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ABSTRACT

Soybean is an important crop, so it is very important to forecast soybean price trend, which can 
stabilize the market. This paper presents a synthesis method with multistage model (SMwMM) in 
order to identify and forecast soybean price trend in China. In the previous work, Toeplitz inverse 
covariance-based clustering (TICC) has been applied to cluster the prices of four variables. The 
research has found that there are four patterns in soybean market price, which could be explained by 
economic theory. This paper considers four patterns as market risk levels. Based on the clustering 
results, the authors used long short-term memory (LSTM) to forecast the prices of these four variables. 
Multivariate long short-term memory (MLSTM) is then used to classify soybean price to determine 
level of risk. Experimental results show that (1) the LSTM model has achieved great fitting effect 
and high prediction accuracy and (2) the performance of MLSTM-FCN and MALSTM-FCN is better 
than that of LSTM-FCN and ALSTM-FCN. Furthermore, MALSTM-FCN had a higher accuracy 
than MLSTM-FCN, which reached 76.39%.
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INTRODUCTION

The soybean is an important source of high quality protein for human beings and an important raw 
material of edible oil. The soybean products are hard to be replaced as part of the human diet (He et 
al., 2017). In addition, the breeding industry needs a large amount of feed, which is mainly composed 
of corn and soybean. The corn provides sugar and the soybean provides protein. Therefore, soybean 
price directly affects soybean production, farmer income, animal husbandry cost and the stability of 
agricultural products market (Li, 2014).

From the economic angle, soybean plays such an important role in breeding industry that soybean 
price affects meat price. In addition, the instability of soybean price brings significant risks to other 
grains price (Xu & Ma, 2018). Therefore, the fluctuation of soybean price affects the development 
of agriculture, the quality of consumer life and the overall stability of market economy (Qian, 2017). 
Timely and accurate prediction for soybean price trend enables the government to make corresponding 
decisions in time and stabilize the market (Jiang, 2018). However, the drastic change of international 
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soybean market leads to the continuous fluctuation of domestic soybean price in recent years. In this 
context, it is more important to predict soybean market price trend in China.

This paper aims at predicting soybean price trend in China. Predicting soybean price trend in 
China needs firstly determines different soybean price trend, that is, “Pattern of Soybean Price (PSP)” 
(Deng&Sun, 2019). Then forecast soybean price trend based on PSP classes and predicted soybean 
prices. Based on these analyses, the prediction of soybean price trend consists of three steps. Firstly, 
this paper cites the research results from Deng and Sun (2019), that is, there are four patterns in 
soybean price. Secondly, four variables related to soybean price are predicted respectively. The four 
variables are the soybean purchase price, corn market price, soybean futures price, and the soybean 
oil futures price. The second step is formalized as univariate time series prediction problem. Finally, 
the future soybean price trend is predicted according to the four kinds of predicted price. The third 
step is formalized as a multivariate time series classification problem, that is, the predicted prices 
are classified to determine which soybean price model they are in.

This paper proposes a Synthesis Method with Multistage Model (SMwMM), including clustering, 
prediction and classification, in order to predict soybean price trend. Firstly, this paper cites the 
research results from Deng and Sun (2019), that is, there are four patterns in soybean price. Deng and 
Sun (2019) used Toeplitz Inverse Covariance-based Clustering (TICC) (Hallac et al., 2017) to cluster 
the multivariate time series data set composed of four variables, including soybean purchase price, 
corn market price, soybean futures price and soybean-oil futures price. These four variables have 
a greater impact on soybean prices (Deng & Sun, 2019). Therefore, this paper also uses these four 
variables to conduct experiments in order to predict the soybean price trend more accurately. Then 
Long Short-Term Memory (LSTM) (Graves et al., 2012) is applied to forecast soybean purchase price, 
corn market price, soybean futures price and soybean oil futures price, respectively. Finally, this paper 
forecasts soybean price trend via Multivariate Attention Long Short-Term Memory Fully Convolutional 
Networks (MALSTM-FCN) (Karim et al., 2019), that is, classify price to determine which pattern the 
soybean price is in. In general, a new combination is proposed to predict soybean price trend by using 
the existing models. This combination is named SMwMM. Therefore, the contribution of this paper 
lies in the establishment of new soybean risk early-warning model. Compared with the traditional 
early-warning methods, this paper takes the discovered pattern as the early-warning alarm degree, 
which can avoid the subjectivity of artificial selection. This is helpful for more accurate prediction 
and early warning of soybean price. At the same time, it is also a new idea for agricultural monitoring 
and early warning, which provides methods and basis for the establishment of risk warning models 
for other agricultural products in China.

