5 5 4 5 5 4 4 4 4 4 90

11 5 5 5 5 5 5 4 5 4 4 82.5

12 5 5 3 4 5 4 4 5 5 4 87.5
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