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ABSTRACT

The main objective of the paper is to minimize the use of conventional generators and optimize the fuel 
cost. To minimize the use of conventional generators, solar thermal power plant (STPP) is proposed in 
this paper. An approach for optimal location of STPP is also proposed in this paper. To minimize the 
fuel cost, firstly unit commitment (UC) is applied in conventional generators. Then genetic algorithm 
(GA) is used to optimize the fuel cost of committed generators. The suggested method is tested on 
an IEEE 14 bus test system for 24 hr. schedule with variable load. The effectiveness of the proposed 
methodology is illustrated in three cases. Case 1 is used to identify the STPP location to reduce the 
fuel cost of conventional generator. In Case 2, unit-commitment is applied to save considerable fuel 
input and cost. In order to optimize the committed fuel cost, a genetic algorithm is applied in Case 3.
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INTRODUCTION

Electrical power systems are designed and operated to meet the continuous variation of load demand. 
In power system minimization of operation cost is very important. The most important problem with 
electric power generation scheduling is unit commitment. Unit Commitment means coordinating 
short-term unit generation to meet load demand forecasting. The problem of unit commitment is a 
complex problem of optimization. It has a variable integer as well as a constant variable (Kumar et al., 
2014). The Unit Commitment (UC) function in the power system refers to the question of optimization 
to evaluate the on/off states of generating units that reduce operating costs for a given time horizon 
(Zhao et al., 2006). The committed units must meet the system’s forecast demand and spinning 
reserve requirement at the minimum operating cost, subject to a wide set of operating restrictions.

In practice as well as in state-of-the-art research on deterministic UC models, the underlying 
security assumptions (i.e., contingency) network, and operational constraints for alternating current 
(AC) power systems have varied the most significantly described by (Stott & Alsac, (2012). Garver., 
(1962) improves the foundational formulation of UC. Several influential approaches have concentrated 
on mixed-integer linear programming (MILP) with more close convex null representations of non-
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network thermal unit constraints operation described in several research papers (Carrion & Arroyo, 
2011); (Ostrowski et al., 2012); (Morales-Espana et al., 2013); (Jabr, 2012). Unit Commitment in 
linear (DC) network with losses are formulated by (Morales et al., 2009) and (Wu & Shahidehpour, 
2010) and without is formulated by (Feizollahi et al., 2015). 

Padhy, (2004) explain how the resulting commitment schedules neglect the constraints of reactive 
power dispatch and AC power flow, which must subsequently be compensated for via corrective and 
generally ad-hoc processes. The resultant interaction schedules ignore the constraints of reactive 
power dispatch and ac power flow, which must consequently be balanced by corrective and typically 
ad-hoc processes explained by (Bhardwaj et al., 2012). It is the energy control center’s most critical 
feature that specifies the on / off status as well as the actual power output of the generator. Parashar 
& Swankar, (2013), proposes a methodology to reduce device running costs over the planning cycle 
subject to various physical operation and computation constraints. Columbus & Simon, (2012), 
explain unit Commitment (UC) as a nonlinear mixed integer optimization problem. Power system 
engineers also need to understand the economic decision-making tool for to accomplish the economic 
goal (Galli, 2019).

With rapid development of the world economy and the exhaustion of the fossil fuels, renewable 
energy sources (RES) has received significant attention in the current society. Several authors (Wei 
et al., 2013); (Danwen et al., 2016); (Shin et al., 2017) explain the characteristics of renewable energy 
sources as a non-pollution and inexhaustible. The wind energy has become one of the renewable 
sources of electricity generation. Author Hirpara & Sharma, (2020), utilizes the Fokker-Planck 
method, a mathematical stochastic method, to analyse the noise-influenced wind turbine-generator 
system. The solar energy is another most popular example of renewable sources of energy. To make 
a full utilization of the output power of a PV solar cell operating at the maximum power point (MPP) 
is described in detail by Yatimi, H. (2018).  Some researcher work on a practical case study such 
as (Mohamed et al., 2017) for 20 MW Egyptian PV solar power plant with battery backup system. 
Singh et al. (2019) evaluate the performance of a 4 kW Isolated Solar Powered Lab with IoT Energy 
Management System. Some applications based on solar energy is also discussed by (Singh et al. 
2018) and (Salima et al. 2018). 