The remainder of this paper is organized as follows: Section 2 describes the literature review 
of soybean price prediction and classification algorithm. Section 3 briefly introduces structure of 
LSTM and the details of MALSTM, and explains the procedure of predicting soybean price trend 
via SMwMM. Experimental results are discussed in Section 4. Section 5 explains conclusions and 
major contributions.

RELATED WORKS

At present, there are a lot of researches about soybean price prediction at home and abroad. For 
example, Wang et al. (2016) derived the theoretical model of the optimal confidence interval to 
simulate the optimal interval forecast of soybean meal and non-GMO soybean futures price. David 
et al. (2017) applied the Auto Regressive Fractionally Integrated Moving Average (ARFIMA) model 
to predict soybean price. He et al. (2017) proposed an support vector regression based on adaptive 
particle swarm optimization (APSO_SVR) model to predict soybean price in China. Zhang et al. 
(2018) applied a quantile regression-radial basis function (QR-RBF) neural network model to predict 
of soybean price in China. Drachal (2019) proposed a new Bayesian model combination schemes for 
analysis of soybean price. These researches mentioned above are about to forecast univariate time 
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series. In this paper, a new model combination is proposed, which uses multivariate time series to 
predict soybean price trend, considering four variables that have great influence on soybean price. 
Therefore, the warning model proposed in this paper can more accurately grasp the soybean price 
trend. It provides a new idea for soybean price prediction, and also provides a method and basis for 
the establishment of agricultural product risk warning model.

In this paper, the soybean price trend prediction is divided into three steps. The first step cited 
the previous research results, namely, TICC was used to cluster soybean prices into four patterns 
(Deng&Sun, 2019). In the second step, LSTM is applied to predict the four time series. LSTM 
algorithm is well known by researchers in the area of machine learning. Meanwhile, many studies 
have proved the superiority of LSTM in price prediction, such as Peng et al. (2019) and Baek&Kim 
(2018). The third step needs to classify multivariate time series more effectively.

In recent years, several time series classification algorithms have been developed in succession. 
Distance based methods along with K-Nearest Neighbors (KNN) have been proven to be successful 
in classifying multivariate time series (Orsenigo & Vercellis, 2010). Plenty of research indicates 
Dynamic Time Warping (DTW) as the best distance based measure to use along with KNN (Seto et 
al., 2015). In addition to distance based metrics, Hidden State Conditional Random Field (HCRF) 
and Hidden Unit Logistic Model (HULM) are two successful feature based algorithms that have led 
to state of the art results on various benchmark datasets (Pei et al., 2018). Traditional models, such as 
Naive Logistic model (NL) and Fisher Kernel Learning (FKL) (Jaakkola et al., 2000), showed strong 
performance on a wide variety of time series classification problems. Another common approach for 
multivariate time series classification is to apply dimensional reduction techniques or concatenate all 
dimensions of a multivariate time series into a univariate time series, such as Symbolic Representation 
for Multivariate Time Series (SMTS) (Baydogan et al., 2014), Learned Pattern Similarity (LPS) 
(Baydogan et al., 2015), Ultra-Fast Shape (UFS) (Wistuba et al., 2015), Auto-Regressive (AR) kernel 
(Cuturi & Doucet, 2011) and Auto-Regressive Forests (Tuncel & Baydogan, 2018). Deep learning 
has also yielded promising results for multivariate time series classification. In 2014, Zheng et al. 
(2014) proposed Multi-Channel Deep Convolutional Neural Network (MC-DCNN) for multivariate 
time series classification.