Various emerging concepts influence logistics management (Baporikar 2020), particle swarm 
optimization, fuzzy logic controller (Ramadan & Altamimi 2017) and genetic algorithm etc are general 
purpose stochastic and parallel search tool that can be used as a technique of optimization to obtain 
near-global optimal solutions to the problem. The Genetic algorithm is inspired by the ideas of the 
natural selection and survival of the fittest in biology and evolution. Lambora et al. (2019), present 
review on genetic algorithm application. Many authors such as (Meshram et al.,2016) and (Xua, et. 
al. 2018) explain the Genetic algorithm applications in different areas.

The main objective of the paper is to minimize the fuel cost of conventional generators with the 
inclusion of renewable energy sources and optimization technique. The paper is organized in different 
sections. In background section unit commitment and its importance and UC with renewable power 
system is discussed. In second section problem formulation and genetic algorithm optimization 
techniques are described in detail. In third section numerical results are explained in three different 
cases to show the effectiveness of the proposed methodology. Finally conclude with the findings of 
proposed methodology.

BACKGROUND

Unit Commitment and its Importance
Economic operation results in increasing operational efficiencies, thereby minimizing costs per 
kilowatt-hour. Total power system load varies at any time, generally higher during the daytime and 
early evening when industrial loads are heavy, lights are on, and so on, and lower in the late night and 
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early morning when the majority of the population sleeps. The option to turn ON enough units and 
leave them online is therefore not viable due to the costs involved so that the variable load demand 
is met at all times. This occasionally causes some of the units to operate close to their minimum 
capacity, leading to lower system efficiency and increased economics. Therefore, in order to optimize 
device operation, units must be shut down as the load goes down and must be brought online as it 
goes up again (Stott & Alsac, (2012).

Electrical utilities must schedule their generation in advance to meet this varying demand, as to 
which generators are to be started and when to synchronize them into the network and the sequence 
where working systems have to be shut down. The decision-making process is well-known as ‘ 
Unit Commitment’. The word ‘ commit ‘ refers to making a turn ‘ON’ a unit. Therefore, the Unit 
Commitment issue is to plan the ON and OFF hours of the generating units with the overall minimum 
cost while maintaining the operating restrictions of the unit, such as peak up / down periods, ramp 
rate limits, maximum and minimum power generation limits. The main component of the costs 
incurred in generation is the cost of fuel supply per hour for all generators, while maintenance costs 
only contribute to a small extent. This assessment of the fuel costs is more relevant for thermal and 
nuclear power plants, which is not the case for hydro stations where the energy is derived from the 
storage of water in dams built for irrigation purposes and is apparently free. Savings in fuel costs can 
be achieved by proper load allocation among the engaged units.

UC with Renewable Resources in Power System 
With the prolonged and excessive use it has become clear that supplies of fossil fuel are increasingly 
depleting and that the age of fossil fuel is slowly coming to a close. This is particularly true of coal, 
oil, and natural gas resources. The large-scale use of fossil fuels has caused detrimental environmental 
effects over the years. The result of this is the movement towards global warming which is of great 
concern for the future of human life. The pursuit of alternative sources, the situation has caused the 
whole world to meet the energy needs. 

Renewable energy sources such as solar, wind, tidal and geothermal, were the alternatives that 
attracted the attention. It is a success to extract energy from the solar and wind to a considerable level. 
The research focuses on the use of solar thermal energy for electricity generation here. For model a 
solar integrated power system near a realistic scenario, a solar thermal power plant is installed into 
the existing power grid.

PROBLEM FORMULATION

Electricity demand is higher in the day time and lower in the late night and early morning. The 
cyclical demand includes hourly preparation by utility companies for power generation. The issue 
is to decide which of the units to be turn on, and then to assess the units for an optimal Economic 
dispatch schedule for a set of Unit Committed generating systems.