The model used in this paper requires minimal preprocessing. Karim et al. (2019) tested 
MALSTM-FCN on 35 datasets, obtaining strong performance. MALSTM-FCN and Multivariate 
LSTM Fully Convolutional Networks (MLSTM-FCN) are beneficial in various multivariate time 
series classification tasks, such as activity recognition, or action recognition (Karim et al., 2019). 
MLSTM-FCN and MALSTM-FCN enhance the classification ability of LSTM Fully Convolutional 
Network (LSTM-FCN) and Attention LSTM-FCN (ALSTM-FCN), respectively. Therefore, this 
paper uses MALSTM-FCN for multivariate time series classification, compared with MLSTM-FCN, 
LSTM-FCN (Karim et al., 2018) and ALSTM-FCN (Karim et al., 2018). LSTM-FCN has been used 
in industrial installation processes (Patxi et al., 2020) and video detection (Wu et al., 2020). To our 
knowledge, this is the first application of MALSTM-FCN and MLSTM-FCN in agriculture.

METHODS AND MATERIALS

Procedure of Prediction of Soybean Price Trend
The main target of this paper is to forecast soybean price trend. First, pattern of soybean price need 
to be determined. Then forecast the four variables respectively and finally classify data to determine 
which pattern the price is in. This is the procedure of predicting soybean price trend. As shown in 
Figure 1.

Deng and Sun (2019) used TICC to cluster the multivariate time series dataset composed of four 
variables. The four variables are closely related to soybean prices. Deng and Sun (2019) concluded 
that there are four patterns in soybean price. This paper cites this conclusion. This paper takes these 
four patterns as the warning risk levels in this paper. In order to make the results more accurate, 
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this paper selects the same four factors as experimental data, namely soybean purchase price, corn 
market price, soybean futures price and soybean oil futures price. Then, LSTM is applied to forecast 
soybean purchase price, corn market price, soybean futures price and soybean oil futures price and 
experiment showed higher accuracy. Finally, MALSTM-FCN is applied to classify the multivariate 
time series dataset and achieves high accuracy. That is to effectively judge the soybean market price 
will be in which market risk level.

Soybean Price Pattern Discovery Via TICC
Deng and Sun (2019) used TICC to cluster the multivariate time series composed of four variables. 
These four variables are soybean purchase price, corn market price, soybean futures price and soybean 
oil futures price, which are closely related to soybean price. The clustering results show that there 
are four patterns in soybean price. These four patterns correspond to the four phases of the economic 
cycle. The four stages are boom, recession, depression and recovery. This paper quotes conclusion 

Figure 1. Procedure of predicting soybean price trend based on TICC, LSTM and MALSTM-FCN
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of Deng and Sun (2019), that is, there are four models in soybean price. This is the first step in this 
paper, which prepares for the classification in third step.

Prediction of Soybean Price Sequences Via LSTM
Long short-term memory is a special kind of Recurrent Neural Network, which can learn long time 
dependencies. The main feature is to solve the problem of gradient disappearance and gradient 
explosion during long sequence training by integrating the gating function into its state dynamics 
(Hochreiter & Schmidhuber, 1997).

Compared with RNN, the repeated modules of LSTM has a different structure. There are four 
layers instead of a single layer, interacting in a very special way. Modules have smarter components than 
classical neurons and a memory for recent sequences. Modules contain the state of the management 
blocks and gates for output. Blocks operate on input sequences, and each gate in a block uses an 
s-shaped activation unit to control whether or not they are triggered. Each unit is like a small state 
machine, and each door in the unit has weights learned during training (Figure 2).

Classification of Soybean Price Sequences Via MALSTM-FCN
Temporal Convolutions
The MALSTM-FCN model (Karim et at., 2019) uses the Temporal Convolutional Network (TCN) 
as a feature extraction module of FCN branch. In general, a basic convolution block contains a 
convolution layer, which is accompanied by a batch normalization (Ioffe & Szegedy, 2015). The batch 
normalization is followed by an activation function of either a Rectifified Linear Unit or a Parametric 
Rectifified Linear Unit (Trottier et al., 2016).

Attention Mechanism
Bahanau et al. (2014) proposed attention mechanism. Attention mechanism imposes conditions on 
a context vector on the target sequence. The context vector depends on a sequence of annotation, 
where the encoder maps the input sequence. Each annotation contains information on the whole input 
sequence, with an emphasis on the area around the i -th information of the input sequence (Karim 
et al., 2019).