Objective Function
The objective is that the fuel cost of all committed generators is to be minimized in (1). The simplified 
cost function of every generator can be represented as a quadratic function as given in (2).

F P min F Pgi i

NG
i gi( ) ( )�

�� 1
	 (1)

subject to:
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F P a Pg b Pg ci gi i i i i i( ) � � �2 	 (2)

Here:

ai , bi and ci are the known coefficients for ith unit	

NG: number of generators	
Pgi : real power generation of ith plant	

F Pi gi( ) : the total cost of generation	

Equality and Inequality Constraints 
Active Power Balance Equation 
For power balance, an equality constraint should be acquiescent. The total generated power should 
be the same as total load demand plus the total transmission line loss:

i

NG

giP
�
�

1

, PD , Ploss 	 (3)

where PD  is the total load demand and Ploss  is the total line loss.

Minimum and Maximum Power Limits 
Generation output of each generator should be lie between maximum and minimum limits. The 
compatible inequality constraints for each generator are:

p p pi
min

i i
max≤ ≤ (i= 1,2,…,NG)	

where Pgi
min  is the lower permissible limit of real power generation, Pgi

max  is the upper permissible 
limit of real power generation.

GENETIC ALGORITHM

Genetic algorithms are known as the heuristics of global searches. Genetic algorithm is a special class 
of Evolutionary Algorithms (EA), using evolutionary biology-inspired techniques such as inheritance, 
selection, crossover, and mutation. A Genetic Algorithm (GA) is a computational search technique used 
to find exact or approximate solutions to search and optimization problems. The Genetic algorithm is 
based on principle that “The candidates, which can survive, will live, others would die”. This principle 
is used to finding fitness value of the process for solving optimization problems. It is a method that 
is based on natural selection, the process that drives biological evolution.

When we have the genetic representation and the fitness function prescribe, GA initializes a 
population of solutions randomly, and then enhances the treatment of mutation, inversion, crossover 
and selection operators for repeated use. For binary, solutions are usually represented as 0s and 
1s strings but other encoding is also possible. Genetic algorithms are implemented in a computer 
simulation in which a population of abstract representations (called chromosomes or genotypes of 
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the genome) of candidate solutions (called organisms, individuals, or phenotypes) to an optimization 
problem evolves towards better solutions. If due to a maximum number of generations, the algorithm 
has ended, a suitable solution may or may not have been found. The evolution typically begins 
from a population of individuals that are randomly generated and happens in generations. Multiple 
individuals in each generation are stochastically selected from the current population based on their 
fitness. The fitness of each individual in the population is evaluated and changed (recombined and 
likely mutated at random) to create a new population. Commonly, the algorithm ends when either a 
maximum number of generations have been made, or a sufficient fitness level for the population has 
been reached. For the next iteration of the algorithm the new population is then used. The flow chart 
of genetic algorithm is shown in Figure 1.

Representation
In GA, the variables of design or features characterizing an entity are expressed in an ordered list called 
a string. Genetic algorithms are extracted from a biological method analysis. Evolution happens in 
biological system on organic devices used to represent the form of living beings. Every design variable 

Figure 1. Flow chart of Genetic Algorithm
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is the same as a gene and the gene string corresponds to a chromosome. Chromosomes are composed 
of discrete units called chromosome. Natural selection is the interface between chromosomes and 
their decoded structures results. Such biological apparatuses are known as chromosomes. A human 
thing is just a decoded chromosomal fabrication.

Encoding
This includes a mapping process between chromosomal space and solution space. This mapping is 
called encoding. Typically, a chromosome in solution space corresponds to a single solution x. The 
encoding starts with the application of a genetic algorithm to a query. In fact, GA is working on the 
encoding of an issue not the problem itself. The encoding specifies a mapping which translates a 
potential solution to the problem into a structure which contains a set of relevant decision variables.

Decoding
Decoded feature values are used to measure problem characteristics such as fitness values, violation 
of constraints, objective function, and statistical system characteristics such as standard variance 
deviation and convergence rate. Crossover steps, selection, mutation etc. are replicated until some 
state of termination is reached. Decoding is the method of translating the chromosomal binary structure 
into decimal versions of the characteristic values. The procedure is usually performed after the entire 
chromosome has been decatenated to individual chromosomes. The equivalent decimal integer of 

binary string is obtained as y bj

i

l i
i
j=

=

−∑ 1

12  (j= 1,2,….., L); where, y j  is the binary coded value 

of the string, b
i
j  is the ith  binary digit of the j th  string, l is the length of the string, L is the number 

of strings or population size.

Initialization
Initially several individual solutions are created randomly for forming an initial population. The 
solutions can sometimes be “seeded” in areas where optimum solutions are likely to be found. 
Traditionally, population is generated randomly that covers the whole range of possible solutions (the 
search space). The size of the population depends on the complexity of the case but usually involves 
several hundreds or thousands of potential solutions.

Evaluation
The evaluation function is a method for evaluating the fitness of each chromosome in the population 
and is very much geared towards application. This function is derived from the function of the 
target and used in the genetic process. The suitability of the solutions is determined from the initial 
problem-solving package. Here a function called fitness function for this appropriateness allocation. 
In the case of routines for command interpreters, the fitness is the value to be optimized for the 
objective purpose. In order to achieve a constrained problem, penalty functions can also be used in 
the objective function. Since Genetic Algorithms are heading in the direction of developing the most 
suited chromosomes and the output is highly sensitive to fitness.

Fitness Function
The fitness value f(x) is derived from the aim function and is used in successive genetic operations. 
Using some suitable transformations, minimization problems are typically moved to problems of 
maximization. The Genetic algorithm is based on the theory of Darwin that “the candidates who 
can survive will live, others will die”. This theory is used for finding process fitness value to solve 
problems with maximization. The maximization problem fitness function can be used exactly the 
same as the objective function F(X). The fitness function for the maximization problem is: f(x) = 
F(X). The fitness function is an analogous maximization problem chosen such that the optimum point 
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Arrears is stationary for minimization problems. The following exercise function is mostly used in 
problems of minimization:

F(X) = 1

1+ ( )f x
	 (4)

Here f (x) is fitness function and F(X) is objective function.

Selection
Individual solutions are selected by a fitness-based process in which fitter solutions (as calculated by 
a fitness function) are usually more likely to be selected. Some selection methods rate each solution’s 
fitness and ideally select the best extrication. Other methods only score a random population sample, 
as this procedure can take a great deal of time. A proportion of the current population is chosen to 
raise a new generation during each continuous generation. This helps to preserve the diversity of the 
population, preventing premature convergence on beggarly solutions. Roulette wheel selection and 
tournament selection are common and well-studied methods of selection. Most of the functions are 
stochastic and built to choose a small portion of less-fit solutions.

Reproduction
The further move is to produce a second-generation population of solutions from those selected by 
genetic operators: crossover (also known as recombination) and/or mutation. By generating a “kid” 
solution using the above crossover and mutation methods, a new solution is produced that usually 
shares many of its “parents” characteristics. A pair of “parent” solutions is chosen for each new 
solution to be created for breeding from the pool previously chosen. New parent is chosen for each 
new infant, and the process continues until a new population of suitable size solutions is created. 
Although methods of reproduction focused on the use of two parents are more “inspired by biology,” 
some work indicates that it is safer to use more than two “parents” for reproducing a good quality 
chromosome. This procedure would usually increase the average fitness for the population, as only 
the best species of the first generation are selected for reproduction, along with a small proportion 
of less suitable solutions, for reasons already stated above. Ultimately, these processes result in the 
next generation chromosome population which is distinct from the initial generation.