Squeeze and Excite Block
Hu et al. (2017) proposed an extruded exciter block as a transformation unit. Hu et al. (2017) 
modeled the channel interdependencies to adjust the filter responses in two steps which are squeeze 
and excitation. The squeeze operation exploits the contextual information outside the local receptive 
field by using a global average pool to generate channel-wise statistics. The transformation output 
is shrunk through spatial dimensions to compute the channel-wise statistics. For temporal sequence 
data, the transformation output, is shrunk through the temporal dimension to compute the channel-

Figure 2. The repeated module in the LSTM contains four interacting layers
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wise statistics. The aggregated information from the squeeze operation is followed by an excite 
operation, whose objective is to capture the channel-wise dependencies. To achieve this, a simple 
gating mechanism is applied with a sigmoid activation (Karim et al., 2019).

Network Architecture and Network Input of MALSTM-FCN
MALSTM-FCN used in this paper is a new algorithm for multivariate time series classification. 
Karim et al. (2019) proposed MLSTM-FCN and MALSTM-FCN, which enhance respectively the 
classification ability of LSTM-FCN and ALSTM-FCN.

MLSTM-FCN and MALSTM-FCN comprise of a fully convolutional block and a LSTM block. 
The fully convolutional block contains three temporal convolutional blocks for feature extraction. Each 
convolutional block contains a convolutional layer, with filter size of 128 or 256, with a momentum 
of 0.99 and epsilon of 0.001, and then batch normalization. The batch normalization layer is activated 
by the Rectified Linear Units (ReLU). In addition, the first two convolutional blocks have squeeze and 
excite blocks. The final temporal convolutional block is followed by a global average pooling layer.

Multivariate time series input, on the other hand, is passed through a dimension shuffle layer 
followed by the LSTM block. The LSTM block in method used in this paper is the same as block 
from the LSTM-FCN or ALSTM-FCN models, including an LSTM layer or an Attention LSTM 
layer, followed by an output layer. If there is missing data in the data set, we usually fill the data with 
the zero vector at the end to make them consistent in size, which requires to use a mask to skip time 
steps for which we have no information prior to the LSTM or Attention LSTM layer to.

Depending on the data set, the input to the fully convolutional block and LSTM block are different. 
The input to a fully convolution block is a multivariate time series with N time steps, each of which 
hasM variables. If there is a time series withM  variables andN time steps, the fully convolution 
block will receive such data. The input to the LSTM can vary depending on the application of 
dimensional shuffle. The dimension shuffle transforms the temporal dimension of the input data. If 
the input of LSTM does not go through dimension shuffle, the LSTM will need N  time steps to 
processM variables at each time step. However, if dimension shuffle is applied, the LSTM will need
M time steps to processN variables. In other words, when the number of variables M is less than 
the time stepsN , dimension shuffle improves the efficiency of the model. In the model used in this 
paper, dimension shuffle is only used when the number of time stepsN is greater than the number 
of variablesM .

EXPERIMENTAL RESULTS AND DISCUSSION

According to the research from Deng and Sun (2019), soybean market price is affected by soybean 
purchase price, corn market price, soybean futures price and soybean-oil futures price. Therefore, 
this paper also uses these four variables to conduct experiments in order to predict the soybean price 
trend more accurately. Heilongjiang soybean price is selected as the experimental object, because 
Heilongjiang is the major soybean production area. Experimental data are obtained from Dalian 
Commodity Exchange (http://www.dce.com.cn/DCE/DCE_PAGE_KEY/index.html), Heilongjiang 
agricultural information net (http://www.hljagri.gov.cn/ddw/scbj/) and pig price net (http://www.
zhujiage.com.cn/special/hlj_dadoujiage.html). The range of data covers all working days from July 
15, 2016 solstice to December 31, 2017 (358 items in total). This paper obtains data through writing 
a web crawler program. And then clean and calculate the text crawled down. It’s worth noting that 
there are missing data in the data. To solve this problem, this paper uses Lagrange interpolation to 
fill in the missing data.

This paper cites the research results from Deng and Sun (2019), that is, there are four patterns in 
soybean price. Deng and Sun (2019) used Toeplitz Inverse Covariance-based Clustering (TICC) to 
cluster the multivariate time series data set composed of four variables (Deng & Sun, 2019). Deng 
and Sun (2019) made a reasonable assumption for each pattern, that is, pattern 1 is recession, pattern 



International Journal of Agricultural and Environmental Information Systems
Volume 12 • Issue 4 • October-December 2021

7

2 is boom, pattern 3 is recovery, and pattern 4 is depression. On this basis, this paper takes these four 
patterns as the warning risk level.