Termination
This generational cycle is replicated until a state of termination is attained. Specific ending conditions 
are as follows:

1. 	 A solution which meets minimum requirements is found.
2. 	 The number of generations achieved is set.
3. 	 Assigned budget (time/money for calculation) met.
4. 	 The fitness of the higher ranking solution approaches or has reached a plateau such that successive 

iterations no longer produce better results.

Proposed Algorithm for GA

1. 	 Read data, namely cost coefficients, a
i
, b
i
, c
i
 no. of iterations, length of string, population size, 

probability of crossover and mutations, power demand and P
min

 and P
max

.
2. 	 Create the initial population randomly in the binary form.



International Journal of System Dynamics Applications
Volume 10 • Issue 3 • July-September 2021

28

pop=round(rand(popsize, Nt));	
Nt=total number of bits in a chromosome	

3. 	 Decode the string, or obtain the decimal integer from the binary string using Eq.5:

y bj

i

l i
i
j=

=

−∑ 1

12 (j= 1,2,…..., L)	 (5)

where, y j  is the binary coded value of the string, b
i
j  is the ith  binary digit of the j th  string, l is the 

length of the string, L is the number of strings or population size.

4. 	 Calculate the power in MW generated from the decoded population by using Eq.(6):

p
i
j , p

i
min + 

p p
yi

max
i
min

l i
j�−

−2 1
(i = 1,2,….NG, j= 1,2,…., l)	 (6)

where, y
i
j  is the binary coded value of the ith   substring.

5. 	 Check p
i
j , if p

i
j , p

i
max  then set p p

i
j

i
max= , if p

i
j , p

i
min , then set p p

i
j

i
min= .

6. 	 Find fitness if ( f
i
, f
max

) then set f
max

, f
i
. If ( f

i
, f
min

) then set f
min

, f
i
.

7. 	 Find population with maximum fitness and average fitness of the population.
8. 	 Select the parents for crossover using stochastic remainder roulette wheel selection method.
9. 	 Perform single point crossover for the selected parents.
10. 	Perform mutation 
11. 	If the number of iterations reaches the maximum, then go to step 12. Otherwise, go to step 2. 
12. 	The fitness that generates the minimum total generation cost is the solution of the problem. 

RESULT AND DISCUSSIONS

The proposed methodology is implemented on standard IEEE 14bus test system. The results of 
simulation studies are illustrated in three cases.

Case 1: Optimal Location of STPP
The data of IEEE 14 bus system is taken from MATPOWER6 software. As we know IEEE 14 bus 
system consists of 5 conventional generators. Even when we run OPF program for an IEEE 14 
bus system using MATPOWER6 the cost applied to consumer is very high. As it is well known 
that OPF is very different from ordinary power flow. Optimal power flow (OPF) is an extension 
to conventional ED problem; it determines minimal cost by optimal settings of different control 
variables in the system. 

In order to minimize the conventional generator fuel cost STPP is integrated after some 
modification in MATPOWER6 IEEE 14 bus system data. STPP has to be added as an extra plant 
into the existing system. To identify the optimal location for integration of STPP, load at each bus is 
increased by 10% and then by 20% to observe the impact on consumer cost. 

Table 1 show that under base case, with 10% increased load and with 20% increased 
load the consumer end cost is higher at bus number 13 and 14. To minimize the cost and 
to minimize the use of conventional generator two STPP with capacity of 10MW each is 
integrated at bus 13 and 14.
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Case 2: Implementation of UC-ACOPF in Standard 
IEEE 14 Bus Test System With STPP
Here UC- ACOPF is scheduled for 24-hour to show the effectiveness of proposed methodology. A 
load profile is developed for 24-hour in order to keep in mind that during office hours load is high 
while in morning, lunch time and late-night load is low. Figure 2 show the load profile for a scheduled 
day. Load variation is clearly visible in Figure 2. Hour 1 is started from mid night.