Experiments on Prediction of Soybean Price
This paper uses the LSTM model with “memory function” to forecast the data of the four variables, 
separately. There are some commonly used models for predicting time series, such as Artificial Neural 
Network (ANN) (Jain et al., 1996), Recurrent Neural Network (RNN) (Ah C.T., 1998) and Gated 
Recurrent Unit (GRU) (Cho et al., 2014). To highlight the superiority of LSTM, this paper applies 
ANN, RNN and GRU as comparison models. To evaluate the performance of models, all models 
uses the same parameter settings. 70% of the data sets are used to train model, and the remaining 
30% are used to test the model. Other parameters: epochs=200, batch_size=1.

The error effect diagram of each variable using LSTM is shown in Figure 3. As can be seen from 
the Figure 3, except for the corn market price, the other three variables have a good fitting effect. 
After analyzing the corn market price sequence, it is found that the price fluctuation range of corn are 
between 1.2 yuan and 2.2 yuan. The price fluctuation range of the four variables is shown in Figure 
3. Compared with the other three variables, the price fluctuation range of corn are the smallest and 
the degree of fluctuation are the most obvious, which is the main reason for the lowest prediction 
accuracy of corn market price.

This paper uses root mean square error (RMSE), mean absolute error (MAE), Mean absolute 
percentage error (MAPE) and R-squared (R2) as evaluation indexes to measure the performance 
of model prediction. Table 1 shows the evaluation results of LSTM, ANN, GRU and RNN in this 
experiment. The higher R2, the better the performance of the model. The smaller the value of the 
other three indicators, the better the performance of the model. It can be seen that LSTM has achieved 
best performance on four datasets. The R2 value of LSTM is the largest on all four data sets, reaching 
0.88, 0.67, 0.99, 0.99 respectively. The RMSE value of the LSTM is the smallest on all four datasets, 
reaching 0.08, 0.06, 0.02, 0.03 respectively. MAE and MAPE are also the smallest on all four datasets. 
Therefore, LSTM has better advantages in predicting time series. This paper uses LSTM to predict 
four variables respectively.

Experiments on Prediction of Soybean Price Trend
The MLSTM-FCN and MALSTM-FCN have been tested on 35 datasets and performed well (Karim et 
al., 2019). Through a grid search, the authors found the optimal number of LSTM cells for each data 
set (ranging from 8 to 128). In this experiment, the initial batch size used is 128, and the FCN block 
is composed of three 128-256-128 filter blocks. In the training phase, this paper sets the total number 
of epochs trained as 250 and the ratio of training set to test set as 8:2, in order to reduce overfitting. 
This paper uses Adam optimizer (Kingma & Ba, 2014) to set the initial learning rate as 1e-3 and the 
final learning rate as 1e-4. Before training, the data set was normalized and preprocessed so that it has 
zero mean value and unit variance. In addition, the learning rate decreases after every 100 times of 
learning. Note that this paper uses the Keras library (Chollet et al., 2015) with the TensorFlow back-
end to train the model. In order to highlight the performance of MALSTM-FCN, this paper compares 
MLSTM-FCN and MALSTM-FCN with LSTM-FCN and ALSTM-FCN, as shown in Figure 4.

Figure 4 shows the classification performance of the four models on soybean dataset. The 
accuracy of MALSTM-FCN is the highest among the four models, reaching 76.39%. Then, MLSTM-
FCN has the second highest classification accuracy, reaching 73.61%. The classification accuracy 
of LSTM-FCN is the lowest, reaching 72.22%. It can be seen that the performance of MLSTM-FCN 
and MALSTM-FCN are better than that of LSTM-FCN and ALSTM-FCN. This is because the 
extruded layer and the exciter layer significantly improve the performance of the multivariate time 
series classifier by modeling the interdependence between channels. Furthermore, the accuracy of 
MALSTM-FCN is higher than the MLSTM-FCN model. At the same time, the accuracy of ALSTM-
FCN is higher than LSTM-FCN. This is because attention mechanism can improve the performance 
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of the model. MALSTM-FCN is superior to the other three models, because it applies simultaneously 
squeeze-and-excite block and attention mechanism. The experiment results also prove this point.

Therefore, this paper verifies the feasibility of MALSTM-FCN model in classifying multivariate 
time series data. Using this classification algorithm could accurately determine which market level 
the soybean market price would be in and make corresponding measures in time.

When the soybean market is predicted to be at the risk level of recession, the government should 
take measure in time, such as making full use of financial support policy, increasing agricultural 
loans, and formulating credit policy designedly, meeting the capital demand of soybean production, 
soybean processing and soybean marketing. The government should strengthen macro policy guidance 
and create a good environment for industrial development.

When predicting that the soybean market is at risk level of prosperity, the government must 
strengthen the regulation of soybean production, take effective measures to reduce the production 
cost of soybean, and increase subsidies on soybean growers and enthusiasm for planting soybean, 
thereby guaranteeing the supply of soybean.

When the soybean market is predicted to be at risk level of recovery, the government should 
set up effective coordination mechanism and make the corresponding supporting policies, in order 
to improve the soybean market circulation environment and promote the development of soybean 
industry. Therefore, the government should pay attention to transfer of market information, establish 

Figure 3. This is the error rendering of the four variables by LSTM model, where the blue line represents the original data set, the 
orange line represents the training value, and the green line represents the predicted value. Figure 3(a) is the error renderings of 
soybean purchase price, Figure 3(b) is the error renderings of corn market price, Figure 3(c) is the error renderings of soybean 
futures price, Figure 3(d) is the error renderings of soybean oil futures price.
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professional market information service platform, providing farmers with soybean market present 
situation and foreign soybean market information and data.

Table 1. evaluation results of four variables in LSTM, ANN, GRU and RNN. The unit of measurement of prices in the table is 
yuan

Data set Model RMSE MAE MAPE R2

Soybean purchase price LSTM 0.08 0.03 0.47 0.88

RNN 0.1 0.04 1.11 0.82

GRU 0.13 0.05 1.27 0.74

ANN 0.34 0.17 32.61 0.85

Corn market price LSTM 0.06 0.04 1.4 0.67

RNN 0.07 0.05 3.06 0.62

GRU 0.08 0.05 2.91 0.58

ANN 0.06 0.04 24.53 0.64

Soybean futures price LSTM 0.02 0.01 0.36 0.99

RNN 0.03 0.02 0.36 0.95

GRU 0.03 0.02 0.37 0.94

ANN 0.05 0.04 3.8 0.95

Soybean oil futures price LSTM 0.03 0.02 0.08 0.99

RNN 0.04 0.03 0.35 0.97

GRU 0.03 0.02 0.37 0.96

ANN 0.12 0.04 27.07 0.97

Figure 4. Comparison of accuracy of four models on soybean dataset
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When predicting that the soybean market is at risk level of depression, the government should 
increase the special reserve of soybean, that is to purchase soybean at a reasonable price. The aim is 
to be able to adjust price if the soybean market price is too high.

Soybean is an important economic crop and occupies an important position in international 
trade. Soybean price is closely related to farmers living standard and agricultural market. Research 
on soybean price can enable related people to accurately grasp the market price trend, and then take 
beneficial measures. It is of great practical significance for stabilizing the market of agricultural 
products in China, improving the output value of animal husbandry, and promoting the development 
of agricultural economy. Therefore, it is very important to predict soybean market trend accurately.

CONCLUSION AND FUTURE WORK

This paper presents a soybean price trend prediction model. The model is a new combination with 
multistage model. First, this paper cites this conclusion from Deng and Sun (2019), that is, there are 
four patterns in soybean price. This paper takes these four patterns as the warning risk levels. Then, 
this paper uses LSTM to predict soybean purchase price, corn market price, soybean futures price 
and soybean-oil futures price, respectively. The experimental results show that LSTM can achieve 
better performance than ANN, RNN and GRU. This paper finally classifies the multivariate time 
series data consisting of four variables to find out which pattern the soybean market price is in. For 
classification experiments, MALSTM-FCN achieves great classification accuracy, compared with 
MLSTM-FCN, LSTM-FCN and ALSTM-FCN. In addition, we analyze the corresponding measures 
for each risk level. The study provides a new method for agricultural monitoring and early warning, 
which can provide certain reference for the price regulation of agricultural products market in China.

In the prediction experiment, the corn market price fitting is not good enough. The main reason 
is that the price fluctuation range of corn is between 1.2 yuan and 2.2 yuan. Compared with the other 
three variables, the price fluctuation range is the smallest and the degree of fluctuation is the most 
obvious. Therefore, the future work is to build better models for forecasting agricultural product price.
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