Table 1. Load impact on consumer cost

Bus No:
Base case (259 MW) With 10% increase in load 

(284.9 MW)
With 20% increase in load (310.8 

MW)

Cost($/hr) Cost($/hr) Cost($/hr)

1 36.724 36.925 37.061

2 38.360 38.590 38.754

3 40.575 40.789 40.970

4 40.190 40.437 40.603

5 39.661 39.917 40.068

6 39.734 40.030 40.160

7 40.172 40.394 40.570

8 40.170 40.390 40.564

9 40.166 40.380 40.564

10 40.318 40.567 40.767

11 40.155 40.438 40.618

12 40.379 40.742 40.942

13 40.575 40.944 41.168

14 41.197 41.573 41.873

Figure 2. Load profile for 24 Hour
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As the STPP can work in day time only the following schedule for generating units are assumed:

1. 	 During 12:00 am to 09:00 am, only the conventional thermal units have to cater the load.
2. 	 During 09:00 am to 6:00 pm conventional units and solar thermal unit caters the load.
3. 	 During 6:00 pm to 11:00 pm again only conventional units caters the load.

It is clear from the time frame that during day time or office peak hours STPP will remain ON. 
During non-availability or low output periods of solar generation, load demand has to be catered by 
the other units reliably without violating any operational constraints. Thus, the choice of generating 
unit that is to be substituted by the modelled STPP is required to be judicious. 

As the optimal location is identifies in case 1, add the STPP in bus no.13 and 14 of standard 
IEEE 14 bus test system. After modification (implementation of STPP) in IEEE 14 bus system Unit 
Commitment is scheduled for every hour of the day by using MATPOWER6 software.

Algorithm for 24-hour UC With STPP Integration

Step 1: During early hours and evenings, the STPP output is too low to run the unit and is taken as 
zero. However, during day time from 9:00am to 6:00pm the STPP output is taken constant of 
10MW each. Therefore, total generation capacity of two STPP, P

g STPP,
 = 20MW.

Step2: Sum up the loads at all buses to obtain the total hourly demand.
Step 3: In order to commit the units to cater primarily to system demand it is assumed that all units 

are available for commitment over the entire UC planning period of 24 hours.
Step 4: The spinning reserve requirements of the system are considered to be 10% of the system 

load. This is added to what was determined in step 3 to find the total MW generation required 
to be committed.

Step 5: Since two of the generators is treated as STPP (P
g STPP,

)  the calculated hourly fixed power 
output of it is subtracted from the total MW generation requirement. Commitment schedule is 
determined every hour among only the remaining (NG-1) generators to cater to this new net 
generation requirement. In this regard the modified or new net generation requirement is given 
as below:

P P losses SpinningReserve P
g new D g STPP, ,
= + +( )− 	 (7)

Step 6: Run UC-ACOPF program for modified IEEE 14 bus system using MATPOWER6 software 
to determine the optimum generation cost for the hour’s commitment. 

Step 7: Repeat step 1 to step 6 for every hour. 

Table 2 shows the UC schedule for 24 hours along with unit status, total generation and hourly 
generation cost in presence of STPP. During peak load hour such as for hour 10, 11, 15, 16, 18 and 
19 total generation cost is considerably reduced while using STPP as compared with other load hours 
without STPP.

Table 3 shows the maximum voltage, minimum voltage, active and reactive loss for 24-hour UC 
schedule with STPP. The voltages at load buses in the system during 24-hour time period attained as 
high as 1.06 PU and as low as 1.012 PU.

Case 3: Implementation of GA for Unit Committed Conventional Generators
The main focus of the paper is to minimize the use of conventional generators with optimized fuel cost. 
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To minimize the use of conventional generators here STPP with total capacity of 20MW is 
integrated in the system for day time. To optimize the fuel cost of conventional committed generators 
genetic algorithm (GA) is used. As discussed in above genetic algorithm section parameter selection 
is done as shown in Table 4. The objective function of GA is the fuel cost obtained in case2.

The GA is run one time for each hour. In one-hour GA is run for 100 iterations, in each iteration 
100 initial population is generated based on UC-ACOPF unit committed result as obtained is case2. 
In one iteration out of 100 populations minimum price is saves as ‘minc’ hence in one iteration 100 
‘minc’ price is generated. Table 5 shows the optimized total fuel cost for conventional committed 
generators for 24hr load schedule. As shown in table total saving in 24hr. is 334$.

The peak load hour is 19thhour, GA is optimized at 98th iteration with minimum price of 6657 ($). 
Figure 3 show the ‘minc’ plot obtained for 19th hr. for all three committed generators. Figure 4 show 
the optimization characteristic of objective function that is total cost for 19th hr. Power generation for 
each committed generator is shown in Figure 5. 

Table 2. UC for IEEE 14 bus system with STPP

Time 
(hr)

Load 
(MW)

Unit status Power output (MW) Total 
Power 
(MW)

Total 
Cost 

($/hr)1 2 3 6 8 13 14 1 2 3 6 8 13 14

1 155.40 1 1 0 0 0 0 0 134.91 25.16 0 0 0 0 0 160.07 4142

2 109.00 1 1 0 0 0 0 0 93.78 17.32 0 0 0 0 0 111.1 2675

3 104.00 1 1 0 0 0 0 0 89.25 16.46 0 0 0 0 0 105.71 2524

4 103.60 1 1 0 0 0 0 0 89.25 16.46 0 0 0 0 0 105.71 2524

5 129.50 1 1 0 0 0 0 0 111.98 20.77 0 0 0 0 0 132.75 3302

6 181.30 1 1 0 0 0 0 0 158.04 29.64 0 0 0 0 0 187.68 5047

7 181.30 1 1 0 0 0 0 0 158.04 29.64 0 0 0 0 0 187.68 5047

8 202.02 1 1 0 0 0 0 0 176.69 33.29 0 0 0 0 0 209.98 5819

9 212.38 1 1 0 0 0 1 1 167.96 31.62 0 0 0 10 10 219.58 5455

10 227.92 1 1 0 0 0 1 1 181.97 34.37 0 0 0 10 10 236.34 6046

11 230.51 1 1 0 0 0 1 1 184.30 34.83 0 0 0 10 10 239.13 6146

12 217.56 1 1 0 0 0 1 1 172.62 32.54 0 0 0 10 10 225.16 5649

13 207.20 1 1 0 0 0 1 1 163.31 30.71 0 0 0 10 10 214.02 5263

14 196.84 1 1 0 0 0 1 1 154.02 28.90 0 0 0 10 10 202.92 4887

15 227.92 1 1 0 0 0 1 1 182.66 34.51 0 0 0 10 10 237.17 6076

16 233.10 1 1 1 0 0 1 1 185.41 35.05 1.36 0 0 10 10 241.82 6249

17 220.15 1 1 0 0 0 1 1 174.96 32.99 0 0 0 10 10 227.95 5747

18 230.51 1 1 1 0 0 1 1 184.30 34.83 0.02 0 0 10 10 239.15 6147

19 243.46 1 1 1 0 0 1 1 187.66 35.48 9.10 0 0 10 10 252.44 6657

20 170.94 1 1 0 0 0 0 0 148.77 27.84 0 0 0 0 0 176.61 4678

21 150.22 1 1 0 0 0 0 0 130.31 24.28 0 0 0 0 0 154.59 3969

22 179.00 1 1 0 0 0 0 0 155.72 29.19 0 0 0 0 0 184.91 4954

23 176.30 1 1 0 0 0 0 0 153.40 28.74 0 0 0 0 0 182.14 4861

24 173.10 1 1 0 0 0 0 0 151.09 28.29 0 0 0 0 0 179.38 4769

Overall cost = 1,18,633.00($/day)
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Table 3. Hourly Min. and Max. Load Bus Voltages for IEEE 14 Bus Test System with STPP

Time (hour) Vmax (p.u) Vmin  (p.u) Active loss(P) 
(MW)

Reactive loss(Q) 
(MVAR)

1 1.060 1.024 1.42 4.35

2 1.060 1.032 0.69 2.11

3 1.060 1.033 0.63 1.91

4 1.060 1.033 0.63 1.91

5 1.060 1.029 0.98 3.00

6 1.060 1.019 1.95 5.96

7 1.060 1.019 1.95 5.96

8 1.060 1.016 2.44 7.45

9 1.060 1.015 2.26 6.89

10 1.060 1.013 2.64 8.07

11 1.060 1.012 2.71 8.27

12 1.060 1.015 2.38 7.27

13 1.060 1.030 0.86 2.64

14 1.060 1.018 1.90 5.81

15 1.060 1.013 2.60 8.12

16 1.060 1.012 2.74 8.36

17 1.060 1.014 2.45 7.47

18 1.060 1.015 2.80 8.55

19 1.060 1.015 2.86 8.72

20 1.060 1.025 1.73 5.28

21 1.060 1.025 1.33 4.06

22 1.060 1.020 1.90 5.79

23 1.060 1.020 1.84 5.62

24 1.060 1.021 1.78 5.45

Table 4. Parameters selection

Parameters Specifications

Population size 50

Crossover probability 0.5

Mutation probability 0.15

Maximum iteration 100
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Table 5. Optimal result of GA for 24-hour UC schedule

Time 
(hr)

Total 
Power 
(MW)

No: of 
iterations

Power (in MW) Total 
cost($/hr) 
(with GA)

Total Cost 
($/hr)Pg1

Pg2 Pg3 Pg4 Pg5 Pg13 Pg14

1 160.00 97 134 26 0 0 0 0 0 4135 4142

2 111.00 96 94 17 0 0 0 0 0 2659 2675

3 106.00 97 89 17 0 0 0 0 0 2518 2524

4 106.00 92 89 17 0 0 0 0 0 2512 2524

5 133.00 99 112 21 0 0 0 0 0 3294 3302

6 188.00 98 158 30 0 0 0 0 0 5030 5047

7 188.00 97 157 31 0 0 0 0 0 5022 5047

8 210.00 95 176 34 0 0 0 0 0 5808 5819

9 220.00 99 168 32 0 0 0 10 10 5438 5455

10 236.00 97 182 34 0 0 0 10 10 6021 6046

11 239.00 97 184 35 0 0 0 10 10 6124 6146

12 225.00 96 173 32 0 0 0 10 10 5646 5649

13 214.00 98 163 31 0 0 0 10 10 5247 5263

14 203.00 97 154 29 0 0 0 10 10 4875 4887

15 237.00 98 183 34 0 0 0 10 10 6054 6076

16 242.00 99 184 36 2 0 0 10 10 6244 6249

17 228.00 99 175 33 0 0 0 10 10 5739 5747

18 239.00 98 183 36 0 0 0 10 10 6136 6147

19 253.00 98 188 36 9 0 0 10 10 6654 6657

20 177.00 97 149 28 0 0 0 0 0 4641 4678

21 155.00 99 130 25 0 0 0 0 0 3967 3969

22 185.00 98 156 29 0 0 0 0 0 4941 4954

23 182.00 93 153 29 0 0 0 0 0 4846 4861

24 179.00 90 151 28 0 0 0 0 0 4749 4769

Overall cost 1,18,299.0 1,18,633.0

Total saving=334 ($/day)
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Figure 3. Minimum cost function (minc) plot

Figure 4. Objective function optimization characteristic

Figure 5. Power Generation plot
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CONCLUSION

Unit Commitment is a complex problem of optimization in power systems. A prior knowledge of 
the units to be committed among the available to meet the anticipated load demand not only reduces 
the generation expense, but also allows system operators to operate smoothly. Many approaches can 
solve the unit commitment problem to get the optimal solution. The question of unit commitment 
is nothing; it’s the basic load study expected at different time schedules. In this paper, one day (24 
hour) load profile is used to show the effectiveness of the proposed approach. The STPP installation 
method is also proposed effectively on the selected system. A genetic algorithm-based approach has 
been successfully proposed and applied to minimize the fuel cost of conventional unit committed 
generators. The proposed approach compares the fuel cost with and without GA and show the saving 
of fuel cost by using GA. 
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